//===-- ScheduleDAG.cpp - Implement a trivial DAG scheduler ---------------===// // // The LLVM Compiler Infrastructure // // This file was developed by James M. Laskey and is distributed under the // University of Illinois Open Source License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// // // This implements a simple two pass scheduler. The first pass attempts to push // backward any lengthy instructions and critical paths. The second pass packs // instructions into semi-optimal time slots. // //===----------------------------------------------------------------------===// #define DEBUG_TYPE "sched" #include "llvm/CodeGen/MachineConstantPool.h" #include "llvm/CodeGen/MachineFunction.h" #include "llvm/CodeGen/SelectionDAGISel.h" #include "llvm/CodeGen/SelectionDAG.h" #include "llvm/CodeGen/SSARegMap.h" #include "llvm/Target/TargetMachine.h" #include "llvm/Target/TargetInstrInfo.h" #include "llvm/Target/TargetInstrItineraries.h" #include "llvm/Target/TargetLowering.h" #include "llvm/Support/CommandLine.h" #include "llvm/Support/Debug.h" #include #include using namespace llvm; namespace { // Style of scheduling to use. enum ScheduleChoices { noScheduling, simpleScheduling, simpleNoItinScheduling }; } // namespace cl::opt ScheduleStyle("sched", cl::desc("Choose scheduling style"), cl::init(noScheduling), cl::values( clEnumValN(noScheduling, "none", "Trivial emission with no analysis"), clEnumValN(simpleScheduling, "simple", "Minimize critical path and maximize processor utilization"), clEnumValN(simpleNoItinScheduling, "simple-noitin", "Same as simple except using generic latency"), clEnumValEnd)); #ifndef NDEBUG static cl::opt ViewDAGs("view-sched-dags", cl::Hidden, cl::desc("Pop up a window to show sched dags as they are processed")); #else static const bool ViewDAGs = 0; #endif namespace { //===----------------------------------------------------------------------===// /// /// BitsIterator - Provides iteration through individual bits in a bit vector. /// template class BitsIterator { private: T Bits; // Bits left to iterate through public: /// Ctor. BitsIterator(T Initial) : Bits(Initial) {} /// Next - Returns the next bit set or zero if exhausted. inline T Next() { // Get the rightmost bit set T Result = Bits & -Bits; // Remove from rest Bits &= ~Result; // Return single bit or zero return Result; } }; //===----------------------------------------------------------------------===// //===----------------------------------------------------------------------===// /// /// ResourceTally - Manages the use of resources over time intervals. Each /// item (slot) in the tally vector represents the resources used at a given /// moment. A bit set to 1 indicates that a resource is in use, otherwise /// available. An assumption is made that the tally is large enough to schedule /// all current instructions (asserts otherwise.) /// template class ResourceTally { private: std::vector Tally; // Resources used per slot typedef typename std::vector::iterator Iter; // Tally iterator /// SlotsAvailable - Returns true if all units are available. /// bool SlotsAvailable(Iter Begin, unsigned N, unsigned ResourceSet, unsigned &Resource) { assert(N && "Must check availability with N != 0"); // Determine end of interval Iter End = Begin + N; assert(End <= Tally.end() && "Tally is not large enough for schedule"); // Iterate thru each resource BitsIterator Resources(ResourceSet & ~*Begin); while (unsigned Res = Resources.Next()) { // Check if resource is available for next N slots Iter Interval = End; do { Interval--; if (*Interval & Res) break; } while (Interval != Begin); // If available for N if (Interval == Begin) { // Success Resource = Res; return true; } } // No luck Resource = 0; return false; } /// RetrySlot - Finds a good candidate slot to retry search. Iter RetrySlot(Iter Begin, unsigned N, unsigned ResourceSet) { assert(N && "Must check availability with N != 0"); // Determine end of interval Iter End = Begin + N; assert(End <= Tally.end() && "Tally is not large enough for schedule"); while (Begin != End--) { // Clear units in use ResourceSet &= ~*End; // If no units left then we should go no further if (!ResourceSet) return End + 1; } // Made it all the way through return Begin; } /// FindAndReserveStages - Return true if the stages can be completed. If /// so mark as busy. bool FindAndReserveStages(Iter Begin, InstrStage *Stage, InstrStage *StageEnd) { // If at last stage then we're done if (Stage == StageEnd) return true; // Get number of cycles for current stage unsigned N = Stage->Cycles; // Check to see if N slots are available, if not fail unsigned Resource; if (!SlotsAvailable(Begin, N, Stage->Units, Resource)) return false; // Check to see if remaining stages are available, if not fail if (!FindAndReserveStages(Begin + N, Stage + 1, StageEnd)) return false; // Reserve resource Reserve(Begin, N, Resource); // Success return true; } /// Reserve - Mark busy (set) the specified N slots. void Reserve(Iter Begin, unsigned N, unsigned Resource) { // Determine end of interval Iter End = Begin + N; assert(End <= Tally.end() && "Tally is not large enough for schedule"); // Set resource bit in each slot for (; Begin < End; Begin++) *Begin |= Resource; } /// FindSlots - Starting from Begin, locate consecutive slots where all stages /// can be completed. Returns the address of first slot. Iter FindSlots(Iter Begin, InstrStage *StageBegin, InstrStage *StageEnd) { // Track position Iter Cursor = Begin; // Try all possible slots forward while (true) { // Try at cursor, if successful return position. if (FindAndReserveStages(Cursor, StageBegin, StageEnd)) return Cursor; // Locate a better position Cursor = RetrySlot(Cursor + 1, StageBegin->Cycles, StageBegin->Units); } } public: /// Initialize - Resize and zero the tally to the specified number of time /// slots. inline void Initialize(unsigned N) { Tally.assign(N, 0); // Initialize tally to all zeros. } // FindAndReserve - Locate an ideal slot for the specified stages and mark // as busy. unsigned FindAndReserve(unsigned Slot, InstrStage *StageBegin, InstrStage *StageEnd) { // Where to begin Iter Begin = Tally.begin() + Slot; // Find a free slot Iter Where = FindSlots(Begin, StageBegin, StageEnd); // Distance is slot number unsigned Final = Where - Tally.begin(); return Final; } }; //===----------------------------------------------------------------------===// // Forward class NodeInfo; typedef NodeInfo *NodeInfoPtr; typedef std::vector NIVector; typedef std::vector::iterator NIIterator; //===----------------------------------------------------------------------===// /// /// Node group - This struct is used to manage flagged node groups. /// class NodeGroup { private: NIVector Members; // Group member nodes NodeInfo *Dominator; // Node with highest latency unsigned Latency; // Total latency of the group int Pending; // Number of visits pending before // adding to order public: // Ctor. NodeGroup() : Dominator(NULL), Pending(0) {} // Accessors inline void setDominator(NodeInfo *D) { Dominator = D; } inline NodeInfo *getDominator() { return Dominator; } inline void setLatency(unsigned L) { Latency = L; } inline unsigned getLatency() { return Latency; } inline int getPending() const { return Pending; } inline void setPending(int P) { Pending = P; } inline int addPending(int I) { return Pending += I; } // Pass thru inline bool group_empty() { return Members.empty(); } inline NIIterator group_begin() { return Members.begin(); } inline NIIterator group_end() { return Members.end(); } inline void group_push_back(const NodeInfoPtr &NI) { Members.push_back(NI); } inline NIIterator group_insert(NIIterator Pos, const NodeInfoPtr &NI) { return Members.insert(Pos, NI); } inline void group_insert(NIIterator Pos, NIIterator First, NIIterator Last) { Members.insert(Pos, First, Last); } static void Add(NodeInfo *D, NodeInfo *U); static unsigned CountInternalUses(NodeInfo *D, NodeInfo *U); }; //===----------------------------------------------------------------------===// //===----------------------------------------------------------------------===// /// /// NodeInfo - This struct tracks information used to schedule the a node. /// class NodeInfo { private: int Pending; // Number of visits pending before // adding to order public: SDNode *Node; // DAG node InstrStage *StageBegin; // First stage in itinerary InstrStage *StageEnd; // Last+1 stage in itinerary unsigned Latency; // Total cycles to complete instruction bool IsCall : 1; // Is function call bool IsLoad : 1; // Is memory load bool IsStore : 1; // Is memory store unsigned Slot; // Node's time slot NodeGroup *Group; // Grouping information unsigned VRBase; // Virtual register base #ifndef NDEBUG unsigned Preorder; // Index before scheduling #endif // Ctor. NodeInfo(SDNode *N = NULL) : Pending(0) , Node(N) , StageBegin(NULL) , StageEnd(NULL) , Latency(0) , IsCall(false) , Slot(0) , Group(NULL) , VRBase(0) #ifndef NDEBUG , Preorder(0) #endif {} // Accessors inline bool isInGroup() const { assert(!Group || !Group->group_empty() && "Group with no members"); return Group != NULL; } inline bool isGroupDominator() const { return isInGroup() && Group->getDominator() == this; } inline int getPending() const { return Group ? Group->getPending() : Pending; } inline void setPending(int P) { if (Group) Group->setPending(P); else Pending = P; } inline int addPending(int I) { if (Group) return Group->addPending(I); else return Pending += I; } }; //===----------------------------------------------------------------------===// //===----------------------------------------------------------------------===// /// /// NodeGroupIterator - Iterates over all the nodes indicated by the node info. /// If the node is in a group then iterate over the members of the group, /// otherwise just the node info. /// class NodeGroupIterator { private: NodeInfo *NI; // Node info NIIterator NGI; // Node group iterator NIIterator NGE; // Node group iterator end public: // Ctor. NodeGroupIterator(NodeInfo *N) : NI(N) { // If the node is in a group then set up the group iterator. Otherwise // the group iterators will trip first time out. if (N->isInGroup()) { // get Group NodeGroup *Group = NI->Group; NGI = Group->group_begin(); NGE = Group->group_end(); // Prevent this node from being used (will be in members list NI = NULL; } } /// next - Return the next node info, otherwise NULL. /// NodeInfo *next() { // If members list if (NGI != NGE) return *NGI++; // Use node as the result (may be NULL) NodeInfo *Result = NI; // Only use once NI = NULL; // Return node or NULL return Result; } }; //===----------------------------------------------------------------------===// //===----------------------------------------------------------------------===// /// /// NodeGroupOpIterator - Iterates over all the operands of a node. If the node /// is a member of a group, this iterates over all the operands of all the /// members of the group. /// class NodeGroupOpIterator { private: NodeInfo *NI; // Node containing operands NodeGroupIterator GI; // Node group iterator SDNode::op_iterator OI; // Operand iterator SDNode::op_iterator OE; // Operand iterator end /// CheckNode - Test if node has more operands. If not get the next node /// skipping over nodes that have no operands. void CheckNode() { // Only if operands are exhausted first while (OI == OE) { // Get next node info NodeInfo *NI = GI.next(); // Exit if nodes are exhausted if (!NI) return; // Get node itself SDNode *Node = NI->Node; // Set up the operand iterators OI = Node->op_begin(); OE = Node->op_end(); } } public: // Ctor. NodeGroupOpIterator(NodeInfo *N) : NI(N), GI(N), OI(SDNode::op_iterator()), OE(SDNode::op_iterator()) {} /// isEnd - Returns true when not more operands are available. /// inline bool isEnd() { CheckNode(); return OI == OE; } /// next - Returns the next available operand. /// inline SDOperand next() { assert(OI != OE && "Not checking for end of NodeGroupOpIterator correctly"); return *OI++; } }; //===----------------------------------------------------------------------===// //===----------------------------------------------------------------------===// /// /// SimpleSched - Simple two pass scheduler. /// class SimpleSched { private: MachineBasicBlock *BB; // Current basic block SelectionDAG &DAG; // DAG of the current basic block const TargetMachine &TM; // Target processor const TargetInstrInfo &TII; // Target instruction information const MRegisterInfo &MRI; // Target processor register information SSARegMap *RegMap; // Virtual/real register map MachineConstantPool *ConstPool; // Target constant pool unsigned NodeCount; // Number of nodes in DAG bool HasGroups; // True if there are any groups NodeInfo *Info; // Info for nodes being scheduled std::map Map; // Map nodes to info NIVector Ordering; // Emit ordering of nodes ResourceTally Tally; // Resource usage tally unsigned NSlots; // Total latency static const unsigned NotFound = ~0U; // Search marker public: // Ctor. SimpleSched(SelectionDAG &D, MachineBasicBlock *bb) : BB(bb), DAG(D), TM(D.getTarget()), TII(*TM.getInstrInfo()), MRI(*TM.getRegisterInfo()), RegMap(BB->getParent()->getSSARegMap()), ConstPool(BB->getParent()->getConstantPool()), NodeCount(0), HasGroups(false), Info(NULL), Map(), Tally(), NSlots(0) { assert(&TII && "Target doesn't provide instr info?"); assert(&MRI && "Target doesn't provide register info?"); } // Run - perform scheduling. MachineBasicBlock *Run() { Schedule(); return BB; } private: /// getNI - Returns the node info for the specified node. /// inline NodeInfo *getNI(SDNode *Node) { return Map[Node]; } /// getVR - Returns the virtual register number of the node. /// inline unsigned getVR(SDOperand Op) { NodeInfo *NI = getNI(Op.Val); assert(NI->VRBase != 0 && "Node emitted out of order - late"); return NI->VRBase + Op.ResNo; } static bool isFlagDefiner(SDNode *A); static bool isFlagUser(SDNode *A); static bool isDefiner(NodeInfo *A, NodeInfo *B); static bool isPassiveNode(SDNode *Node); void IncludeNode(NodeInfo *NI); void VisitAll(); void Schedule(); void IdentifyGroups(); void GatherSchedulingInfo(); void FakeGroupDominators(); void PrepareNodeInfo(); bool isStrongDependency(NodeInfo *A, NodeInfo *B); bool isWeakDependency(NodeInfo *A, NodeInfo *B); void ScheduleBackward(); void ScheduleForward(); void EmitAll(); void EmitNode(NodeInfo *NI); static unsigned CountResults(SDNode *Node); static unsigned CountOperands(SDNode *Node); unsigned CreateVirtualRegisters(MachineInstr *MI, unsigned NumResults, const TargetInstrDescriptor &II); void printChanges(unsigned Index); void printSI(std::ostream &O, NodeInfo *NI) const; void print(std::ostream &O) const; inline void dump(const char *tag) const { std::cerr << tag; dump(); } void dump() const; }; //===----------------------------------------------------------------------===// /// Special case itineraries. /// enum { CallLatency = 40, // To push calls back in time RSInteger = 0xC0000000, // Two integer units RSFloat = 0x30000000, // Two float units RSLoadStore = 0x0C000000, // Two load store units RSBranch = 0x02000000 // One branch unit }; static InstrStage CallStage = { CallLatency, RSBranch }; static InstrStage LoadStage = { 5, RSLoadStore }; static InstrStage StoreStage = { 2, RSLoadStore }; static InstrStage IntStage = { 2, RSInteger }; static InstrStage FloatStage = { 3, RSFloat }; //===----------------------------------------------------------------------===// //===----------------------------------------------------------------------===// } // namespace //===----------------------------------------------------------------------===// //===----------------------------------------------------------------------===// /// Add - Adds a definer and user pair to a node group. /// void NodeGroup::Add(NodeInfo *D, NodeInfo *U) { // Get current groups NodeGroup *DGroup = D->Group; NodeGroup *UGroup = U->Group; // If both are members of groups if (DGroup && UGroup) { // There may have been another edge connecting if (DGroup == UGroup) return; // Add the pending users count DGroup->addPending(UGroup->getPending()); // For each member of the users group NodeGroupIterator UNGI(U); while (NodeInfo *UNI = UNGI.next() ) { // Change the group UNI->Group = DGroup; // For each member of the definers group NodeGroupIterator DNGI(D); while (NodeInfo *DNI = DNGI.next() ) { // Remove internal edges DGroup->addPending(-CountInternalUses(DNI, UNI)); } } // Merge the two lists DGroup->group_insert(DGroup->group_end(), UGroup->group_begin(), UGroup->group_end()); } else if (DGroup) { // Make user member of definers group U->Group = DGroup; // Add users uses to definers group pending DGroup->addPending(U->Node->use_size()); // For each member of the definers group NodeGroupIterator DNGI(D); while (NodeInfo *DNI = DNGI.next() ) { // Remove internal edges DGroup->addPending(-CountInternalUses(DNI, U)); } DGroup->group_push_back(U); } else if (UGroup) { // Make definer member of users group D->Group = UGroup; // Add definers uses to users group pending UGroup->addPending(D->Node->use_size()); // For each member of the users group NodeGroupIterator UNGI(U); while (NodeInfo *UNI = UNGI.next() ) { // Remove internal edges UGroup->addPending(-CountInternalUses(D, UNI)); } UGroup->group_insert(UGroup->group_begin(), D); } else { D->Group = U->Group = DGroup = new NodeGroup(); DGroup->addPending(D->Node->use_size() + U->Node->use_size() - CountInternalUses(D, U)); DGroup->group_push_back(D); DGroup->group_push_back(U); } } /// CountInternalUses - Returns the number of edges between the two nodes. /// unsigned NodeGroup::CountInternalUses(NodeInfo *D, NodeInfo *U) { unsigned N = 0; for (unsigned M = U->Node->getNumOperands(); 0 < M--;) { SDOperand Op = U->Node->getOperand(M); if (Op.Val == D->Node) N++; } return N; } //===----------------------------------------------------------------------===// //===----------------------------------------------------------------------===// /// isFlagDefiner - Returns true if the node defines a flag result. bool SimpleSched::isFlagDefiner(SDNode *A) { unsigned N = A->getNumValues(); return N && A->getValueType(N - 1) == MVT::Flag; } /// isFlagUser - Returns true if the node uses a flag result. /// bool SimpleSched::isFlagUser(SDNode *A) { unsigned N = A->getNumOperands(); return N && A->getOperand(N - 1).getValueType() == MVT::Flag; } /// isDefiner - Return true if node A is a definer for B. /// bool SimpleSched::isDefiner(NodeInfo *A, NodeInfo *B) { // While there are A nodes NodeGroupIterator NII(A); while (NodeInfo *NI = NII.next()) { // Extract node SDNode *Node = NI->Node; // While there operands in nodes of B NodeGroupOpIterator NGOI(B); while (!NGOI.isEnd()) { SDOperand Op = NGOI.next(); // If node from A defines a node in B if (Node == Op.Val) return true; } } return false; } /// isPassiveNode - Return true if the node is a non-scheduled leaf. /// bool SimpleSched::isPassiveNode(SDNode *Node) { if (isa(Node)) return true; if (isa(Node)) return true; if (isa(Node)) return true; if (isa(Node)) return true; if (isa(Node)) return true; if (isa(Node)) return true; if (isa(Node)) return true; return false; } /// IncludeNode - Add node to NodeInfo vector. /// void SimpleSched::IncludeNode(NodeInfo *NI) { // Get node SDNode *Node = NI->Node; // Ignore entry node if (Node->getOpcode() == ISD::EntryToken) return; // Check current count for node int Count = NI->getPending(); // If the node is already in list if (Count < 0) return; // Decrement count to indicate a visit Count--; // If count has gone to zero then add node to list if (!Count) { // Add node if (NI->isInGroup()) { Ordering.push_back(NI->Group->getDominator()); } else { Ordering.push_back(NI); } // indicate node has been added Count--; } // Mark as visited with new count NI->setPending(Count); } /// VisitAll - Visit each node breadth-wise to produce an initial ordering. /// Note that the ordering in the Nodes vector is reversed. void SimpleSched::VisitAll() { // Add first element to list NodeInfo *NI = getNI(DAG.getRoot().Val); if (NI->isInGroup()) { Ordering.push_back(NI->Group->getDominator()); } else { Ordering.push_back(NI); } // Iterate through all nodes that have been added for (unsigned i = 0; i < Ordering.size(); i++) { // note: size() varies // Visit all operands NodeGroupOpIterator NGI(Ordering[i]); while (!NGI.isEnd()) { // Get next operand SDOperand Op = NGI.next(); // Get node SDNode *Node = Op.Val; // Ignore passive nodes if (isPassiveNode(Node)) continue; // Check out node IncludeNode(getNI(Node)); } } // Add entry node last (IncludeNode filters entry nodes) if (DAG.getEntryNode().Val != DAG.getRoot().Val) Ordering.push_back(getNI(DAG.getEntryNode().Val)); // Reverse the order std::reverse(Ordering.begin(), Ordering.end()); } /// IdentifyGroups - Put flagged nodes into groups. /// void SimpleSched::IdentifyGroups() { for (unsigned i = 0, N = NodeCount; i < N; i++) { NodeInfo* NI = &Info[i]; SDNode *Node = NI->Node; // For each operand (in reverse to only look at flags) for (unsigned N = Node->getNumOperands(); 0 < N--;) { // Get operand SDOperand Op = Node->getOperand(N); // No more flags to walk if (Op.getValueType() != MVT::Flag) break; // Add to node group NodeGroup::Add(getNI(Op.Val), NI); // Let evryone else know HasGroups = true; } } } /// GatherSchedulingInfo - Get latency and resource information about each node. /// void SimpleSched::GatherSchedulingInfo() { // Get instruction itineraries for the target const InstrItineraryData InstrItins = TM.getInstrItineraryData(); // For each node for (unsigned i = 0, N = NodeCount; i < N; i++) { // Get node info NodeInfo* NI = &Info[i]; SDNode *Node = NI->Node; // If there are itineraries and it is a machine instruction if (InstrItins.isEmpty() || ScheduleStyle == simpleNoItinScheduling) { // If machine opcode if (Node->isTargetOpcode()) { // Get return type to guess which processing unit MVT::ValueType VT = Node->getValueType(0); // Get machine opcode MachineOpCode TOpc = Node->getTargetOpcode(); NI->IsCall = TII.isCall(TOpc); NI->IsLoad = TII.isLoad(TOpc); NI->IsStore = TII.isStore(TOpc); if (TII.isLoad(TOpc)) NI->StageBegin = &LoadStage; else if (TII.isStore(TOpc)) NI->StageBegin = &StoreStage; else if (MVT::isInteger(VT)) NI->StageBegin = &IntStage; else if (MVT::isFloatingPoint(VT)) NI->StageBegin = &FloatStage; if (NI->StageBegin) NI->StageEnd = NI->StageBegin + 1; } } else if (Node->isTargetOpcode()) { // get machine opcode MachineOpCode TOpc = Node->getTargetOpcode(); // Check to see if it is a call NI->IsCall = TII.isCall(TOpc); // Get itinerary stages for instruction unsigned II = TII.getSchedClass(TOpc); NI->StageBegin = InstrItins.begin(II); NI->StageEnd = InstrItins.end(II); } // One slot for the instruction itself NI->Latency = 1; // Add long latency for a call to push it back in time if (NI->IsCall) NI->Latency += CallLatency; // Sum up all the latencies for (InstrStage *Stage = NI->StageBegin, *E = NI->StageEnd; Stage != E; Stage++) { NI->Latency += Stage->Cycles; } // Sum up all the latencies for max tally size NSlots += NI->Latency; } // Unify metrics if in a group if (HasGroups) { for (unsigned i = 0, N = NodeCount; i < N; i++) { NodeInfo* NI = &Info[i]; if (NI->isInGroup()) { NodeGroup *Group = NI->Group; if (!Group->getDominator()) { NIIterator NGI = Group->group_begin(), NGE = Group->group_end(); NodeInfo *Dominator = *NGI; unsigned Latency = 0; for (NGI++; NGI != NGE; NGI++) { NodeInfo* NGNI = *NGI; Latency += NGNI->Latency; if (Dominator->Latency < NGNI->Latency) Dominator = NGNI; } Dominator->Latency = Latency; Group->setDominator(Dominator); } } } } } /// FakeGroupDominators - Set dominators for non-scheduling. /// void SimpleSched::FakeGroupDominators() { for (unsigned i = 0, N = NodeCount; i < N; i++) { NodeInfo* NI = &Info[i]; if (NI->isInGroup()) { NodeGroup *Group = NI->Group; if (!Group->getDominator()) { Group->setDominator(NI); } } } } /// PrepareNodeInfo - Set up the basic minimum node info for scheduling. /// void SimpleSched::PrepareNodeInfo() { // Allocate node information Info = new NodeInfo[NodeCount]; unsigned i = 0; for (SelectionDAG::allnodes_iterator I = DAG.allnodes_begin(), E = DAG.allnodes_end(); I != E; ++I, ++i) { // Fast reference to node schedule info NodeInfo* NI = &Info[i]; // Set up map Map[I] = NI; // Set node NI->Node = I; // Set pending visit count NI->setPending(I->use_size()); } } /// isStrongDependency - Return true if node A has results used by node B. /// I.E., B must wait for latency of A. bool SimpleSched::isStrongDependency(NodeInfo *A, NodeInfo *B) { // If A defines for B then it's a strong dependency or // if a load follows a store (may be dependent but why take a chance.) return isDefiner(A, B) || (A->IsStore && B->IsLoad); } /// isWeakDependency Return true if node A produces a result that will /// conflict with operands of B. It is assumed that we have called /// isStrongDependency prior. bool SimpleSched::isWeakDependency(NodeInfo *A, NodeInfo *B) { // TODO check for conflicting real registers and aliases #if 0 // FIXME - Since we are in SSA form and not checking register aliasing return A->Node->getOpcode() == ISD::EntryToken || isStrongDependency(B, A); #else return A->Node->getOpcode() == ISD::EntryToken; #endif } /// ScheduleBackward - Schedule instructions so that any long latency /// instructions and the critical path get pushed back in time. Time is run in /// reverse to allow code reuse of the Tally and eliminate the overhead of /// biasing every slot indices against NSlots. void SimpleSched::ScheduleBackward() { // Size and clear the resource tally Tally.Initialize(NSlots); // Get number of nodes to schedule unsigned N = Ordering.size(); // For each node being scheduled for (unsigned i = N; 0 < i--;) { NodeInfo *NI = Ordering[i]; // Track insertion unsigned Slot = NotFound; // Compare against those previously scheduled nodes unsigned j = i + 1; for (; j < N; j++) { // Get following instruction NodeInfo *Other = Ordering[j]; // Check dependency against previously inserted nodes if (isStrongDependency(NI, Other)) { Slot = Other->Slot + Other->Latency; break; } else if (isWeakDependency(NI, Other)) { Slot = Other->Slot; break; } } // If independent of others (or first entry) if (Slot == NotFound) Slot = 0; #if 0 // FIXME - measure later // Find a slot where the needed resources are available if (NI->StageBegin != NI->StageEnd) Slot = Tally.FindAndReserve(Slot, NI->StageBegin, NI->StageEnd); #endif // Set node slot NI->Slot = Slot; // Insert sort based on slot j = i + 1; for (; j < N; j++) { // Get following instruction NodeInfo *Other = Ordering[j]; // Should we look further (remember slots are in reverse time) if (Slot >= Other->Slot) break; // Shuffle other into ordering Ordering[j - 1] = Other; } // Insert node in proper slot if (j != i + 1) Ordering[j - 1] = NI; } } /// ScheduleForward - Schedule instructions to maximize packing. /// void SimpleSched::ScheduleForward() { // Size and clear the resource tally Tally.Initialize(NSlots); // Get number of nodes to schedule unsigned N = Ordering.size(); // For each node being scheduled for (unsigned i = 0; i < N; i++) { NodeInfo *NI = Ordering[i]; // Track insertion unsigned Slot = NotFound; // Compare against those previously scheduled nodes unsigned j = i; for (; 0 < j--;) { // Get following instruction NodeInfo *Other = Ordering[j]; // Check dependency against previously inserted nodes if (isStrongDependency(Other, NI)) { Slot = Other->Slot + Other->Latency; break; } else if (Other->IsCall || isWeakDependency(Other, NI)) { Slot = Other->Slot; break; } } // If independent of others (or first entry) if (Slot == NotFound) Slot = 0; // Find a slot where the needed resources are available if (NI->StageBegin != NI->StageEnd) Slot = Tally.FindAndReserve(Slot, NI->StageBegin, NI->StageEnd); // Set node slot NI->Slot = Slot; // Insert sort based on slot j = i; for (; 0 < j--;) { // Get prior instruction NodeInfo *Other = Ordering[j]; // Should we look further if (Slot >= Other->Slot) break; // Shuffle other into ordering Ordering[j + 1] = Other; } // Insert node in proper slot if (j != i) Ordering[j + 1] = NI; } } /// EmitAll - Emit all nodes in schedule sorted order. /// void SimpleSched::EmitAll() { // For each node in the ordering for (unsigned i = 0, N = Ordering.size(); i < N; i++) { // Get the scheduling info NodeInfo *NI = Ordering[i]; if (NI->isInGroup()) { NodeGroupIterator NGI(Ordering[i]); while (NodeInfo *NI = NGI.next()) EmitNode(NI); } else { EmitNode(NI); } } } /// CountResults - The results of target nodes have register or immediate /// operands first, then an optional chain, and optional flag operands (which do /// not go into the machine instrs.) unsigned SimpleSched::CountResults(SDNode *Node) { unsigned N = Node->getNumValues(); while (N && Node->getValueType(N - 1) == MVT::Flag) --N; if (N && Node->getValueType(N - 1) == MVT::Other) --N; // Skip over chain result. return N; } /// CountOperands The inputs to target nodes have any actual inputs first, /// followed by an optional chain operand, then flag operands. Compute the /// number of actual operands that will go into the machine instr. unsigned SimpleSched::CountOperands(SDNode *Node) { unsigned N = Node->getNumOperands(); while (N && Node->getOperand(N - 1).getValueType() == MVT::Flag) --N; if (N && Node->getOperand(N - 1).getValueType() == MVT::Other) --N; // Ignore chain if it exists. return N; } /// CreateVirtualRegisters - Add result register values for things that are /// defined by this instruction. unsigned SimpleSched::CreateVirtualRegisters(MachineInstr *MI, unsigned NumResults, const TargetInstrDescriptor &II) { // Create the result registers for this node and add the result regs to // the machine instruction. const TargetOperandInfo *OpInfo = II.OpInfo; unsigned ResultReg = RegMap->createVirtualRegister(OpInfo[0].RegClass); MI->addRegOperand(ResultReg, MachineOperand::Def); for (unsigned i = 1; i != NumResults; ++i) { assert(OpInfo[i].RegClass && "Isn't a register operand!"); MI->addRegOperand(RegMap->createVirtualRegister(OpInfo[i].RegClass), MachineOperand::Def); } return ResultReg; } /// EmitNode - Generate machine code for an node and needed dependencies. /// void SimpleSched::EmitNode(NodeInfo *NI) { unsigned VRBase = 0; // First virtual register for node SDNode *Node = NI->Node; // If machine instruction if (Node->isTargetOpcode()) { unsigned Opc = Node->getTargetOpcode(); const TargetInstrDescriptor &II = TII.get(Opc); unsigned NumResults = CountResults(Node); unsigned NodeOperands = CountOperands(Node); unsigned NumMIOperands = NodeOperands + NumResults; #ifndef NDEBUG assert((unsigned(II.numOperands) == NumMIOperands || II.numOperands == -1)&& "#operands for dag node doesn't match .td file!"); #endif // Create the new machine instruction. MachineInstr *MI = new MachineInstr(Opc, NumMIOperands, true, true); // Add result register values for things that are defined by this // instruction. // If the node is only used by a CopyToReg and the dest reg is a vreg, use // the CopyToReg'd destination register instead of creating a new vreg. if (NumResults == 1) { for (SDNode::use_iterator UI = Node->use_begin(), E = Node->use_end(); UI != E; ++UI) { SDNode *Use = *UI; if (Use->getOpcode() == ISD::CopyToReg && Use->getOperand(2).Val == Node) { unsigned Reg = cast(Use->getOperand(1))->getReg(); if (MRegisterInfo::isVirtualRegister(Reg)) { VRBase = Reg; MI->addRegOperand(Reg, MachineOperand::Def); break; } } } } // Otherwise, create new virtual registers. if (NumResults && VRBase == 0) VRBase = CreateVirtualRegisters(MI, NumResults, II); // Emit all of the actual operands of this instruction, adding them to the // instruction as appropriate. for (unsigned i = 0; i != NodeOperands; ++i) { if (Node->getOperand(i).isTargetOpcode()) { // Note that this case is redundant with the final else block, but we // include it because it is the most common and it makes the logic // simpler here. assert(Node->getOperand(i).getValueType() != MVT::Other && Node->getOperand(i).getValueType() != MVT::Flag && "Chain and flag operands should occur at end of operand list!"); // Get/emit the operand. unsigned VReg = getVR(Node->getOperand(i)); MI->addRegOperand(VReg, MachineOperand::Use); // Verify that it is right. assert(MRegisterInfo::isVirtualRegister(VReg) && "Not a vreg?"); assert(II.OpInfo[i+NumResults].RegClass && "Don't have operand info for this instruction!"); assert(RegMap->getRegClass(VReg) == II.OpInfo[i+NumResults].RegClass && "Register class of operand and regclass of use don't agree!"); } else if (ConstantSDNode *C = dyn_cast(Node->getOperand(i))) { MI->addZeroExtImm64Operand(C->getValue()); } else if (RegisterSDNode*R = dyn_cast(Node->getOperand(i))) { MI->addRegOperand(R->getReg(), MachineOperand::Use); } else if (GlobalAddressSDNode *TGA = dyn_cast(Node->getOperand(i))) { MI->addGlobalAddressOperand(TGA->getGlobal(), false, TGA->getOffset()); } else if (BasicBlockSDNode *BB = dyn_cast(Node->getOperand(i))) { MI->addMachineBasicBlockOperand(BB->getBasicBlock()); } else if (FrameIndexSDNode *FI = dyn_cast(Node->getOperand(i))) { MI->addFrameIndexOperand(FI->getIndex()); } else if (ConstantPoolSDNode *CP = dyn_cast(Node->getOperand(i))) { unsigned Idx = ConstPool->getConstantPoolIndex(CP->get()); MI->addConstantPoolIndexOperand(Idx); } else if (ExternalSymbolSDNode *ES = dyn_cast(Node->getOperand(i))) { MI->addExternalSymbolOperand(ES->getSymbol(), false); } else { assert(Node->getOperand(i).getValueType() != MVT::Other && Node->getOperand(i).getValueType() != MVT::Flag && "Chain and flag operands should occur at end of operand list!"); unsigned VReg = getVR(Node->getOperand(i)); MI->addRegOperand(VReg, MachineOperand::Use); // Verify that it is right. assert(MRegisterInfo::isVirtualRegister(VReg) && "Not a vreg?"); assert(II.OpInfo[i+NumResults].RegClass && "Don't have operand info for this instruction!"); assert(RegMap->getRegClass(VReg) == II.OpInfo[i+NumResults].RegClass && "Register class of operand and regclass of use don't agree!"); } } // Now that we have emitted all operands, emit this instruction itself. if ((II.Flags & M_USES_CUSTOM_DAG_SCHED_INSERTION) == 0) { BB->insert(BB->end(), MI); } else { // Insert this instruction into the end of the basic block, potentially // taking some custom action. BB = DAG.getTargetLoweringInfo().InsertAtEndOfBasicBlock(MI, BB); } } else { switch (Node->getOpcode()) { default: Node->dump(); assert(0 && "This target-independent node should have been selected!"); case ISD::EntryToken: // fall thru case ISD::TokenFactor: break; case ISD::CopyToReg: { unsigned InReg = getVR(Node->getOperand(2)); unsigned DestReg = cast(Node->getOperand(1))->getReg(); if (InReg != DestReg) // Coallesced away the copy? MRI.copyRegToReg(*BB, BB->end(), DestReg, InReg, RegMap->getRegClass(InReg)); break; } case ISD::CopyFromReg: { unsigned SrcReg = cast(Node->getOperand(1))->getReg(); if (MRegisterInfo::isVirtualRegister(SrcReg)) { VRBase = SrcReg; // Just use the input register directly! break; } // If the node is only used by a CopyToReg and the dest reg is a vreg, use // the CopyToReg'd destination register instead of creating a new vreg. for (SDNode::use_iterator UI = Node->use_begin(), E = Node->use_end(); UI != E; ++UI) { SDNode *Use = *UI; if (Use->getOpcode() == ISD::CopyToReg && Use->getOperand(2).Val == Node) { unsigned DestReg = cast(Use->getOperand(1))->getReg(); if (MRegisterInfo::isVirtualRegister(DestReg)) { VRBase = DestReg; break; } } } // Figure out the register class to create for the destreg. const TargetRegisterClass *TRC = 0; if (VRBase) { TRC = RegMap->getRegClass(VRBase); } else { // Pick the register class of the right type that contains this physreg. for (MRegisterInfo::regclass_iterator I = MRI.regclass_begin(), E = MRI.regclass_end(); I != E; ++I) if ((*I)->hasType(Node->getValueType(0)) && (*I)->contains(SrcReg)) { TRC = *I; break; } assert(TRC && "Couldn't find register class for reg copy!"); // Create the reg, emit the copy. VRBase = RegMap->createVirtualRegister(TRC); } MRI.copyRegToReg(*BB, BB->end(), VRBase, SrcReg, TRC); break; } } } assert(NI->VRBase == 0 && "Node emitted out of order - early"); NI->VRBase = VRBase; } /// Schedule - Order nodes according to selected style. /// void SimpleSched::Schedule() { // Number the nodes NodeCount = std::distance(DAG.allnodes_begin(), DAG.allnodes_end()); // Test to see if scheduling should occur bool ShouldSchedule = NodeCount > 3 && ScheduleStyle != noScheduling; // Set up minimum info for scheduling PrepareNodeInfo(); // Construct node groups for flagged nodes IdentifyGroups(); // Don't waste time if is only entry and return if (ShouldSchedule) { // Get latency and resource requirements GatherSchedulingInfo(); } else if (HasGroups) { // Make sure all the groups have dominators FakeGroupDominators(); } // Breadth first walk of DAG VisitAll(); #ifndef NDEBUG static unsigned Count = 0; Count++; for (unsigned i = 0, N = Ordering.size(); i < N; i++) { NodeInfo *NI = Ordering[i]; NI->Preorder = i; } #endif // Don't waste time if is only entry and return if (ShouldSchedule) { // Push back long instructions and critical path ScheduleBackward(); // Pack instructions to maximize resource utilization ScheduleForward(); } DEBUG(printChanges(Count)); // Emit in scheduled order EmitAll(); } /// printChanges - Hilight changes in order caused by scheduling. /// void SimpleSched::printChanges(unsigned Index) { #ifndef NDEBUG // Get the ordered node count unsigned N = Ordering.size(); // Determine if any changes unsigned i = 0; for (; i < N; i++) { NodeInfo *NI = Ordering[i]; if (NI->Preorder != i) break; } if (i < N) { std::cerr << Index << ". New Ordering\n"; for (i = 0; i < N; i++) { NodeInfo *NI = Ordering[i]; std::cerr << " " << NI->Preorder << ". "; printSI(std::cerr, NI); std::cerr << "\n"; if (NI->isGroupDominator()) { NodeGroup *Group = NI->Group; for (NIIterator NII = Group->group_begin(), E = Group->group_end(); NII != E; NII++) { std::cerr << " "; printSI(std::cerr, *NII); std::cerr << "\n"; } } } } else { std::cerr << Index << ". No Changes\n"; } #endif } /// printSI - Print schedule info. /// void SimpleSched::printSI(std::ostream &O, NodeInfo *NI) const { #ifndef NDEBUG SDNode *Node = NI->Node; O << " " << std::hex << Node << std::dec << ", Lat=" << NI->Latency << ", Slot=" << NI->Slot << ", ARITY=(" << Node->getNumOperands() << "," << Node->getNumValues() << ")" << " " << Node->getOperationName(&DAG); if (isFlagDefiner(Node)) O << "<#"; if (isFlagUser(Node)) O << ">#"; #endif } /// print - Print ordering to specified output stream. /// void SimpleSched::print(std::ostream &O) const { #ifndef NDEBUG using namespace std; O << "Ordering\n"; for (unsigned i = 0, N = Ordering.size(); i < N; i++) { NodeInfo *NI = Ordering[i]; printSI(O, NI); O << "\n"; if (NI->isGroupDominator()) { NodeGroup *Group = NI->Group; for (NIIterator NII = Group->group_begin(), E = Group->group_end(); NII != E; NII++) { O << " "; printSI(O, *NII); O << "\n"; } } } #endif } /// dump - Print ordering to std::cerr. /// void SimpleSched::dump() const { print(std::cerr); } //===----------------------------------------------------------------------===// //===----------------------------------------------------------------------===// /// ScheduleAndEmitDAG - Pick a safe ordering and emit instructions for each /// target node in the graph. void SelectionDAGISel::ScheduleAndEmitDAG(SelectionDAG &SD) { if (ViewDAGs) SD.viewGraph(); BB = SimpleSched(SD, BB).Run(); }