//===-- PhiElimination.cpp - Eliminate PHI nodes by inserting copies ------===// // // This pass eliminates machine instruction PHI nodes by inserting copy // instructions. This destroys SSA information, but is the desired input for // some register allocators. // //===----------------------------------------------------------------------===// #include "llvm/CodeGen/MachineFunctionPass.h" #include "llvm/CodeGen/MachineInstr.h" #include "llvm/CodeGen/SSARegMap.h" #include "llvm/CodeGen/LiveVariables.h" #include "llvm/Target/TargetInstrInfo.h" #include "llvm/Target/TargetMachine.h" #include "llvm/Support/CFG.h" namespace { struct PNE : public MachineFunctionPass { bool runOnMachineFunction(MachineFunction &Fn) { bool Changed = false; // Eliminate PHI instructions by inserting copies into predecessor blocks. // for (MachineFunction::iterator I = Fn.begin(), E = Fn.end(); I != E; ++I) Changed |= EliminatePHINodes(Fn, *I); //std::cerr << "AFTER PHI NODE ELIM:\n"; //Fn.dump(); return Changed; } virtual void getAnalysisUsage(AnalysisUsage &AU) const { AU.addPreserved(); MachineFunctionPass::getAnalysisUsage(AU); } private: /// EliminatePHINodes - Eliminate phi nodes by inserting copy instructions /// in predecessor basic blocks. /// bool EliminatePHINodes(MachineFunction &MF, MachineBasicBlock &MBB); }; RegisterPass X("phi-node-elimination", "Eliminate PHI nodes for register allocation"); } const PassInfo *PHIEliminationID = X.getPassInfo(); /// EliminatePHINodes - Eliminate phi nodes by inserting copy instructions in /// predecessor basic blocks. /// bool PNE::EliminatePHINodes(MachineFunction &MF, MachineBasicBlock &MBB) { if (MBB.empty() || MBB.front()->getOpcode() != TargetInstrInfo::PHI) return false; // Quick exit for normal case... LiveVariables *LV = getAnalysisToUpdate(); const TargetInstrInfo &MII = MF.getTarget().getInstrInfo(); const MRegisterInfo *RegInfo = MF.getTarget().getRegisterInfo(); while (MBB.front()->getOpcode() == TargetInstrInfo::PHI) { MachineInstr *MI = MBB.front(); // Unlink the PHI node from the basic block... but don't delete the PHI yet MBB.erase(MBB.begin()); assert(MI->getOperand(0).isVirtualRegister() && "PHI node doesn't write virt reg?"); unsigned DestReg = MI->getOperand(0).getAllocatedRegNum(); // Create a new register for the incoming PHI arguments const TargetRegisterClass *RC = MF.getSSARegMap()->getRegClass(DestReg); unsigned IncomingReg = MF.getSSARegMap()->createVirtualRegister(RC); // Insert a register to register copy in the top of the current block (but // after any remaining phi nodes) which copies the new incoming register // into the phi node destination. // MachineBasicBlock::iterator AfterPHIsIt = MBB.begin(); while (AfterPHIsIt != MBB.end() && (*AfterPHIsIt)->getOpcode() == TargetInstrInfo::PHI) ++AfterPHIsIt; // Skip over all of the PHI nodes... RegInfo->copyRegToReg(MBB, AfterPHIsIt, DestReg, IncomingReg, RC); // Update live variable information if there is any... if (LV) { MachineInstr *PHICopy = *(AfterPHIsIt-1); // Add information to LiveVariables to know that the incoming value is // dead. This says that the register is dead, not killed, because we // cannot use the live variable information to indicate that the variable // is defined in multiple entry blocks. Instead, we pretend that this // instruction defined it and killed it at the same time. // LV->addVirtualRegisterDead(IncomingReg, &MBB, PHICopy); // Since we are going to be deleting the PHI node, if it is the last use // of any registers, or if the value itself is dead, we need to move this // information over to the new copy we just inserted... // std::pair RKs = LV->killed_range(MI); std::vector > Range; if (RKs.first != RKs.second) { // Copy the range into a vector... Range.assign(RKs.first, RKs.second); // Delete the range... LV->removeVirtualRegistersKilled(RKs.first, RKs.second); // Add all of the kills back, which will update the appropriate info... for (unsigned i = 0, e = Range.size(); i != e; ++i) LV->addVirtualRegisterKilled(Range[i].second, &MBB, PHICopy); } RKs = LV->dead_range(MI); if (RKs.first != RKs.second) { // Works as above... Range.assign(RKs.first, RKs.second); LV->removeVirtualRegistersDead(RKs.first, RKs.second); for (unsigned i = 0, e = Range.size(); i != e; ++i) LV->addVirtualRegisterDead(Range[i].second, &MBB, PHICopy); } } // Now loop over all of the incoming arguments, changing them to copy into // the IncomingReg register in the corresponding predecessor basic block. // for (int i = MI->getNumOperands() - 1; i >= 2; i-=2) { MachineOperand &opVal = MI->getOperand(i-1); // Get the MachineBasicBlock equivalent of the BasicBlock that is the // source path the PHI. MachineBasicBlock &opBlock = *MI->getOperand(i).getMachineBasicBlock(); // Figure out where to insert the copy, which is at the end of the // predecessor basic block, but before any terminator/branch // instructions... MachineBasicBlock::iterator I = opBlock.end(); if (I != opBlock.begin()) { // Handle empty blocks --I; // must backtrack over ALL the branches in the previous block while (MII.isTerminatorInstr((*I)->getOpcode()) && I != opBlock.begin()) --I; // move back to the first branch instruction so new instructions // are inserted right in front of it and not in front of a non-branch if (!MII.isTerminatorInstr((*I)->getOpcode())) ++I; } // Check to make sure we haven't already emitted the copy for this block. // This can happen because PHI nodes may have multiple entries for the // same basic block. It doesn't matter which entry we use though, because // all incoming values are guaranteed to be the same for a particular bb. // // If we emitted a copy for this basic block already, it will be right // where we want to insert one now. Just check for a definition of the // register we are interested in! // bool HaveNotEmitted = true; if (I != opBlock.begin()) { MachineInstr *PrevInst = *(I-1); for (unsigned i = 0, e = PrevInst->getNumOperands(); i != e; ++i) { MachineOperand &MO = PrevInst->getOperand(i); if (MO.isVirtualRegister() && MO.getReg() == IncomingReg) if (MO.opIsDef() || MO.opIsDefAndUse()) { HaveNotEmitted = false; break; } } } if (HaveNotEmitted) { // If the copy has not already been emitted, do it. assert(opVal.isVirtualRegister() && "Machine PHI Operands must all be virtual registers!"); unsigned SrcReg = opVal.getReg(); RegInfo->copyRegToReg(opBlock, I, IncomingReg, SrcReg, RC); // Now update live variable information if we have it. if (LV) { // We want to be able to insert a kill of the register if this PHI // (aka, the copy we just inserted) is the last use of the source // value. Live variable analysis conservatively handles this by // saying that the value is live until the end of the block the PHI // entry lives in. If the value really is dead at the PHI copy, there // will be no successor blocks which have the value live-in. // // Check to see if the copy is the last use, and if so, update the // live variables information so that it knows the copy source // instruction kills the incoming value. // LiveVariables::VarInfo &InRegVI = LV->getVarInfo(SrcReg); // Loop over all of the successors of the basic block, checking to // see if the value is either live in the block, or if it is killed // in the block. // bool ValueIsLive = false; BasicBlock *BB = opBlock.getBasicBlock(); for (succ_iterator SI = succ_begin(BB), E = succ_end(BB); SI != E; ++SI) { const std::pair & SuccInfo = LV->getBasicBlockInfo(*SI); // Is it alive in this successor? unsigned SuccIdx = SuccInfo.second; if (SuccIdx < InRegVI.AliveBlocks.size() && InRegVI.AliveBlocks[SuccIdx]) { ValueIsLive = true; break; } // Is it killed in this successor? MachineBasicBlock *MBB = SuccInfo.first; for (unsigned i = 0, e = InRegVI.Kills.size(); i != e; ++i) if (InRegVI.Kills[i].first == MBB) { ValueIsLive = true; break; } } // Okay, if we now know that the value is not live out of the block, // we can add a kill marker to the copy we inserted saying that it // kills the incoming value! // if (!ValueIsLive) { // One more complication to worry about. There may actually be // multiple PHI nodes using this value on this branch. If we aren't // careful, the first PHI node will end up killing the value, not // letting it get the to the copy for the final PHI node in the // block. Therefore we have to check to see if there is already a // kill in this block, and if so, extend the lifetime to our new // copy. // for (unsigned i = 0, e = InRegVI.Kills.size(); i != e; ++i) if (InRegVI.Kills[i].first == &opBlock) { std::pair Range = LV->killed_range(InRegVI.Kills[i].second); LV->removeVirtualRegistersKilled(Range.first, Range.second); break; } LV->addVirtualRegisterKilled(SrcReg, &opBlock, *(I-1)); } } } } // really delete the PHI instruction now! delete MI; } return true; }