//===-- InstSelectPattern.cpp - A pattern matching inst selector for X86 --===// // // This file defines a pattern matching instruction selector for X86. // // FIXME: we could allocate one big array of unsigneds to use as the backing // store for all of the nodes costs arrays. // //===----------------------------------------------------------------------===// #include "X86.h" #include "llvm/Pass.h" #include "llvm/Function.h" #include "llvm/DerivedTypes.h" #include "llvm/CodeGen/SelectionDAG.h" #include "llvm/CodeGen/MachineFunction.h" #include "llvm/CodeGen/MachineFrameInfo.h" #include "llvm/CodeGen/SSARegMap.h" #include "X86RegisterInfo.h" // Include the generated instruction selector... #include "X86GenInstrSelector.inc" //===----------------------------------------------------------------------===// // User code // namespace { struct ISel : public FunctionPass, SelectionDAGTargetBuilder { TargetMachine &TM; ISel(TargetMachine &tm) : TM(tm) {} int VarArgsFrameIndex; // FrameIndex for start of varargs area bool runOnFunction(Function &Fn) { MachineFunction &MF = MachineFunction::construct(&Fn, TM); SelectionDAG DAG(MF, TM, *this); std::cerr << "\n\n\n=== " << DAG.getMachineFunction().getFunction()->getName() << "\n"; DAG.dump(); X86ISel(DAG).generateCode(); std::cerr << "\n\n\n"; return true; } public: // Implementation of the SelectionDAGTargetBuilder class... /// expandArguments - Add nodes to the DAG to indicate how to load arguments /// off of the X86 stack. void expandArguments(SelectionDAG &SD, MachineFunction &MF); }; } void ISel::expandArguments(SelectionDAG &SD, MachineFunction &F) { // Add DAG nodes to load the arguments... On entry to a function on the X86, // the stack frame looks like this: // // [ESP] -- return address // [ESP + 4] -- first argument (leftmost lexically) // [ESP + 8] -- second argument, if first argument is four bytes in size // ... // unsigned ArgOffset = 0; // Frame mechanisms handle retaddr slot MachineFrameInfo *MFI = F.getFrameInfo(); const Function &Fn = *F.getFunction(); for (Function::const_aiterator I = Fn.abegin(), E = Fn.aend(); I != E; ++I) { MVT::ValueType ObjectVT = SD.getValueType(I->getType()); unsigned ArgIncrement = 4; unsigned ObjSize; switch (ObjectVT) { default: assert(0 && "Unhandled argument type!"); case MVT::i8: ObjSize = 1; break; case MVT::i16: ObjSize = 2; break; case MVT::i32: ObjSize = 4; break; case MVT::i64: ObjSize = ArgIncrement = 8; break; case MVT::f32: ObjSize = 4; break; case MVT::f64: ObjSize = ArgIncrement = 8; break; } // Create the frame index object for this incoming parameter... int FI = MFI->CreateFixedObject(ObjSize, ArgOffset); // Create the SelectionDAG nodes corresponding to a load from this parameter // FIXME: SelectionDAGNode *FIN = new SelectionDAGNode(ISD::FrameIndex, MVT::i32); FIN->addValue(new ReducedValue_FrameIndex_i32(FI)); SelectionDAGNode *Arg = new SelectionDAGNode(ISD::Load, ObjectVT, F.begin(), FIN); // Add the SelectionDAGNodes to the SelectionDAG... note that there is no // reason to add chain nodes here. We know that no loads ore stores will // ever alias these loads, so we are free to perform the load at any time in // the function SD.addNode(FIN); SD.addNodeForValue(Arg, I); ArgOffset += ArgIncrement; // Move on to the next argument... } // If the function takes variable number of arguments, make a frame index for // the start of the first vararg value... for expansion of llvm.va_start. if (Fn.getFunctionType()->isVarArg()) VarArgsFrameIndex = MFI->CreateFixedObject(1, ArgOffset); } /// createX86PatternInstructionSelector - This pass converts an LLVM function /// into a machine code representation using pattern matching and a machine /// description file. /// FunctionPass *createX86PatternInstructionSelector(TargetMachine &TM) { return new ISel(TM); }