//===-- PhiElimination.cpp - Eliminate PHI nodes by inserting copies ------===// // // The LLVM Compiler Infrastructure // // This file was developed by the LLVM research group and is distributed under // the University of Illinois Open Source License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// // // This pass eliminates machine instruction PHI nodes by inserting copy // instructions. This destroys SSA information, but is the desired input for // some register allocators. // //===----------------------------------------------------------------------===// #include "llvm/CodeGen/LiveVariables.h" #include "llvm/CodeGen/Passes.h" #include "llvm/CodeGen/MachineFunctionPass.h" #include "llvm/CodeGen/MachineInstr.h" #include "llvm/CodeGen/SSARegMap.h" #include "llvm/Target/TargetInstrInfo.h" #include "llvm/Target/TargetMachine.h" #include "llvm/ADT/DenseMap.h" #include "llvm/ADT/STLExtras.h" #include using namespace llvm; namespace { struct PNE : public MachineFunctionPass { bool runOnMachineFunction(MachineFunction &Fn) { bool Changed = false; // Eliminate PHI instructions by inserting copies into predecessor blocks. for (MachineFunction::iterator I = Fn.begin(), E = Fn.end(); I != E; ++I) Changed |= EliminatePHINodes(Fn, *I); return Changed; } virtual void getAnalysisUsage(AnalysisUsage &AU) const { AU.addPreserved(); MachineFunctionPass::getAnalysisUsage(AU); } private: /// EliminatePHINodes - Eliminate phi nodes by inserting copy instructions /// in predecessor basic blocks. /// bool EliminatePHINodes(MachineFunction &MF, MachineBasicBlock &MBB); void LowerAtomicPHINode(MachineBasicBlock &MBB, MachineBasicBlock::iterator AfterPHIsIt, DenseMap &VUC, unsigned BBIsSuccOfPreds); }; RegisterPass X("phi-node-elimination", "Eliminate PHI nodes for register allocation"); } const PassInfo *llvm::PHIEliminationID = X.getPassInfo(); /// EliminatePHINodes - Eliminate phi nodes by inserting copy instructions in /// predecessor basic blocks. /// bool PNE::EliminatePHINodes(MachineFunction &MF, MachineBasicBlock &MBB) { if (MBB.empty() || MBB.front().getOpcode() != TargetInstrInfo::PHI) return false; // Quick exit for basic blocks without PHIs. // VRegPHIUseCount - Keep track of the number of times each virtual register // is used by PHI nodes in successors of this block. DenseMap VRegPHIUseCount; VRegPHIUseCount.grow(MF.getSSARegMap()->getLastVirtReg()); unsigned BBIsSuccOfPreds = 0; // Number of times MBB is a succ of preds for (MachineBasicBlock::pred_iterator PI = MBB.pred_begin(), E = MBB.pred_end(); PI != E; ++PI) for (MachineBasicBlock::succ_iterator SI = (*PI)->succ_begin(), E = (*PI)->succ_end(); SI != E; ++SI) { BBIsSuccOfPreds += *SI == &MBB; for (MachineBasicBlock::iterator BBI = (*SI)->begin(); BBI !=(*SI)->end() && BBI->getOpcode() == TargetInstrInfo::PHI; ++BBI) for (unsigned i = 1, e = BBI->getNumOperands(); i != e; i += 2) VRegPHIUseCount[BBI->getOperand(i).getReg()]++; } // Get an iterator to the first instruction after the last PHI node (this may // also be the end of the basic block). MachineBasicBlock::iterator AfterPHIsIt = MBB.begin(); while (AfterPHIsIt != MBB.end() && AfterPHIsIt->getOpcode() == TargetInstrInfo::PHI) ++AfterPHIsIt; // Skip over all of the PHI nodes... while (MBB.front().getOpcode() == TargetInstrInfo::PHI) { LowerAtomicPHINode(MBB, AfterPHIsIt, VRegPHIUseCount, BBIsSuccOfPreds); } return true; } /// LowerAtomicPHINode - Lower the PHI node at the top of the specified block, /// under the assuption that it needs to be lowered in a way that supports /// atomic execution of PHIs. This lowering method is always correct all of the /// time. void PNE::LowerAtomicPHINode(MachineBasicBlock &MBB, MachineBasicBlock::iterator AfterPHIsIt, DenseMap &VRegPHIUseCount, unsigned BBIsSuccOfPreds) { // Unlink the PHI node from the basic block, but don't delete the PHI yet. MachineInstr *MPhi = MBB.remove(MBB.begin()); unsigned DestReg = MPhi->getOperand(0).getReg(); // Create a new register for the incoming PHI arguments/ MachineFunction &MF = *MBB.getParent(); const TargetRegisterClass *RC = MF.getSSARegMap()->getRegClass(DestReg); unsigned IncomingReg = MF.getSSARegMap()->createVirtualRegister(RC); // Insert a register to register copy in the top of the current block (but // after any remaining phi nodes) which copies the new incoming register // into the phi node destination. // const MRegisterInfo *RegInfo = MF.getTarget().getRegisterInfo(); RegInfo->copyRegToReg(MBB, AfterPHIsIt, DestReg, IncomingReg, RC); // Update live variable information if there is any... LiveVariables *LV = getAnalysisToUpdate(); if (LV) { MachineInstr *PHICopy = prior(AfterPHIsIt); // Add information to LiveVariables to know that the incoming value is // killed. Note that because the value is defined in several places (once // each for each incoming block), the "def" block and instruction fields // for the VarInfo is not filled in. // LV->addVirtualRegisterKilled(IncomingReg, PHICopy); // Since we are going to be deleting the PHI node, if it is the last use // of any registers, or if the value itself is dead, we need to move this // information over to the new copy we just inserted. // LV->removeVirtualRegistersKilled(MPhi); std::pair RKs = LV->dead_range(MPhi); if (RKs.first != RKs.second) { for (LiveVariables::killed_iterator I = RKs.first; I != RKs.second; ++I) LV->addVirtualRegisterDead(*I, PHICopy); LV->removeVirtualRegistersDead(MPhi); } } // Adjust the VRegPHIUseCount map to account for the removal of this PHI // node. for (unsigned i = 1; i != MPhi->getNumOperands(); i += 2) VRegPHIUseCount[MPhi->getOperand(i).getReg()] -= BBIsSuccOfPreds; // Now loop over all of the incoming arguments, changing them to copy into // the IncomingReg register in the corresponding predecessor basic block. // for (int i = MPhi->getNumOperands() - 1; i >= 2; i-=2) { MachineOperand &opVal = MPhi->getOperand(i-1); // Get the MachineBasicBlock equivalent of the BasicBlock that is the // source path the PHI. MachineBasicBlock &opBlock = *MPhi->getOperand(i).getMachineBasicBlock(); MachineBasicBlock::iterator I = opBlock.getFirstTerminator(); // Check to make sure we haven't already emitted the copy for this block. // This can happen because PHI nodes may have multiple entries for the // same basic block. It doesn't matter which entry we use though, because // all incoming values are guaranteed to be the same for a particular bb. // // If we emitted a copy for this basic block already, it will be right // where we want to insert one now. Just check for a definition of the // register we are interested in! // bool HaveNotEmitted = true; if (I != opBlock.begin()) { MachineBasicBlock::iterator PrevInst = prior(I); for (unsigned i = 0, e = PrevInst->getNumOperands(); i != e; ++i) { MachineOperand &MO = PrevInst->getOperand(i); if (MO.isRegister() && MO.getReg() == IncomingReg) if (MO.isDef()) { HaveNotEmitted = false; break; } } } if (HaveNotEmitted) { // If the copy has not already been emitted, do it. assert(MRegisterInfo::isVirtualRegister(opVal.getReg()) && "Machine PHI Operands must all be virtual registers!"); unsigned SrcReg = opVal.getReg(); RegInfo->copyRegToReg(opBlock, I, IncomingReg, SrcReg, RC); // Now update live variable information if we have it. if (LV) { // We want to be able to insert a kill of the register if this PHI // (aka, the copy we just inserted) is the last use of the source // value. Live variable analysis conservatively handles this by // saying that the value is live until the end of the block the PHI // entry lives in. If the value really is dead at the PHI copy, there // will be no successor blocks which have the value live-in. // // Check to see if the copy is the last use, and if so, update the // live variables information so that it knows the copy source // instruction kills the incoming value. // LiveVariables::VarInfo &InRegVI = LV->getVarInfo(SrcReg); // Loop over all of the successors of the basic block, checking to see // if the value is either live in the block, or if it is killed in the // block. Also check to see if this register is in use by another PHI // node which has not yet been eliminated. If so, it will be killed // at an appropriate point later. // bool ValueIsLive = false; for (MachineBasicBlock::succ_iterator SI = opBlock.succ_begin(), E = opBlock.succ_end(); SI != E && !ValueIsLive; ++SI) { MachineBasicBlock *SuccMBB = *SI; // Is it alive in this successor? unsigned SuccIdx = SuccMBB->getNumber(); if (SuccIdx < InRegVI.AliveBlocks.size() && InRegVI.AliveBlocks[SuccIdx]) { ValueIsLive = true; break; } // Is it killed in this successor? for (unsigned i = 0, e = InRegVI.Kills.size(); i != e; ++i) if (InRegVI.Kills[i]->getParent() == SuccMBB) { ValueIsLive = true; break; } // Is it used by any PHI instructions in this block? if (!ValueIsLive) ValueIsLive = VRegPHIUseCount[SrcReg] != 0; } // Okay, if we now know that the value is not live out of the block, // we can add a kill marker to the copy we inserted saying that it // kills the incoming value! // if (!ValueIsLive) { MachineBasicBlock::iterator Prev = prior(I); LV->addVirtualRegisterKilled(SrcReg, Prev); // This vreg no longer lives all of the way through opBlock. unsigned opBlockNum = opBlock.getNumber(); if (opBlockNum < InRegVI.AliveBlocks.size()) InRegVI.AliveBlocks[opBlockNum] = false; } } } } // Really delete the PHI instruction now! delete MPhi; }