//===-- SparcV8AsmPrinter.cpp - SparcV8 LLVM assembly writer --------------===// // // The LLVM Compiler Infrastructure // // This file was developed by the LLVM research group and is distributed under // the University of Illinois Open Source License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// // // This file contains a printer that converts from our internal representation // of machine-dependent LLVM code to GAS-format Sparc V8 assembly language. // //===----------------------------------------------------------------------===// #include "SparcV8.h" #include "SparcV8InstrInfo.h" #include "llvm/Constants.h" #include "llvm/DerivedTypes.h" #include "llvm/Module.h" #include "llvm/Assembly/Writer.h" #include "llvm/CodeGen/MachineFunctionPass.h" #include "llvm/CodeGen/MachineConstantPool.h" #include "llvm/CodeGen/MachineInstr.h" #include "llvm/Target/TargetMachine.h" #include "llvm/Support/Mangler.h" #include "llvm/ADT/Statistic.h" #include "llvm/ADT/StringExtras.h" #include "llvm/Support/CommandLine.h" #include using namespace llvm; namespace { Statistic<> EmittedInsts("asm-printer", "Number of machine instrs printed"); struct V8Printer : public MachineFunctionPass { /// Output stream on which we're printing assembly code. /// std::ostream &O; /// Target machine description which we query for reg. names, data /// layout, etc. /// TargetMachine &TM; /// Name-mangler for global names. /// Mangler *Mang; V8Printer(std::ostream &o, TargetMachine &tm) : O(o), TM(tm) { } /// We name each basic block in a Function with a unique number, so /// that we can consistently refer to them later. This is cleared /// at the beginning of each call to runOnMachineFunction(). /// typedef std::map ValueMapTy; ValueMapTy NumberForBB; /// Cache of mangled name for current function. This is /// recalculated at the beginning of each call to /// runOnMachineFunction(). /// std::string CurrentFnName; virtual const char *getPassName() const { return "SparcV8 Assembly Printer"; } void emitConstantValueOnly(const Constant *CV); void emitGlobalConstant(const Constant *CV); void printConstantPool(MachineConstantPool *MCP); void printOperand(const MachineInstr *MI, int opNum); void printBaseOffsetPair (const MachineInstr *MI, int i, bool brackets=true); void printMachineInstruction(const MachineInstr *MI); bool runOnMachineFunction(MachineFunction &F); bool doInitialization(Module &M); bool doFinalization(Module &M); }; } // end of anonymous namespace /// createSparcV8CodePrinterPass - Returns a pass that prints the SparcV8 /// assembly code for a MachineFunction to the given output stream, /// using the given target machine description. This should work /// regardless of whether the function is in SSA form. /// FunctionPass *llvm::createSparcV8CodePrinterPass (std::ostream &o, TargetMachine &tm) { return new V8Printer(o, tm); } /// toOctal - Convert the low order bits of X into an octal digit. /// static inline char toOctal(int X) { return (X&7)+'0'; } /// getAsCString - Return the specified array as a C compatible /// string, only if the predicate isStringCompatible is true. /// static void printAsCString(std::ostream &O, const ConstantArray *CVA) { assert(CVA->isString() && "Array is not string compatible!"); O << "\""; for (unsigned i = 0; i != CVA->getNumOperands(); ++i) { unsigned char C = cast(CVA->getOperand(i))->getRawValue(); if (C == '"') { O << "\\\""; } else if (C == '\\') { O << "\\\\"; } else if (isprint(C)) { O << C; } else { switch(C) { case '\b': O << "\\b"; break; case '\f': O << "\\f"; break; case '\n': O << "\\n"; break; case '\r': O << "\\r"; break; case '\t': O << "\\t"; break; default: O << '\\'; O << toOctal(C >> 6); O << toOctal(C >> 3); O << toOctal(C >> 0); break; } } } O << "\""; } // Print out the specified constant, without a storage class. Only the // constants valid in constant expressions can occur here. void V8Printer::emitConstantValueOnly(const Constant *CV) { if (CV->isNullValue() || isa (CV)) O << "0"; else if (const ConstantBool *CB = dyn_cast(CV)) { assert(CB == ConstantBool::True); O << "1"; } else if (const ConstantSInt *CI = dyn_cast(CV)) if (((CI->getValue() << 32) >> 32) == CI->getValue()) O << CI->getValue(); else O << (unsigned long long)CI->getValue(); else if (const ConstantUInt *CI = dyn_cast(CV)) O << CI->getValue(); else if (const GlobalValue *GV = dyn_cast(CV)) // This is a constant address for a global variable or function. Use the // name of the variable or function as the address value. O << Mang->getValueName(GV); else if (const ConstantExpr *CE = dyn_cast(CV)) { const TargetData &TD = TM.getTargetData(); switch(CE->getOpcode()) { case Instruction::GetElementPtr: { // generate a symbolic expression for the byte address const Constant *ptrVal = CE->getOperand(0); std::vector idxVec(CE->op_begin()+1, CE->op_end()); if (unsigned Offset = TD.getIndexedOffset(ptrVal->getType(), idxVec)) { O << "("; emitConstantValueOnly(ptrVal); O << ") + " << Offset; } else { emitConstantValueOnly(ptrVal); } break; } case Instruction::Cast: { // Support only non-converting or widening casts for now, that is, ones // that do not involve a change in value. This assertion is really gross, // and may not even be a complete check. Constant *Op = CE->getOperand(0); const Type *OpTy = Op->getType(), *Ty = CE->getType(); // Pointers on ILP32 machines can be losslessly converted back and // forth into 32-bit or wider integers, regardless of signedness. assert(((isa(OpTy) && (Ty == Type::LongTy || Ty == Type::ULongTy || Ty == Type::IntTy || Ty == Type::UIntTy)) || (isa(Ty) && (OpTy == Type::LongTy || OpTy == Type::ULongTy || OpTy == Type::IntTy || OpTy == Type::UIntTy)) || (((TD.getTypeSize(Ty) >= TD.getTypeSize(OpTy)) && OpTy->isLosslesslyConvertibleTo(Ty)))) && "FIXME: Don't yet support this kind of constant cast expr"); O << "("; emitConstantValueOnly(Op); O << ")"; break; } case Instruction::Add: O << "("; emitConstantValueOnly(CE->getOperand(0)); O << ") + ("; emitConstantValueOnly(CE->getOperand(1)); O << ")"; break; default: assert(0 && "Unsupported operator!"); } } else { assert(0 && "Unknown constant value!"); } } // Print a constant value or values, with the appropriate storage class as a // prefix. void V8Printer::emitGlobalConstant(const Constant *CV) { const TargetData &TD = TM.getTargetData(); if (const ConstantArray *CVA = dyn_cast(CV)) { if (CVA->isString()) { O << "\t.ascii\t"; printAsCString(O, CVA); O << "\n"; } else { // Not a string. Print the values in successive locations for (unsigned i = 0, e = CVA->getNumOperands(); i != e; i++) emitGlobalConstant(CVA->getOperand(i)); } return; } else if (const ConstantStruct *CVS = dyn_cast(CV)) { // Print the fields in successive locations. Pad to align if needed! const StructLayout *cvsLayout = TD.getStructLayout(CVS->getType()); unsigned sizeSoFar = 0; for (unsigned i = 0, e = CVS->getNumOperands(); i != e; i++) { const Constant* field = CVS->getOperand(i); // Check if padding is needed and insert one or more 0s. unsigned fieldSize = TD.getTypeSize(field->getType()); unsigned padSize = ((i == e-1? cvsLayout->StructSize : cvsLayout->MemberOffsets[i+1]) - cvsLayout->MemberOffsets[i]) - fieldSize; sizeSoFar += fieldSize + padSize; // Now print the actual field value emitGlobalConstant(field); // Insert the field padding unless it's zero bytes... if (padSize) O << "\t.skip\t " << padSize << "\n"; } assert(sizeSoFar == cvsLayout->StructSize && "Layout of constant struct may be incorrect!"); return; } else if (const ConstantFP *CFP = dyn_cast(CV)) { // FP Constants are printed as integer constants to avoid losing // precision... double Val = CFP->getValue(); switch (CFP->getType()->getTypeID()) { default: assert(0 && "Unknown floating point type!"); case Type::FloatTyID: { union FU { // Abide by C TBAA rules float FVal; unsigned UVal; } U; U.FVal = Val; O << ".long\t" << U.UVal << "\t! float " << Val << "\n"; return; } case Type::DoubleTyID: { union DU { // Abide by C TBAA rules double FVal; uint64_t UVal; } U; U.FVal = Val; O << ".word\t0x" << std::hex << (U.UVal >> 32) << std::dec << "\t! double " << Val << "\n"; O << ".word\t0x" << std::hex << (U.UVal & 0xffffffffUL) << std::dec << "\t! double " << Val << "\n"; return; } } } else if (isa (CV)) { unsigned size = TD.getTypeSize (CV->getType ()); O << "\t.skip\t " << size << "\n"; return; } const Type *type = CV->getType(); O << "\t"; switch (type->getTypeID()) { case Type::BoolTyID: case Type::UByteTyID: case Type::SByteTyID: O << ".byte"; break; case Type::UShortTyID: case Type::ShortTyID: O << ".word"; break; case Type::FloatTyID: case Type::PointerTyID: case Type::UIntTyID: case Type::IntTyID: O << ".long"; break; case Type::DoubleTyID: case Type::ULongTyID: case Type::LongTyID: O << ".quad"; break; default: assert (0 && "Can't handle printing this type of thing"); break; } O << "\t"; emitConstantValueOnly(CV); O << "\n"; } /// printConstantPool - Print to the current output stream assembly /// representations of the constants in the constant pool MCP. This is /// used to print out constants which have been "spilled to memory" by /// the code generator. /// void V8Printer::printConstantPool(MachineConstantPool *MCP) { const std::vector &CP = MCP->getConstants(); const TargetData &TD = TM.getTargetData(); if (CP.empty()) return; for (unsigned i = 0, e = CP.size(); i != e; ++i) { O << "\t.section \".rodata\"\n"; O << "\t.align " << (unsigned)TD.getTypeAlignment(CP[i]->getType()) << "\n"; O << ".CPI" << CurrentFnName << "_" << i << ":\t\t\t\t\t!" << *CP[i] << "\n"; emitGlobalConstant(CP[i]); } } /// runOnMachineFunction - This uses the printMachineInstruction() /// method to print assembly for each instruction. /// bool V8Printer::runOnMachineFunction(MachineFunction &MF) { // BBNumber is used here so that a given Printer will never give two // BBs the same name. (If you have a better way, please let me know!) static unsigned BBNumber = 0; O << "\n\n"; // What's my mangled name? CurrentFnName = Mang->getValueName(MF.getFunction()); // Print out constants referenced by the function printConstantPool(MF.getConstantPool()); // Print out labels for the function. O << "\t.text\n"; O << "\t.align 16\n"; O << "\t.globl\t" << CurrentFnName << "\n"; O << "\t.type\t" << CurrentFnName << ", #function\n"; O << CurrentFnName << ":\n"; // Number each basic block so that we can consistently refer to them // in PC-relative references. NumberForBB.clear(); for (MachineFunction::const_iterator I = MF.begin(), E = MF.end(); I != E; ++I) { NumberForBB[I->getBasicBlock()] = BBNumber++; } // Print out code for the function. for (MachineFunction::const_iterator I = MF.begin(), E = MF.end(); I != E; ++I) { // Print a label for the basic block. O << ".LBB" << Mang->getValueName(MF.getFunction ()) << "_" << I->getNumber () << ":\t! " << I->getBasicBlock ()->getName () << "\n"; for (MachineBasicBlock::const_iterator II = I->begin(), E = I->end(); II != E; ++II) { // Print the assembly for the instruction. O << "\t"; printMachineInstruction(II); } } // We didn't modify anything. return false; } void V8Printer::printOperand(const MachineInstr *MI, int opNum) { const MachineOperand &MO = MI->getOperand (opNum); const MRegisterInfo &RI = *TM.getRegisterInfo(); bool CloseParen = false; if (MI->getOpcode() == V8::SETHIi && !MO.isRegister() && !MO.isImmediate()) { O << "%hi("; CloseParen = true; } else if (MI->getOpcode() ==V8::ORri &&!MO.isRegister() &&!MO.isImmediate()) { O << "%lo("; CloseParen = true; } switch (MO.getType()) { case MachineOperand::MO_VirtualRegister: if (Value *V = MO.getVRegValueOrNull()) { O << "<" << V->getName() << ">"; break; } // FALLTHROUGH case MachineOperand::MO_MachineRegister: if (MRegisterInfo::isPhysicalRegister(MO.getReg())) O << "%" << LowercaseString (RI.get(MO.getReg()).Name); else O << "%reg" << MO.getReg(); break; case MachineOperand::MO_SignExtendedImmed: case MachineOperand::MO_UnextendedImmed: O << (int)MO.getImmedValue(); break; case MachineOperand::MO_MachineBasicBlock: { MachineBasicBlock *MBBOp = MO.getMachineBasicBlock(); O << ".LBB" << Mang->getValueName(MBBOp->getParent()->getFunction()) << "_" << MBBOp->getNumber () << "\t! " << MBBOp->getBasicBlock ()->getName (); return; } case MachineOperand::MO_PCRelativeDisp: std::cerr << "Shouldn't use addPCDisp() when building SparcV8 MachineInstrs"; abort (); return; case MachineOperand::MO_GlobalAddress: O << Mang->getValueName(MO.getGlobal()); break; case MachineOperand::MO_ExternalSymbol: O << MO.getSymbolName(); break; case MachineOperand::MO_ConstantPoolIndex: O << ".CPI" << CurrentFnName << "_" << MO.getConstantPoolIndex(); break; default: O << ""; abort (); break; } if (CloseParen) O << ")"; } static bool isLoadInstruction (const MachineInstr *MI) { switch (MI->getOpcode ()) { case V8::LDSB: case V8::LDSH: case V8::LDUB: case V8::LDUH: case V8::LD: case V8::LDD: case V8::LDFrr: case V8::LDFri: case V8::LDDFrr: case V8::LDDFri: return true; default: return false; } } static bool isStoreInstruction (const MachineInstr *MI) { switch (MI->getOpcode ()) { case V8::STB: case V8::STH: case V8::ST: case V8::STD: case V8::STFrr: case V8::STFri: case V8::STDFrr: case V8::STDFri: return true; default: return false; } } static bool isPseudoInstruction (const MachineInstr *MI) { switch (MI->getOpcode ()) { case V8::PHI: case V8::ADJCALLSTACKUP: case V8::ADJCALLSTACKDOWN: case V8::IMPLICIT_USE: case V8::IMPLICIT_DEF: return true; default: return false; } } /// printBaseOffsetPair - Print two consecutive operands of MI, starting at #i, /// which form a base + offset pair (which may have brackets around it, if /// brackets is true, or may be in the form base - constant, if offset is a /// negative constant). /// void V8Printer::printBaseOffsetPair (const MachineInstr *MI, int i, bool brackets) { if (brackets) O << "["; printOperand (MI, i); if (MI->getOperand (i + 1).isImmediate()) { int Val = (int) MI->getOperand (i + 1).getImmedValue (); if (Val != 0) { O << ((Val >= 0) ? " + " : " - "); O << ((Val >= 0) ? Val : -Val); } } else { O << " + "; printOperand (MI, i + 1); } if (brackets) O << "]"; } /// printMachineInstruction -- Print out a single SparcV8 LLVM instruction /// MI in GAS syntax to the current output stream. /// void V8Printer::printMachineInstruction(const MachineInstr *MI) { unsigned Opcode = MI->getOpcode(); const TargetInstrInfo &TII = *TM.getInstrInfo(); const TargetInstrDescriptor &Desc = TII.get(Opcode); // If it's a pseudo-instruction, comment it out. if (isPseudoInstruction (MI)) O << "! "; O << Desc.Name << " "; // Printing memory instructions is a special case. // for loads: %dest = op %base, offset --> op [%base + offset], %dest // for stores: op %base, offset, %src --> op %src, [%base + offset] if (isLoadInstruction (MI)) { printBaseOffsetPair (MI, 1); O << ", "; printOperand (MI, 0); O << "\n"; return; } else if (isStoreInstruction (MI)) { printOperand (MI, 2); O << ", "; printBaseOffsetPair (MI, 0); O << "\n"; return; } else if (Opcode == V8::JMPLrr) { printBaseOffsetPair (MI, 1, false); O << ", "; printOperand (MI, 0); O << "\n"; return; } // print non-immediate, non-register-def operands // then print immediate operands // then print register-def operands. std::vector print_order; for (unsigned i = 0; i < MI->getNumOperands (); ++i) if (!(MI->getOperand (i).isImmediate () || (MI->getOperand (i).isRegister () && MI->getOperand (i).isDef ()))) print_order.push_back (i); for (unsigned i = 0; i < MI->getNumOperands (); ++i) if (MI->getOperand (i).isImmediate ()) print_order.push_back (i); for (unsigned i = 0; i < MI->getNumOperands (); ++i) if (MI->getOperand (i).isRegister () && MI->getOperand (i).isDef ()) print_order.push_back (i); for (unsigned i = 0, e = print_order.size (); i != e; ++i) { printOperand (MI, print_order[i]); if (i != (print_order.size () - 1)) O << ", "; } O << "\n"; } bool V8Printer::doInitialization(Module &M) { Mang = new Mangler(M); return false; // success } // SwitchSection - Switch to the specified section of the executable if we are // not already in it! // static void SwitchSection(std::ostream &OS, std::string &CurSection, const char *NewSection) { if (CurSection != NewSection) { CurSection = NewSection; if (!CurSection.empty()) OS << "\t.section \"" << NewSection << "\"\n"; } } bool V8Printer::doFinalization(Module &M) { const TargetData &TD = TM.getTargetData(); std::string CurSection; // Print out module-level global variables here. for (Module::const_giterator I = M.gbegin(), E = M.gend(); I != E; ++I) if (I->hasInitializer()) { // External global require no code O << "\n\n"; std::string name = Mang->getValueName(I); Constant *C = I->getInitializer(); unsigned Size = TD.getTypeSize(C->getType()); unsigned Align = TD.getTypeAlignment(C->getType()); if (C->isNullValue() && (I->hasLinkOnceLinkage() || I->hasInternalLinkage() || I->hasWeakLinkage() /* FIXME: Verify correct */)) { SwitchSection(O, CurSection, ".data"); if (I->hasInternalLinkage()) O << "\t.local " << name << "\n"; O << "\t.comm " << name << "," << TD.getTypeSize(C->getType()) << "," << (unsigned)TD.getTypeAlignment(C->getType()); O << "\t\t! "; WriteAsOperand(O, I, true, true, &M); O << "\n"; } else { switch (I->getLinkage()) { case GlobalValue::LinkOnceLinkage: case GlobalValue::WeakLinkage: // FIXME: Verify correct for weak. // Nonnull linkonce -> weak O << "\t.weak " << name << "\n"; SwitchSection(O, CurSection, ""); O << "\t.section\t\".llvm.linkonce.d." << name << "\",\"aw\",@progbits\n"; break; case GlobalValue::AppendingLinkage: // FIXME: appending linkage variables should go into a section of // their name or something. For now, just emit them as external. case GlobalValue::ExternalLinkage: // If external or appending, declare as a global symbol O << "\t.globl " << name << "\n"; // FALL THROUGH case GlobalValue::InternalLinkage: if (C->isNullValue()) SwitchSection(O, CurSection, ".bss"); else SwitchSection(O, CurSection, ".data"); break; } O << "\t.align " << Align << "\n"; O << "\t.type " << name << ",#object\n"; O << "\t.size " << name << "," << Size << "\n"; O << name << ":\t\t\t\t! "; WriteAsOperand(O, I, true, true, &M); O << " = "; WriteAsOperand(O, C, false, false, &M); O << "\n"; emitGlobalConstant(C); } } delete Mang; return false; // success }