///===-- FastISel.cpp - Implementation of the FastISel class --------------===// // // The LLVM Compiler Infrastructure // // This file is distributed under the University of Illinois Open Source // License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// // // This file contains the implementation of the FastISel class. // //===----------------------------------------------------------------------===// #include "llvm/Instructions.h" #include "llvm/CodeGen/FastISel.h" #include "llvm/CodeGen/MachineInstrBuilder.h" #include "llvm/CodeGen/MachineRegisterInfo.h" #include "llvm/Target/TargetData.h" #include "llvm/Target/TargetInstrInfo.h" #include "llvm/Target/TargetLowering.h" #include "llvm/Target/TargetMachine.h" using namespace llvm; /// SelectBinaryOp - Select and emit code for a binary operator instruction, /// which has an opcode which directly corresponds to the given ISD opcode. /// bool FastISel::SelectBinaryOp(Instruction *I, ISD::NodeType ISDOpcode, DenseMap &ValueMap) { unsigned Op0 = ValueMap[I->getOperand(0)]; unsigned Op1 = ValueMap[I->getOperand(1)]; if (Op0 == 0 || Op1 == 0) // Unhandled operand. Halt "fast" selection and bail. return false; MVT VT = MVT::getMVT(I->getType(), /*HandleUnknown=*/true); if (VT == MVT::Other || !VT.isSimple()) // Unhandled type. Halt "fast" selection and bail. return false; unsigned ResultReg = FastEmit_rr(VT.getSimpleVT(), ISDOpcode, Op0, Op1); if (ResultReg == 0) // Target-specific code wasn't able to find a machine opcode for // the given ISD opcode and type. Halt "fast" selection and bail. return false; // We successfully emitted code for the given LLVM Instruction. ValueMap[I] = ResultReg; return true; } bool FastISel::SelectGetElementPtr(Instruction *I, DenseMap &ValueMap) { unsigned N = ValueMap[I->getOperand(0)]; if (N == 0) // Unhandled operand. Halt "fast" selection and bail. return false; const Type *Ty = I->getOperand(0)->getType(); MVT VT = MVT::getMVT(Ty, /*HandleUnknown=*/true); MVT::SimpleValueType PtrVT = TLI.getPointerTy().getSimpleVT(); for (GetElementPtrInst::op_iterator OI = I->op_begin()+1, E = I->op_end(); OI != E; ++OI) { Value *Idx = *OI; if (const StructType *StTy = dyn_cast(Ty)) { unsigned Field = cast(Idx)->getZExtValue(); if (Field) { // N = N + Offset uint64_t Offs = TD.getStructLayout(StTy)->getElementOffset(Field); // FIXME: This can be optimized by combining the add with a // subsequent one. N = FastEmit_ri(VT.getSimpleVT(), ISD::ADD, N, Offs, PtrVT); if (N == 0) // Unhandled operand. Halt "fast" selection and bail. return false; } Ty = StTy->getElementType(Field); } else { Ty = cast(Ty)->getElementType(); // If this is a constant subscript, handle it quickly. if (ConstantInt *CI = dyn_cast(Idx)) { if (CI->getZExtValue() == 0) continue; uint64_t Offs = TD.getABITypeSize(Ty)*cast(CI)->getSExtValue(); N = FastEmit_ri(VT.getSimpleVT(), ISD::ADD, N, Offs, PtrVT); if (N == 0) // Unhandled operand. Halt "fast" selection and bail. return false; continue; } // N = N + Idx * ElementSize; uint64_t ElementSize = TD.getABITypeSize(Ty); unsigned IdxN = ValueMap[Idx]; if (IdxN == 0) // Unhandled operand. Halt "fast" selection and bail. return false; // If the index is smaller or larger than intptr_t, truncate or extend // it. MVT IdxVT = MVT::getMVT(Idx->getType(), /*HandleUnknown=*/true); if (IdxVT.bitsLT(VT)) IdxN = FastEmit_r(VT.getSimpleVT(), ISD::SIGN_EXTEND, IdxN); else if (IdxVT.bitsGT(VT)) IdxN = FastEmit_r(VT.getSimpleVT(), ISD::TRUNCATE, IdxN); if (IdxN == 0) // Unhandled operand. Halt "fast" selection and bail. return false; // FIXME: If multiple is power of two, turn it into a shift. The // optimization should be in FastEmit_ri? IdxN = FastEmit_ri(VT.getSimpleVT(), ISD::MUL, IdxN, ElementSize, PtrVT); if (IdxN == 0) // Unhandled operand. Halt "fast" selection and bail. return false; N = FastEmit_rr(VT.getSimpleVT(), ISD::ADD, N, IdxN); if (N == 0) // Unhandled operand. Halt "fast" selection and bail. return false; } } // We successfully emitted code for the given LLVM Instruction. ValueMap[I] = N; return true; } BasicBlock::iterator FastISel::SelectInstructions(BasicBlock::iterator Begin, BasicBlock::iterator End, DenseMap &ValueMap, MachineBasicBlock *mbb) { MBB = mbb; BasicBlock::iterator I = Begin; for (; I != End; ++I) { switch (I->getOpcode()) { case Instruction::Add: { ISD::NodeType Opc = I->getType()->isFPOrFPVector() ? ISD::FADD : ISD::ADD; if (!SelectBinaryOp(I, Opc, ValueMap)) return I; break; } case Instruction::Sub: { ISD::NodeType Opc = I->getType()->isFPOrFPVector() ? ISD::FSUB : ISD::SUB; if (!SelectBinaryOp(I, Opc, ValueMap)) return I; break; } case Instruction::Mul: { ISD::NodeType Opc = I->getType()->isFPOrFPVector() ? ISD::FMUL : ISD::MUL; if (!SelectBinaryOp(I, Opc, ValueMap)) return I; break; } case Instruction::SDiv: if (!SelectBinaryOp(I, ISD::SDIV, ValueMap)) return I; break; case Instruction::UDiv: if (!SelectBinaryOp(I, ISD::UDIV, ValueMap)) return I; break; case Instruction::FDiv: if (!SelectBinaryOp(I, ISD::FDIV, ValueMap)) return I; break; case Instruction::SRem: if (!SelectBinaryOp(I, ISD::SREM, ValueMap)) return I; break; case Instruction::URem: if (!SelectBinaryOp(I, ISD::UREM, ValueMap)) return I; break; case Instruction::FRem: if (!SelectBinaryOp(I, ISD::FREM, ValueMap)) return I; break; case Instruction::Shl: if (!SelectBinaryOp(I, ISD::SHL, ValueMap)) return I; break; case Instruction::LShr: if (!SelectBinaryOp(I, ISD::SRL, ValueMap)) return I; break; case Instruction::AShr: if (!SelectBinaryOp(I, ISD::SRA, ValueMap)) return I; break; case Instruction::And: if (!SelectBinaryOp(I, ISD::AND, ValueMap)) return I; break; case Instruction::Or: if (!SelectBinaryOp(I, ISD::OR, ValueMap)) return I; break; case Instruction::Xor: if (!SelectBinaryOp(I, ISD::XOR, ValueMap)) return I; break; case Instruction::GetElementPtr: if (!SelectGetElementPtr(I, ValueMap)) return I; break; case Instruction::Br: { BranchInst *BI = cast(I); // For now, check for and handle just the most trivial case: an // unconditional fall-through branch. if (BI->isUnconditional()) { MachineFunction::iterator NextMBB = next(MachineFunction::iterator(MBB)); if (NextMBB != MF.end() && NextMBB->getBasicBlock() == BI->getSuccessor(0)) { MBB->addSuccessor(NextMBB); break; } } // Something more complicated. Halt "fast" selection and bail. return I; } default: // Unhandled instruction. Halt "fast" selection and bail. return I; } } return I; } FastISel::FastISel(MachineFunction &mf) : MF(mf), MRI(mf.getRegInfo()), TD(*mf.getTarget().getTargetData()), TII(*mf.getTarget().getInstrInfo()), TLI(*mf.getTarget().getTargetLowering()) { } FastISel::~FastISel() {} unsigned FastISel::FastEmit_(MVT::SimpleValueType, ISD::NodeType) { return 0; } unsigned FastISel::FastEmit_r(MVT::SimpleValueType, ISD::NodeType, unsigned /*Op0*/) { return 0; } unsigned FastISel::FastEmit_rr(MVT::SimpleValueType, ISD::NodeType, unsigned /*Op0*/, unsigned /*Op0*/) { return 0; } unsigned FastISel::FastEmit_i(MVT::SimpleValueType, uint64_t) { return 0; } unsigned FastISel::FastEmit_ri(MVT::SimpleValueType, ISD::NodeType, unsigned /*Op0*/, uint64_t Imm, MVT::SimpleValueType ImmType) { return 0; } /// FastEmit_ri_ - This method is a wrapper of FastEmit_ri. It first tries /// to emit an instruction with an immediate operand using FastEmit_ri. /// If that fails, it materializes the immediate into a register and try /// FastEmit_rr instead. unsigned FastISel::FastEmit_ri_(MVT::SimpleValueType VT, ISD::NodeType Opcode, unsigned Op0, uint64_t Imm, MVT::SimpleValueType ImmType) { unsigned ResultReg = 0; // First check if immediate type is legal. If not, we can't use the ri form. if (TLI.getOperationAction(ISD::Constant, ImmType) == TargetLowering::Legal) ResultReg = FastEmit_ri(VT, Opcode, Op0, Imm, ImmType); if (ResultReg != 0) return ResultReg; return FastEmit_rr(VT, Opcode, Op0, FastEmit_i(ImmType, Imm)); } unsigned FastISel::FastEmitInst_(unsigned MachineInstOpcode, const TargetRegisterClass* RC) { unsigned ResultReg = MRI.createVirtualRegister(RC); const TargetInstrDesc &II = TII.get(MachineInstOpcode); BuildMI(MBB, II, ResultReg); return ResultReg; } unsigned FastISel::FastEmitInst_r(unsigned MachineInstOpcode, const TargetRegisterClass *RC, unsigned Op0) { unsigned ResultReg = MRI.createVirtualRegister(RC); const TargetInstrDesc &II = TII.get(MachineInstOpcode); BuildMI(MBB, II, ResultReg).addReg(Op0); return ResultReg; } unsigned FastISel::FastEmitInst_rr(unsigned MachineInstOpcode, const TargetRegisterClass *RC, unsigned Op0, unsigned Op1) { unsigned ResultReg = MRI.createVirtualRegister(RC); const TargetInstrDesc &II = TII.get(MachineInstOpcode); BuildMI(MBB, II, ResultReg).addReg(Op0).addReg(Op1); return ResultReg; }