//===-- IPConstantPropagation.cpp - Propagate constants through calls -----===// // // The LLVM Compiler Infrastructure // // This file was developed by the LLVM research group and is distributed under // the University of Illinois Open Source License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// // // This pass implements an _extremely_ simple interprocedural constant // propagation pass. It could certainly be improved in many different ways, // like using a worklist. This pass makes arguments dead, but does not remove // them. The existing dead argument elimination pass should be run after this // to clean up the mess. // //===----------------------------------------------------------------------===// #include "llvm/Transforms/IPO.h" #include "llvm/Module.h" #include "llvm/Pass.h" #include "llvm/Constants.h" #include "llvm/Support/CallSite.h" #include "Support/Statistic.h" using namespace llvm; namespace { Statistic<> NumArgumentsProped("ipconstprop", "Number of args turned into constants"); /// IPCP - The interprocedural constant propagation pass /// struct IPCP : public Pass { bool run(Module &M); private: bool processFunction(Function &F); }; RegisterOpt X("ipconstprop", "Interprocedural constant propagation"); } Pass *llvm::createIPConstantPropagationPass() { return new IPCP(); } bool IPCP::run(Module &M) { bool Changed = false; bool LocalChange = true; // FIXME: instead of using smart algorithms, we just iterate until we stop // making changes. while (LocalChange) { LocalChange = false; for (Module::iterator I = M.begin(), E = M.end(); I != E; ++I) if (!I->isExternal() && I->hasInternalLinkage()) LocalChange |= processFunction(*I); Changed |= LocalChange; } return Changed; } /// processFunction - Look at all uses of the specified function. If all uses /// are direct call sites, and all pass a particular constant in for an /// argument, propagate that constant in as the argument. /// bool IPCP::processFunction(Function &F) { if (F.aempty() || F.use_empty()) return false; // No arguments? Early exit. std::vector > ArgumentConstants; ArgumentConstants.resize(F.asize()); unsigned NumNonconstant = 0; for (Value::use_iterator I = F.use_begin(), E = F.use_end(); I != E; ++I) if (!isa(*I)) return false; // Used by a non-instruction, do not transform else { CallSite CS = CallSite::get(cast(*I)); if (CS.getInstruction() == 0 || CS.getCalledFunction() != &F) return false; // Not a direct call site? // Check out all of the potentially constant arguments CallSite::arg_iterator AI = CS.arg_begin(); for (unsigned i = 0, e = ArgumentConstants.size(); i != e; ++i, ++AI) { if (*AI == &F) return false; // Passes the function into itself if (!ArgumentConstants[i].second) { if (isa(*AI)) { Constant *C = dyn_cast(*AI); if (!ArgumentConstants[i].first) ArgumentConstants[i].first = C; else if (ArgumentConstants[i].first != C) { // Became non-constant ArgumentConstants[i].second = true; ++NumNonconstant; if (NumNonconstant == ArgumentConstants.size()) return false; } } else { // This is not a constant argument. Mark the argument as // non-constant. ArgumentConstants[i].second = true; ++NumNonconstant; if (NumNonconstant == ArgumentConstants.size()) return false; } } } } // If we got to this point, there is a constant argument! assert(NumNonconstant != ArgumentConstants.size()); Function::aiterator AI = F.abegin(); bool MadeChange = false; for (unsigned i = 0, e = ArgumentConstants.size(); i != e; ++i, ++AI) // Do we have a constant argument!? if (!ArgumentConstants[i].second && !AI->use_empty()) { assert(ArgumentConstants[i].first && "Unknown constant value!"); Value *V = ArgumentConstants[i].first; AI->replaceAllUsesWith(V); ++NumArgumentsProped; MadeChange = true; } return MadeChange; }