//===- DataStructure.cpp - Implement the core data structure analysis -----===// // // This file implements the core data structure functionality. // //===----------------------------------------------------------------------===// #include "llvm/Analysis/DSGraph.h" #include "llvm/Function.h" #include "llvm/iOther.h" #include "llvm/DerivedTypes.h" #include "llvm/Target/TargetData.h" #include "Support/STLExtras.h" #include "Support/Statistic.h" #include #include using std::vector; namespace DataStructureAnalysis { // TODO: FIXME // isPointerType - Return true if this first class type is big enough to hold // a pointer. // bool isPointerType(const Type *Ty); extern TargetData TD; } using namespace DataStructureAnalysis; //===----------------------------------------------------------------------===// // DSNode Implementation //===----------------------------------------------------------------------===// DSNode::DSNode(enum NodeTy NT, const Type *T) : NodeType(NT) { // Add the type entry if it is specified... if (T) getTypeRec(T, 0); } // DSNode copy constructor... do not copy over the referrers list! DSNode::DSNode(const DSNode &N) : Links(N.Links), MergeMap(N.MergeMap), TypeEntries(N.TypeEntries), Globals(N.Globals), NodeType(N.NodeType) { } void DSNode::removeReferrer(DSNodeHandle *H) { // Search backwards, because we depopulate the list from the back for // efficiency (because it's a vector). vector::reverse_iterator I = std::find(Referrers.rbegin(), Referrers.rend(), H); assert(I != Referrers.rend() && "Referrer not pointing to node!"); Referrers.erase(I.base()-1); } // addGlobal - Add an entry for a global value to the Globals list. This also // marks the node with the 'G' flag if it does not already have it. // void DSNode::addGlobal(GlobalValue *GV) { // Keep the list sorted. vector::iterator I = std::lower_bound(Globals.begin(), Globals.end(), GV); if (I == Globals.end() || *I != GV) { //assert(GV->getType()->getElementType() == Ty); Globals.insert(I, GV); NodeType |= GlobalNode; } } /// foldNodeCompletely - If we determine that this node has some funny /// behavior happening to it that we cannot represent, we fold it down to a /// single, completely pessimistic, node. This node is represented as a /// single byte with a single TypeEntry of "void". /// void DSNode::foldNodeCompletely() { // We are no longer typed at all... TypeEntries.clear(); TypeEntries.push_back(DSTypeRec(Type::VoidTy, 0)); // Loop over all of our referrers, making them point to our one byte of space. for (vector::iterator I = Referrers.begin(), E=Referrers.end(); I != E; ++I) (*I)->setOffset(0); // Fold the MergeMap down to a single byte of space... MergeMap.resize(1); MergeMap[0] = -1; // If we have links, merge all of our outgoing links together... if (!Links.empty()) { MergeMap[0] = 0; // We now contain an outgoing edge... for (unsigned i = 1, e = Links.size(); i != e; ++i) Links[0].mergeWith(Links[i]); Links.resize(1); } } /// isNodeCompletelyFolded - Return true if this node has been completely /// folded down to something that can never be expanded, effectively losing /// all of the field sensitivity that may be present in the node. /// bool DSNode::isNodeCompletelyFolded() const { return getSize() == 1 && TypeEntries.size() == 1 && TypeEntries[0].Ty == Type::VoidTy; } /// setLink - Set the link at the specified offset to the specified /// NodeHandle, replacing what was there. It is uncommon to use this method, /// instead one of the higher level methods should be used, below. /// void DSNode::setLink(unsigned i, const DSNodeHandle &NH) { // Create a new entry in the Links vector to hold a new element for offset. if (!hasLink(i)) { signed char NewIdx = Links.size(); // Check to see if we allocate more than 128 distinct links for this node. // If so, just merge with the last one. This really shouldn't ever happen, // but it should work regardless of whether it does or not. // if (NewIdx >= 0) { Links.push_back(NH); // Allocate space: common case } else { // Wrap around? Too many links? NewIdx--; // Merge with whatever happened last assert(NewIdx > 0 && "Should wrap back around"); std::cerr << "\n*** DSNode found that requires more than 128 " << "active links at once!\n\n"; } signed char OldIdx = MergeMap[i]; assert (OldIdx < 0 && "Shouldn't contain link!"); // Make sure that anything aliasing this field gets updated to point to the // new link field. rewriteMergeMap(OldIdx, NewIdx); assert(MergeMap[i] == NewIdx && "Field not replaced!"); } else { Links[MergeMap[i]] = NH; } } // addEdgeTo - Add an edge from the current node to the specified node. This // can cause merging of nodes in the graph. // void DSNode::addEdgeTo(unsigned Offset, const DSNodeHandle &NH) { assert(Offset < getSize() && "Offset out of range!"); if (NH.getNode() == 0) return; // Nothing to do if (DSNodeHandle *ExistingNH = getLink(Offset)) { // Merge the two nodes... ExistingNH->mergeWith(NH); } else { // No merging to perform... setLink(Offset, NH); // Just force a link in there... } } /// getTypeRec - This method returns the specified type record if it exists. /// If it does not yet exist, the method checks to see whether or not the /// request would result in an untrackable state. If adding it would cause /// untrackable state, we foldNodeCompletely the node and return the void /// record, otherwise we add an new TypeEntry and return it. /// DSTypeRec &DSNode::getTypeRec(const Type *Ty, unsigned Offset) { // If the node is already collapsed, we can't do anything... bail out early if (isNodeCompletelyFolded()) { assert(TypeEntries.size() == 1 && "Node folded and Entries.size() != 1?"); return TypeEntries[0]; } // First search to see if we already have a record for this... DSTypeRec SearchFor(Ty, Offset); std::vector::iterator I; if (TypeEntries.size() < 5) { // Linear search if we have few entries. I = TypeEntries.begin(); while (I != TypeEntries.end() && *I < SearchFor) ++I; } else { I = std::lower_bound(TypeEntries.begin(), TypeEntries.end(), SearchFor); } // At this point, I either points to the right entry or it points to the entry // we are to insert the new entry in front of... // if (I != TypeEntries.end() && *I == SearchFor) return *I; // ASSUME that it's okay to add this type entry. // FIXME: This should check to make sure it's ok. // If the data size is different then our current size, try to resize the node unsigned ReqSize = Ty->isSized() ? TD.getTypeSize(Ty) : 0; if (getSize() < ReqSize) { // If we are trying to make it bigger, and we can grow the node, do so. if (growNode(ReqSize)) { assert(isNodeCompletelyFolded() && "Node isn't folded?"); return TypeEntries[0]; } } else if (getSize() > ReqSize) { // If we are trying to make the node smaller, we don't have to do anything. } return *TypeEntries.insert(I, SearchFor); } /// growNode - Attempt to grow the node to the specified size. This may do one /// of three things: /// 1. Grow the node, return false /// 2. Refuse to grow the node, but maintain a trackable situation, return /// false. /// 3. Be unable to track if node was that size, so collapse the node and /// return true. /// bool DSNode::growNode(unsigned ReqSize) { unsigned OldSize = getSize(); if (0) { // FIXME: DSNode::growNode() doesn't perform correct safety checks yet! foldNodeCompletely(); return true; } assert(ReqSize > OldSize && "Not growing node!"); // Resize the merge map to have enough space... MergeMap.resize(ReqSize); // Assign unique values to all of the elements of MergeMap if (ReqSize < 128) { // Handle the common case of reasonable size structures... for (unsigned i = OldSize; i != ReqSize; ++i) MergeMap[i] = -1-i; // Assign -1, -2, -3, ... } else { // It's possible that we have something really big here. In this case, // divide the object into chunks until it will fit into 128 elements. unsigned Multiple = ReqSize/128; // It's probably an array, and probably some power of two in size. // Because of this, find the biggest power of two that is bigger than // multiple to use as our real Multiple. unsigned RealMultiple = 2; while (RealMultiple <= Multiple) RealMultiple <<= 1; unsigned RealBound = ReqSize/RealMultiple; assert(RealBound <= 128 && "Math didn't work out right"); // Now go through and assign indexes that are between -1 and -128 // inclusive // for (unsigned i = OldSize; i != ReqSize; ++i) MergeMap[i] = -1-(i % RealBound); // Assign -1, -2, -3... } return false; } /// mergeMappedValues - This is the higher level form of rewriteMergeMap. It is /// fully capable of merging links together if neccesary as well as simply /// rewriting the map entries. /// void DSNode::mergeMappedValues(signed char V1, signed char V2) { assert(V1 != V2 && "Cannot merge two identical mapped values!"); if (V1 < 0) { // If there is no outgoing link from V1, merge it with V2 if (V2 < 0 && V1 > V2) // If both are not linked, merge to the field closer to 0 rewriteMergeMap(V2, V1); else rewriteMergeMap(V1, V2); } else if (V2 < 0) { // Is V2 < 0 && V1 >= 0? rewriteMergeMap(V2, V1); // Merge into the one with the link... } else { // Otherwise, links exist at both locations // Merge Links[V1] with Links[V2] so they point to the same place now... Links[V1].mergeWith(Links[V2]); // Merge the V2 link into V1 so that we reduce the overall value of the // links are reduced... // if (V2 < V1) std::swap(V1, V2); // Ensure V1 < V2 rewriteMergeMap(V2, V1); // After this, V2 is "dead" // Change the user of the last link to use V2 instead if ((unsigned)V2 != Links.size()-1) { rewriteMergeMap(Links.size()-1, V2); // Point to V2 instead of last el... // Make sure V2 points the right DSNode Links[V2] = Links.back(); } // Reduce the number of distinct outgoing links... Links.pop_back(); } } // MergeSortedVectors - Efficiently merge a vector into another vector where // duplicates are not allowed and both are sorted. This assumes that 'T's are // efficiently copyable and have sane comparison semantics. // template void MergeSortedVectors(vector &Dest, const vector &Src) { // By far, the most common cases will be the simple ones. In these cases, // avoid having to allocate a temporary vector... // if (Src.empty()) { // Nothing to merge in... return; } else if (Dest.empty()) { // Just copy the result in... Dest = Src; } else if (Src.size() == 1) { // Insert a single element... const T &V = Src[0]; typename vector::iterator I = std::lower_bound(Dest.begin(), Dest.end(), V); if (I == Dest.end() || *I != Src[0]) // If not already contained... Dest.insert(I, Src[0]); } else if (Dest.size() == 1) { T Tmp = Dest[0]; // Save value in temporary... Dest = Src; // Copy over list... typename vector::iterator I = std::lower_bound(Dest.begin(), Dest.end(),Tmp); if (I == Dest.end() || *I != Src[0]) // If not already contained... Dest.insert(I, Src[0]); } else { // Make a copy to the side of Dest... vector Old(Dest); // Make space for all of the type entries now... Dest.resize(Dest.size()+Src.size()); // Merge the two sorted ranges together... into Dest. std::merge(Old.begin(), Old.end(), Src.begin(), Src.end(), Dest.begin()); // Now erase any duplicate entries that may have accumulated into the // vectors (because they were in both of the input sets) Dest.erase(std::unique(Dest.begin(), Dest.end()), Dest.end()); } } // mergeWith - Merge this node and the specified node, moving all links to and // from the argument node into the current node, deleting the node argument. // Offset indicates what offset the specified node is to be merged into the // current node. // // The specified node may be a null pointer (in which case, nothing happens). // void DSNode::mergeWith(const DSNodeHandle &NH, unsigned Offset) { DSNode *N = NH.getNode(); if (N == 0 || (N == this && NH.getOffset() == Offset)) return; // Noop if (N == this) { std::cerr << "WARNING: Cannot merge two portions of the same node yet, so we collapse instead!\n"; N->foldNodeCompletely(); return; } // If we are merging a node with a completely folded node, then both nodes are // now completely folded. // if (isNodeCompletelyFolded()) { if (!N->isNodeCompletelyFolded()) N->foldNodeCompletely(); } else if (N->isNodeCompletelyFolded()) { foldNodeCompletely(); Offset = 0; } N = NH.getNode(); if (this == N) return; // If both nodes are not at offset 0, make sure that we are merging the node // at an later offset into the node with the zero offset. // if (Offset > NH.getOffset()) { N->mergeWith(DSNodeHandle(this, Offset), NH.getOffset()); return; } else if (Offset == NH.getOffset() && getSize() < N->getSize()) { // If the offsets are the same, merge the smaller node into the bigger node N->mergeWith(DSNodeHandle(this, Offset), NH.getOffset()); return; } #if 0 std::cerr << "\n\nMerging:\n"; N->print(std::cerr, 0); std::cerr << " and:\n"; print(std::cerr, 0); #endif // Now we know that Offset <= NH.Offset, so convert it so our "Offset" (with // respect to NH.Offset) is now zero. // unsigned NOffset = NH.getOffset()-Offset; // If our destination node is too small... try to grow it. if (N->getSize()+NOffset > getSize() && growNode(N->getSize()+NOffset)) { // Catastrophic failure occured and we had to collapse the node. In this // case, collapse the other node as well. N->foldNodeCompletely(); NOffset = 0; } unsigned NSize = N->getSize(); // Remove all edges pointing at N, causing them to point to 'this' instead. // Make sure to adjust their offset, not just the node pointer. // while (!N->Referrers.empty()) { DSNodeHandle &Ref = *N->Referrers.back(); Ref = DSNodeHandle(this, NOffset+Ref.getOffset()); } // We must merge fields in this node due to nodes merged in the source node. // In order to handle this we build a map that converts from the source node's // MergeMap values to our MergeMap values. This map is indexed by the // expression: MergeMap[SMM+SourceNodeSize] so we need to allocate at least // 2*SourceNodeSize elements of space for the mapping. We can do this because // we know that there are at most SourceNodeSize outgoing links in the node // (thus that many positive values) and at most SourceNodeSize distinct fields // (thus that many negative values). // std::vector MergeMapMap(NSize*2, 127); // Loop through the structures, merging them together... for (unsigned i = 0, e = NSize; i != e; ++i) { // Get what this byte of N maps to... signed char NElement = N->MergeMap[i]; // Get what we map this byte to... signed char Element = MergeMap[i+NOffset]; // We use 127 as a sentinal and don't check for it's existence yet... assert(Element != 127 && "MergeMapMap doesn't permit 127 values yet!"); signed char CurMappedVal = MergeMapMap[NElement+NSize]; if (CurMappedVal == 127) { // Haven't seen this NElement yet? MergeMapMap[NElement+NSize] = Element; // Map the two together... } else if (CurMappedVal != Element) { // If we are mapping two different fields together this means that we need // to merge fields in the current node due to merging in the source node. // mergeMappedValues(CurMappedVal, Element); MergeMapMap[NElement+NSize] = MergeMap[i+NOffset]; } } // Make all of the outgoing links of N now be outgoing links of this. This // can cause recursive merging! // for (unsigned i = 0, e = NSize; i != e; ++i) if (DSNodeHandle *Link = N->getLink(i)) { addEdgeTo((i+NOffset) % getSize(), *Link); N->MergeMap[i] = -1; // Kill outgoing edge } // Now that there are no outgoing edges, all of the Links are dead. N->Links.clear(); // Merge the node types NodeType |= N->NodeType; N->NodeType = 0; // N is now a dead node. // Adjust all of the type entries we are merging in by the offset... // if (NOffset != 0) { // This case is common enough to optimize for // Offset all of the TypeEntries in N with their new offset for (unsigned i = 0, e = N->TypeEntries.size(); i != e; ++i) N->TypeEntries[i].Offset += NOffset; } // ... now add them to the TypeEntries list. MergeSortedVectors(TypeEntries, N->TypeEntries); N->TypeEntries.clear(); // N is dead, no type-entries need exist // Merge the globals list... if (!N->Globals.empty()) { MergeSortedVectors(Globals, N->Globals); // Delete the globals from the old node... N->Globals.clear(); } } //===----------------------------------------------------------------------===// // DSCallSite Implementation //===----------------------------------------------------------------------===// // Define here to avoid including iOther.h and BasicBlock.h in DSGraph.h Function &DSCallSite::getCaller() const { return *Inst->getParent()->getParent(); } //===----------------------------------------------------------------------===// // DSGraph Implementation //===----------------------------------------------------------------------===// DSGraph::DSGraph(const DSGraph &G) : Func(G.Func) { std::map NodeMap; RetNode = cloneInto(G, ScalarMap, NodeMap); } DSGraph::DSGraph(const DSGraph &G, std::map &NodeMap) : Func(G.Func) { RetNode = cloneInto(G, ScalarMap, NodeMap); } DSGraph::~DSGraph() { FunctionCalls.clear(); ScalarMap.clear(); RetNode.setNode(0); #ifndef NDEBUG // Drop all intra-node references, so that assertions don't fail... std::for_each(Nodes.begin(), Nodes.end(), std::mem_fun(&DSNode::dropAllReferences)); #endif // Delete all of the nodes themselves... std::for_each(Nodes.begin(), Nodes.end(), deleter); } // dump - Allow inspection of graph in a debugger. void DSGraph::dump() const { print(std::cerr); } // Helper function used to clone a function list. // static void CopyFunctionCallsList(const vector& fromCalls, vector &toCalls, std::map &NodeMap) { unsigned FC = toCalls.size(); // FirstCall toCalls.reserve(FC+fromCalls.size()); for (unsigned i = 0, ei = fromCalls.size(); i != ei; ++i) toCalls.push_back(DSCallSite(fromCalls[i], NodeMap)); } /// remapLinks - Change all of the Links in the current node according to the /// specified mapping. /// void DSNode::remapLinks(std::map &OldNodeMap) { for (unsigned i = 0, e = Links.size(); i != e; ++i) Links[i].setNode(OldNodeMap[Links[i].getNode()]); } // cloneInto - Clone the specified DSGraph into the current graph, returning the // Return node of the graph. The translated ScalarMap for the old function is // filled into the OldValMap member. If StripAllocas is set to true, Alloca // markers are removed from the graph, as the graph is being cloned into a // calling function's graph. // DSNodeHandle DSGraph::cloneInto(const DSGraph &G, std::map &OldValMap, std::map &OldNodeMap, bool StripScalars, // FIXME: Kill StripScalars bool StripAllocas) { assert(OldNodeMap.empty() && "Returned OldNodeMap should be empty!"); unsigned FN = Nodes.size(); // First new node... // Duplicate all of the nodes, populating the node map... Nodes.reserve(FN+G.Nodes.size()); for (unsigned i = 0, e = G.Nodes.size(); i != e; ++i) { DSNode *Old = G.Nodes[i]; DSNode *New = new DSNode(*Old); Nodes.push_back(New); OldNodeMap[Old] = New; } // Rewrite the links in the new nodes to point into the current graph now. for (unsigned i = FN, e = Nodes.size(); i != e; ++i) Nodes[i]->remapLinks(OldNodeMap); // Remove local markers as specified unsigned char StripBits = StripAllocas ? DSNode::AllocaNode : 0; if (StripBits) for (unsigned i = FN, e = Nodes.size(); i != e; ++i) Nodes[i]->NodeType &= ~StripBits; // Copy the value map... and merge all of the global nodes... for (std::map::const_iterator I = G.ScalarMap.begin(), E = G.ScalarMap.end(); I != E; ++I) { DSNodeHandle &H = OldValMap[I->first]; H.setNode(OldNodeMap[I->second.getNode()]); H.setOffset(I->second.getOffset()); if (isa(I->first)) { // Is this a global? std::map::iterator GVI = ScalarMap.find(I->first); if (GVI != ScalarMap.end()) { // Is the global value in this fn already? GVI->second.mergeWith(H); } else { ScalarMap[I->first] = H; // Add global pointer to this graph } } } // Copy the function calls list... CopyFunctionCallsList(G.FunctionCalls, FunctionCalls, OldNodeMap); // Return the returned node pointer... return DSNodeHandle(OldNodeMap[G.RetNode.getNode()], G.RetNode.getOffset()); } #if 0 // cloneGlobalInto - Clone the given global node and all its target links // (and all their llinks, recursively). // DSNode *DSGraph::cloneGlobalInto(const DSNode *GNode) { if (GNode == 0 || GNode->getGlobals().size() == 0) return 0; // If a clone has already been created for GNode, return it. DSNodeHandle& ValMapEntry = ScalarMap[GNode->getGlobals()[0]]; if (ValMapEntry != 0) return ValMapEntry; // Clone the node and update the ValMap. DSNode* NewNode = new DSNode(*GNode); ValMapEntry = NewNode; // j=0 case of loop below! Nodes.push_back(NewNode); for (unsigned j = 1, N = NewNode->getGlobals().size(); j < N; ++j) ScalarMap[NewNode->getGlobals()[j]] = NewNode; // Rewrite the links in the new node to point into the current graph. for (unsigned j = 0, e = GNode->getNumLinks(); j != e; ++j) NewNode->setLink(j, cloneGlobalInto(GNode->getLink(j))); return NewNode; } #endif // markIncompleteNodes - Mark the specified node as having contents that are not // known with the current analysis we have performed. Because a node makes all // of the nodes it can reach imcomplete if the node itself is incomplete, we // must recursively traverse the data structure graph, marking all reachable // nodes as incomplete. // static void markIncompleteNode(DSNode *N) { // Stop recursion if no node, or if node already marked... if (N == 0 || (N->NodeType & DSNode::Incomplete)) return; // Actually mark the node N->NodeType |= DSNode::Incomplete; // Recusively process children... for (unsigned i = 0, e = N->getSize(); i != e; ++i) if (DSNodeHandle *DSNH = N->getLink(i)) markIncompleteNode(DSNH->getNode()); } // markIncompleteNodes - Traverse the graph, identifying nodes that may be // modified by other functions that have not been resolved yet. This marks // nodes that are reachable through three sources of "unknownness": // // Global Variables, Function Calls, and Incoming Arguments // // For any node that may have unknown components (because something outside the // scope of current analysis may have modified it), the 'Incomplete' flag is // added to the NodeType. // void DSGraph::markIncompleteNodes(bool markFormalArgs) { // Mark any incoming arguments as incomplete... if (markFormalArgs && Func) for (Function::aiterator I = Func->abegin(), E = Func->aend(); I != E; ++I) if (isPointerType(I->getType()) && ScalarMap.find(I) != ScalarMap.end()) markIncompleteNode(ScalarMap[I].getNode()); // Mark stuff passed into functions calls as being incomplete... for (unsigned i = 0, e = FunctionCalls.size(); i != e; ++i) { DSCallSite &Call = FunctionCalls[i]; // Then the return value is certainly incomplete! markIncompleteNode(Call.getRetVal().getNode()); // All objects pointed to by function arguments are incomplete though! for (unsigned i = 0, e = Call.getNumPtrArgs(); i != e; ++i) markIncompleteNode(Call.getPtrArg(i).getNode()); } // Mark all of the nodes pointed to by global nodes as incomplete... for (unsigned i = 0, e = Nodes.size(); i != e; ++i) if (Nodes[i]->NodeType & DSNode::GlobalNode) { DSNode *N = Nodes[i]; // FIXME: Make more efficient by looking over Links directly for (unsigned i = 0, e = N->getSize(); i != e; ++i) if (DSNodeHandle *DSNH = N->getLink(i)) markIncompleteNode(DSNH->getNode()); } } // removeRefsToGlobal - Helper function that removes globals from the // ScalarMap so that the referrer count will go down to zero. static void removeRefsToGlobal(DSNode* N, std::map &ScalarMap) { while (!N->getGlobals().empty()) { GlobalValue *GV = N->getGlobals().back(); N->getGlobals().pop_back(); ScalarMap.erase(GV); } } // isNodeDead - This method checks to see if a node is dead, and if it isn't, it // checks to see if there are simple transformations that it can do to make it // dead. // bool DSGraph::isNodeDead(DSNode *N) { // Is it a trivially dead shadow node... if (N->getReferrers().empty() && N->NodeType == 0) return true; // Is it a function node or some other trivially unused global? if ((N->NodeType & ~DSNode::GlobalNode) == 0 && N->getSize() == 0 && N->getReferrers().size() == N->getGlobals().size()) { // Remove the globals from the ScalarMap, so that the referrer count will go // down to zero. removeRefsToGlobal(N, ScalarMap); assert(N->getReferrers().empty() && "Referrers should all be gone now!"); return true; } return false; } static void removeIdenticalCalls(vector &Calls, const std::string &where) { // Remove trivially identical function calls unsigned NumFns = Calls.size(); std::sort(Calls.begin(), Calls.end()); Calls.erase(std::unique(Calls.begin(), Calls.end()), Calls.end()); DEBUG(if (NumFns != Calls.size()) std::cerr << "Merged " << (NumFns-Calls.size()) << " call nodes in " << where << "\n";); } // removeTriviallyDeadNodes - After the graph has been constructed, this method // removes all unreachable nodes that are created because they got merged with // other nodes in the graph. These nodes will all be trivially unreachable, so // we don't have to perform any non-trivial analysis here. // void DSGraph::removeTriviallyDeadNodes(bool KeepAllGlobals) { for (unsigned i = 0; i != Nodes.size(); ++i) if (!KeepAllGlobals || !(Nodes[i]->NodeType & DSNode::GlobalNode)) if (isNodeDead(Nodes[i])) { // This node is dead! delete Nodes[i]; // Free memory... Nodes.erase(Nodes.begin()+i--); // Remove from node list... } removeIdenticalCalls(FunctionCalls, Func ? Func->getName() : ""); } // markAlive - Simple graph walker that recursively traverses the graph, marking // stuff to be alive. // static void markAlive(DSNode *N, std::set &Alive) { if (N == 0) return; Alive.insert(N); // FIXME: Make more efficient by looking over Links directly for (unsigned i = 0, e = N->getSize(); i != e; ++i) if (DSNodeHandle *DSNH = N->getLink(i)) if (!Alive.count(DSNH->getNode())) markAlive(DSNH->getNode(), Alive); } static bool checkGlobalAlive(DSNode *N, std::set &Alive, std::set &Visiting) { if (N == 0) return false; if (Visiting.count(N)) return false; // terminate recursion on a cycle Visiting.insert(N); // If any immediate successor is alive, N is alive for (unsigned i = 0, e = N->getSize(); i != e; ++i) if (DSNodeHandle *DSNH = N->getLink(i)) if (Alive.count(DSNH->getNode())) { Visiting.erase(N); return true; } // Else if any successor reaches a live node, N is alive for (unsigned i = 0, e = N->getSize(); i != e; ++i) if (DSNodeHandle *DSNH = N->getLink(i)) if (checkGlobalAlive(DSNH->getNode(), Alive, Visiting)) { Visiting.erase(N); return true; } Visiting.erase(N); return false; } // markGlobalsIteration - Recursive helper function for markGlobalsAlive(). // This would be unnecessary if function calls were real nodes! In that case, // the simple iterative loop in the first few lines below suffice. // static void markGlobalsIteration(std::set& GlobalNodes, vector &Calls, std::set &Alive, bool FilterCalls) { // Iterate, marking globals or cast nodes alive until no new live nodes // are added to Alive std::set Visiting; // Used to identify cycles std::set::iterator I = GlobalNodes.begin(), E = GlobalNodes.end(); for (size_t liveCount = 0; liveCount < Alive.size(); ) { liveCount = Alive.size(); for ( ; I != E; ++I) if (Alive.count(*I) == 0) { Visiting.clear(); if (checkGlobalAlive(*I, Alive, Visiting)) markAlive(*I, Alive); } } // Find function calls with some dead and some live nodes. // Since all call nodes must be live if any one is live, we have to mark // all nodes of the call as live and continue the iteration (via recursion). if (FilterCalls) { bool Recurse = false; for (unsigned i = 0, ei = Calls.size(); i < ei; ++i) { bool CallIsDead = true, CallHasDeadArg = false; DSCallSite &CS = Calls[i]; for (unsigned j = 0, ej = CS.getNumPtrArgs(); j != ej; ++j) if (DSNode *N = CS.getPtrArg(j).getNode()) { bool ArgIsDead = !Alive.count(N); CallHasDeadArg |= ArgIsDead; CallIsDead &= ArgIsDead; } if (DSNode *N = CS.getRetVal().getNode()) { bool RetIsDead = !Alive.count(N); CallHasDeadArg |= RetIsDead; CallIsDead &= RetIsDead; } DSNode *N = CS.getCallee().getNode(); bool FnIsDead = !Alive.count(N); CallHasDeadArg |= FnIsDead; CallIsDead &= FnIsDead; if (!CallIsDead && CallHasDeadArg) { // Some node in this call is live and another is dead. // Mark all nodes of call as live and iterate once more. Recurse = true; for (unsigned j = 0, ej = CS.getNumPtrArgs(); j != ej; ++j) markAlive(CS.getPtrArg(j).getNode(), Alive); markAlive(CS.getRetVal().getNode(), Alive); markAlive(CS.getCallee().getNode(), Alive); } } if (Recurse) markGlobalsIteration(GlobalNodes, Calls, Alive, FilterCalls); } } // markGlobalsAlive - Mark global nodes and cast nodes alive if they // can reach any other live node. Since this can produce new live nodes, // we use a simple iterative algorithm. // static void markGlobalsAlive(DSGraph &G, std::set &Alive, bool FilterCalls) { // Add global and cast nodes to a set so we don't walk all nodes every time std::set GlobalNodes; for (unsigned i = 0, e = G.getNodes().size(); i != e; ++i) if (G.getNodes()[i]->NodeType & DSNode::GlobalNode) GlobalNodes.insert(G.getNodes()[i]); // Add all call nodes to the same set vector &Calls = G.getFunctionCalls(); if (FilterCalls) { for (unsigned i = 0, e = Calls.size(); i != e; ++i) { for (unsigned j = 0, e = Calls[i].getNumPtrArgs(); j != e; ++j) if (DSNode *N = Calls[i].getPtrArg(j).getNode()) GlobalNodes.insert(N); if (DSNode *N = Calls[i].getRetVal().getNode()) GlobalNodes.insert(N); if (DSNode *N = Calls[i].getCallee().getNode()) GlobalNodes.insert(N); } } // Iterate and recurse until no new live node are discovered. // This would be a simple iterative loop if function calls were real nodes! markGlobalsIteration(GlobalNodes, Calls, Alive, FilterCalls); // Free up references to dead globals from the ScalarMap std::set::iterator I = GlobalNodes.begin(), E = GlobalNodes.end(); for( ; I != E; ++I) if (Alive.count(*I) == 0) removeRefsToGlobal(*I, G.getScalarMap()); // Delete dead function calls if (FilterCalls) for (int ei = Calls.size(), i = ei-1; i >= 0; --i) { bool CallIsDead = true; for (unsigned j = 0, ej = Calls[i].getNumPtrArgs(); CallIsDead && j != ej; ++j) CallIsDead = Alive.count(Calls[i].getPtrArg(j).getNode()) == 0; if (CallIsDead) Calls.erase(Calls.begin() + i); // remove the call entirely } } // removeDeadNodes - Use a more powerful reachability analysis to eliminate // subgraphs that are unreachable. This often occurs because the data // structure doesn't "escape" into it's caller, and thus should be eliminated // from the caller's graph entirely. This is only appropriate to use when // inlining graphs. // void DSGraph::removeDeadNodes(bool KeepAllGlobals, bool KeepCalls) { assert((!KeepAllGlobals || KeepCalls) && "KeepAllGlobals without KeepCalls is meaningless"); // Reduce the amount of work we have to do... removeTriviallyDeadNodes(KeepAllGlobals); // FIXME: Merge nontrivially identical call nodes... // Alive - a set that holds all nodes found to be reachable/alive. std::set Alive; // If KeepCalls, mark all nodes reachable by call nodes as alive... if (KeepCalls) for (unsigned i = 0, e = FunctionCalls.size(); i != e; ++i) { for (unsigned j = 0, e = FunctionCalls[i].getNumPtrArgs(); j != e; ++j) markAlive(FunctionCalls[i].getPtrArg(j).getNode(), Alive); markAlive(FunctionCalls[i].getRetVal().getNode(), Alive); markAlive(FunctionCalls[i].getCallee().getNode(), Alive); } // Mark all nodes reachable by scalar nodes as alive... for (std::map::iterator I = ScalarMap.begin(), E = ScalarMap.end(); I != E; ++I) markAlive(I->second.getNode(), Alive); #if 0 // Marge all nodes reachable by global nodes, as alive. Isn't this covered by // the ScalarMap? // if (KeepAllGlobals) for (unsigned i = 0, e = Nodes.size(); i != e; ++i) if (Nodes[i]->NodeType & DSNode::GlobalNode) markAlive(Nodes[i], Alive); #endif // The return value is alive as well... markAlive(RetNode.getNode(), Alive); // Mark all globals or cast nodes that can reach a live node as alive. // This also marks all nodes reachable from such nodes as alive. // Of course, if KeepAllGlobals is specified, they would be live already. if (!KeepAllGlobals) markGlobalsAlive(*this, Alive, !KeepCalls); // Loop over all unreachable nodes, dropping their references... vector DeadNodes; DeadNodes.reserve(Nodes.size()); // Only one allocation is allowed. for (unsigned i = 0; i != Nodes.size(); ++i) if (!Alive.count(Nodes[i])) { DSNode *N = Nodes[i]; Nodes.erase(Nodes.begin()+i--); // Erase node from alive list. DeadNodes.push_back(N); // Add node to our list of dead nodes N->dropAllReferences(); // Drop all outgoing edges } // Delete all dead nodes... std::for_each(DeadNodes.begin(), DeadNodes.end(), deleter); } // maskNodeTypes - Apply a mask to all of the node types in the graph. This // is useful for clearing out markers like Scalar or Incomplete. // void DSGraph::maskNodeTypes(unsigned char Mask) { for (unsigned i = 0, e = Nodes.size(); i != e; ++i) Nodes[i]->NodeType &= Mask; } #if 0 //===----------------------------------------------------------------------===// // GlobalDSGraph Implementation //===----------------------------------------------------------------------===// GlobalDSGraph::GlobalDSGraph() : DSGraph(*(Function*)0, this) { } GlobalDSGraph::~GlobalDSGraph() { assert(Referrers.size() == 0 && "Deleting global graph while references from other graphs exist"); } void GlobalDSGraph::addReference(const DSGraph* referrer) { if (referrer != this) Referrers.insert(referrer); } void GlobalDSGraph::removeReference(const DSGraph* referrer) { if (referrer != this) { assert(Referrers.find(referrer) != Referrers.end() && "This is very bad!"); Referrers.erase(referrer); if (Referrers.size() == 0) delete this; } } #if 0 // Bits used in the next function static const char ExternalTypeBits = DSNode::GlobalNode | DSNode::HeapNode; // GlobalDSGraph::cloneNodeInto - Clone a global node and all its externally // visible target links (and recursively their such links) into this graph. // NodeCache maps the node being cloned to its clone in the Globals graph, // in order to track cycles. // GlobalsAreFinal is a flag that says whether it is safe to assume that // an existing global node is complete. This is important to avoid // reinserting all globals when inserting Calls to functions. // This is a helper function for cloneGlobals and cloneCalls. // DSNode* GlobalDSGraph::cloneNodeInto(DSNode *OldNode, std::map &NodeCache, bool GlobalsAreFinal) { if (OldNode == 0) return 0; // The caller should check this is an external node. Just more efficient... assert((OldNode->NodeType & ExternalTypeBits) && "Non-external node"); // If a clone has already been created for OldNode, return it. DSNode*& CacheEntry = NodeCache[OldNode]; if (CacheEntry != 0) return CacheEntry; // The result value... DSNode* NewNode = 0; // If nodes already exist for any of the globals of OldNode, // merge all such nodes together since they are merged in OldNode. // If ValueCacheIsFinal==true, look for an existing node that has // an identical list of globals and return it if it exists. // for (unsigned j = 0, N = OldNode->getGlobals().size(); j != N; ++j) if (DSNode *PrevNode = ScalarMap[OldNode->getGlobals()[j]].getNode()) { if (NewNode == 0) { NewNode = PrevNode; // first existing node found if (GlobalsAreFinal && j == 0) if (OldNode->getGlobals() == PrevNode->getGlobals()) { CacheEntry = NewNode; return NewNode; } } else if (NewNode != PrevNode) { // found another, different from prev // update ValMap *before* merging PrevNode into NewNode for (unsigned k = 0, NK = PrevNode->getGlobals().size(); k < NK; ++k) ScalarMap[PrevNode->getGlobals()[k]] = NewNode; NewNode->mergeWith(PrevNode); } } else if (NewNode != 0) { ScalarMap[OldNode->getGlobals()[j]] = NewNode; // add the merged node } // If no existing node was found, clone the node and update the ValMap. if (NewNode == 0) { NewNode = new DSNode(*OldNode); Nodes.push_back(NewNode); for (unsigned j = 0, e = NewNode->getNumLinks(); j != e; ++j) NewNode->setLink(j, 0); for (unsigned j = 0, N = NewNode->getGlobals().size(); j < N; ++j) ScalarMap[NewNode->getGlobals()[j]] = NewNode; } else NewNode->NodeType |= OldNode->NodeType; // Markers may be different! // Add the entry to NodeCache CacheEntry = NewNode; // Rewrite the links in the new node to point into the current graph, // but only for links to external nodes. Set other links to NULL. for (unsigned j = 0, e = OldNode->getNumLinks(); j != e; ++j) { DSNode* OldTarget = OldNode->getLink(j); if (OldTarget && (OldTarget->NodeType & ExternalTypeBits)) { DSNode* NewLink = this->cloneNodeInto(OldTarget, NodeCache); if (NewNode->getLink(j)) NewNode->getLink(j)->mergeWith(NewLink); else NewNode->setLink(j, NewLink); } } // Remove all local markers NewNode->NodeType &= ~(DSNode::AllocaNode | DSNode::ScalarNode); return NewNode; } // GlobalDSGraph::cloneGlobals - Clone global nodes and all their externally // visible target links (and recursively their such links) into this graph. // void GlobalDSGraph::cloneGlobals(DSGraph& Graph, bool CloneCalls) { std::map NodeCache; #if 0 for (unsigned i = 0, N = Graph.Nodes.size(); i < N; ++i) if (Graph.Nodes[i]->NodeType & DSNode::GlobalNode) GlobalsGraph->cloneNodeInto(Graph.Nodes[i], NodeCache, false); if (CloneCalls) GlobalsGraph->cloneCalls(Graph); GlobalsGraph->removeDeadNodes(/*KeepAllGlobals*/ true, /*KeepCalls*/ true); #endif } // GlobalDSGraph::cloneCalls - Clone function calls and their visible target // links (and recursively their such links) into this graph. // void GlobalDSGraph::cloneCalls(DSGraph& Graph) { std::map NodeCache; vector& FromCalls =Graph.FunctionCalls; FunctionCalls.reserve(FunctionCalls.size() + FromCalls.size()); for (int i = 0, ei = FromCalls.size(); i < ei; ++i) { DSCallSite& callCopy = FunctionCalls.back(); callCopy.reserve(FromCalls[i].size()); for (unsigned j = 0, ej = FromCalls[i].size(); j != ej; ++j) callCopy.push_back ((FromCalls[i][j] && (FromCalls[i][j]->NodeType & ExternalTypeBits)) ? cloneNodeInto(FromCalls[i][j], NodeCache, true) : 0); } // remove trivially identical function calls removeIdenticalCalls(FunctionCalls, "Globals Graph"); } #endif #endif