//===- InstructionCombining.cpp - Combine multiple instructions -----------===// // // The LLVM Compiler Infrastructure // // This file was developed by the LLVM research group and is distributed under // the University of Illinois Open Source License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// // // InstructionCombining - Combine instructions to form fewer, simple // instructions. This pass does not modify the CFG This pass is where algebraic // simplification happens. // // This pass combines things like: // %Y = add int %X, 1 // %Z = add int %Y, 1 // into: // %Z = add int %X, 2 // // This is a simple worklist driven algorithm. // // This pass guarantees that the following canonicalizations are performed on // the program: // 1. If a binary operator has a constant operand, it is moved to the RHS // 2. Bitwise operators with constant operands are always grouped so that // shifts are performed first, then or's, then and's, then xor's. // 3. SetCC instructions are converted from <,>,<=,>= to ==,!= if possible // 4. All SetCC instructions on boolean values are replaced with logical ops // 5. add X, X is represented as (X*2) => (X << 1) // 6. Multiplies with a power-of-two constant argument are transformed into // shifts. // ... etc. // //===----------------------------------------------------------------------===// #define DEBUG_TYPE "instcombine" #include "llvm/Transforms/Scalar.h" #include "llvm/IntrinsicInst.h" #include "llvm/Pass.h" #include "llvm/DerivedTypes.h" #include "llvm/GlobalVariable.h" #include "llvm/Target/TargetData.h" #include "llvm/Transforms/Utils/BasicBlockUtils.h" #include "llvm/Transforms/Utils/Local.h" #include "llvm/Support/CallSite.h" #include "llvm/Support/GetElementPtrTypeIterator.h" #include "llvm/Support/InstIterator.h" #include "llvm/Support/InstVisitor.h" #include "llvm/Support/PatternMatch.h" #include "llvm/Support/Debug.h" #include "llvm/ADT/Statistic.h" #include using namespace llvm; using namespace llvm::PatternMatch; namespace { Statistic<> NumCombined ("instcombine", "Number of insts combined"); Statistic<> NumConstProp("instcombine", "Number of constant folds"); Statistic<> NumDeadInst ("instcombine", "Number of dead inst eliminated"); class InstCombiner : public FunctionPass, public InstVisitor { // Worklist of all of the instructions that need to be simplified. std::vector WorkList; TargetData *TD; /// AddUsersToWorkList - When an instruction is simplified, add all users of /// the instruction to the work lists because they might get more simplified /// now. /// void AddUsersToWorkList(Instruction &I) { for (Value::use_iterator UI = I.use_begin(), UE = I.use_end(); UI != UE; ++UI) WorkList.push_back(cast(*UI)); } /// AddUsesToWorkList - When an instruction is simplified, add operands to /// the work lists because they might get more simplified now. /// void AddUsesToWorkList(Instruction &I) { for (unsigned i = 0, e = I.getNumOperands(); i != e; ++i) if (Instruction *Op = dyn_cast(I.getOperand(i))) WorkList.push_back(Op); } // removeFromWorkList - remove all instances of I from the worklist. void removeFromWorkList(Instruction *I); public: virtual bool runOnFunction(Function &F); virtual void getAnalysisUsage(AnalysisUsage &AU) const { AU.addRequired(); AU.setPreservesCFG(); } TargetData &getTargetData() const { return *TD; } // Visitation implementation - Implement instruction combining for different // instruction types. The semantics are as follows: // Return Value: // null - No change was made // I - Change was made, I is still valid, I may be dead though // otherwise - Change was made, replace I with returned instruction // Instruction *visitAdd(BinaryOperator &I); Instruction *visitSub(BinaryOperator &I); Instruction *visitMul(BinaryOperator &I); Instruction *visitDiv(BinaryOperator &I); Instruction *visitRem(BinaryOperator &I); Instruction *visitAnd(BinaryOperator &I); Instruction *visitOr (BinaryOperator &I); Instruction *visitXor(BinaryOperator &I); Instruction *visitSetCondInst(BinaryOperator &I); Instruction *visitSetCondInstWithCastAndConstant(BinaryOperator&I, CastInst*LHSI, ConstantInt* CI); Instruction *visitShiftInst(ShiftInst &I); Instruction *visitCastInst(CastInst &CI); Instruction *visitSelectInst(SelectInst &CI); Instruction *visitCallInst(CallInst &CI); Instruction *visitInvokeInst(InvokeInst &II); Instruction *visitPHINode(PHINode &PN); Instruction *visitGetElementPtrInst(GetElementPtrInst &GEP); Instruction *visitAllocationInst(AllocationInst &AI); Instruction *visitFreeInst(FreeInst &FI); Instruction *visitLoadInst(LoadInst &LI); Instruction *visitBranchInst(BranchInst &BI); Instruction *visitSwitchInst(SwitchInst &SI); // visitInstruction - Specify what to return for unhandled instructions... Instruction *visitInstruction(Instruction &I) { return 0; } private: Instruction *visitCallSite(CallSite CS); bool transformConstExprCastCall(CallSite CS); public: // InsertNewInstBefore - insert an instruction New before instruction Old // in the program. Add the new instruction to the worklist. // Instruction *InsertNewInstBefore(Instruction *New, Instruction &Old) { assert(New && New->getParent() == 0 && "New instruction already inserted into a basic block!"); BasicBlock *BB = Old.getParent(); BB->getInstList().insert(&Old, New); // Insert inst WorkList.push_back(New); // Add to worklist return New; } /// InsertCastBefore - Insert a cast of V to TY before the instruction POS. /// This also adds the cast to the worklist. Finally, this returns the /// cast. Value *InsertCastBefore(Value *V, const Type *Ty, Instruction &Pos) { if (V->getType() == Ty) return V; Instruction *C = new CastInst(V, Ty, V->getName(), &Pos); WorkList.push_back(C); return C; } // ReplaceInstUsesWith - This method is to be used when an instruction is // found to be dead, replacable with another preexisting expression. Here // we add all uses of I to the worklist, replace all uses of I with the new // value, then return I, so that the inst combiner will know that I was // modified. // Instruction *ReplaceInstUsesWith(Instruction &I, Value *V) { AddUsersToWorkList(I); // Add all modified instrs to worklist if (&I != V) { I.replaceAllUsesWith(V); return &I; } else { // If we are replacing the instruction with itself, this must be in a // segment of unreachable code, so just clobber the instruction. I.replaceAllUsesWith(UndefValue::get(I.getType())); return &I; } } // EraseInstFromFunction - When dealing with an instruction that has side // effects or produces a void value, we can't rely on DCE to delete the // instruction. Instead, visit methods should return the value returned by // this function. Instruction *EraseInstFromFunction(Instruction &I) { assert(I.use_empty() && "Cannot erase instruction that is used!"); AddUsesToWorkList(I); removeFromWorkList(&I); I.eraseFromParent(); return 0; // Don't do anything with FI } private: /// InsertOperandCastBefore - This inserts a cast of V to DestTy before the /// InsertBefore instruction. This is specialized a bit to avoid inserting /// casts that are known to not do anything... /// Value *InsertOperandCastBefore(Value *V, const Type *DestTy, Instruction *InsertBefore); // SimplifyCommutative - This performs a few simplifications for commutative // operators. bool SimplifyCommutative(BinaryOperator &I); // FoldOpIntoPhi - Given a binary operator or cast instruction which has a // PHI node as operand #0, see if we can fold the instruction into the PHI // (which is only possible if all operands to the PHI are constants). Instruction *FoldOpIntoPhi(Instruction &I); // FoldPHIArgOpIntoPHI - If all operands to a PHI node are the same "unary" // operator and they all are only used by the PHI, PHI together their // inputs, and do the operation once, to the result of the PHI. Instruction *FoldPHIArgOpIntoPHI(PHINode &PN); Instruction *OptAndOp(Instruction *Op, ConstantIntegral *OpRHS, ConstantIntegral *AndRHS, BinaryOperator &TheAnd); Instruction *InsertRangeTest(Value *V, Constant *Lo, Constant *Hi, bool Inside, Instruction &IB); }; RegisterOpt X("instcombine", "Combine redundant instructions"); } // getComplexity: Assign a complexity or rank value to LLVM Values... // 0 -> undef, 1 -> Const, 2 -> Other, 3 -> Arg, 3 -> Unary, 4 -> OtherInst static unsigned getComplexity(Value *V) { if (isa(V)) { if (BinaryOperator::isNeg(V) || BinaryOperator::isNot(V)) return 3; return 4; } if (isa(V)) return 3; return isa(V) ? (isa(V) ? 0 : 1) : 2; } // isOnlyUse - Return true if this instruction will be deleted if we stop using // it. static bool isOnlyUse(Value *V) { return V->hasOneUse() || isa(V); } // getPromotedType - Return the specified type promoted as it would be to pass // though a va_arg area... static const Type *getPromotedType(const Type *Ty) { switch (Ty->getTypeID()) { case Type::SByteTyID: case Type::ShortTyID: return Type::IntTy; case Type::UByteTyID: case Type::UShortTyID: return Type::UIntTy; case Type::FloatTyID: return Type::DoubleTy; default: return Ty; } } // SimplifyCommutative - This performs a few simplifications for commutative // operators: // // 1. Order operands such that they are listed from right (least complex) to // left (most complex). This puts constants before unary operators before // binary operators. // // 2. Transform: (op (op V, C1), C2) ==> (op V, (op C1, C2)) // 3. Transform: (op (op V1, C1), (op V2, C2)) ==> (op (op V1, V2), (op C1,C2)) // bool InstCombiner::SimplifyCommutative(BinaryOperator &I) { bool Changed = false; if (getComplexity(I.getOperand(0)) < getComplexity(I.getOperand(1))) Changed = !I.swapOperands(); if (!I.isAssociative()) return Changed; Instruction::BinaryOps Opcode = I.getOpcode(); if (BinaryOperator *Op = dyn_cast(I.getOperand(0))) if (Op->getOpcode() == Opcode && isa(Op->getOperand(1))) { if (isa(I.getOperand(1))) { Constant *Folded = ConstantExpr::get(I.getOpcode(), cast(I.getOperand(1)), cast(Op->getOperand(1))); I.setOperand(0, Op->getOperand(0)); I.setOperand(1, Folded); return true; } else if (BinaryOperator *Op1=dyn_cast(I.getOperand(1))) if (Op1->getOpcode() == Opcode && isa(Op1->getOperand(1)) && isOnlyUse(Op) && isOnlyUse(Op1)) { Constant *C1 = cast(Op->getOperand(1)); Constant *C2 = cast(Op1->getOperand(1)); // Fold (op (op V1, C1), (op V2, C2)) ==> (op (op V1, V2), (op C1,C2)) Constant *Folded = ConstantExpr::get(I.getOpcode(), C1, C2); Instruction *New = BinaryOperator::create(Opcode, Op->getOperand(0), Op1->getOperand(0), Op1->getName(), &I); WorkList.push_back(New); I.setOperand(0, New); I.setOperand(1, Folded); return true; } } return Changed; } // dyn_castNegVal - Given a 'sub' instruction, return the RHS of the instruction // if the LHS is a constant zero (which is the 'negate' form). // static inline Value *dyn_castNegVal(Value *V) { if (BinaryOperator::isNeg(V)) return BinaryOperator::getNegArgument(cast(V)); // Constants can be considered to be negated values if they can be folded... if (Constant *C = dyn_cast(V)) return ConstantExpr::getNeg(C); return 0; } static inline Value *dyn_castNotVal(Value *V) { if (BinaryOperator::isNot(V)) return BinaryOperator::getNotArgument(cast(V)); // Constants can be considered to be not'ed values... if (ConstantIntegral *C = dyn_cast(V)) return ConstantExpr::getNot(C); return 0; } // dyn_castFoldableMul - If this value is a multiply that can be folded into // other computations (because it has a constant operand), return the // non-constant operand of the multiply, and set CST to point to the multiplier. // Otherwise, return null. // static inline Value *dyn_castFoldableMul(Value *V, ConstantInt *&CST) { if (V->hasOneUse() && V->getType()->isInteger()) if (Instruction *I = dyn_cast(V)) { if (I->getOpcode() == Instruction::Mul) if ((CST = dyn_cast(I->getOperand(1)))) return I->getOperand(0); if (I->getOpcode() == Instruction::Shl) if ((CST = dyn_cast(I->getOperand(1)))) { // The multiplier is really 1 << CST. Constant *One = ConstantInt::get(V->getType(), 1); CST = cast(ConstantExpr::getShl(One, CST)); return I->getOperand(0); } } return 0; } // Log2 - Calculate the log base 2 for the specified value if it is exactly a // power of 2. static unsigned Log2(uint64_t Val) { assert(Val > 1 && "Values 0 and 1 should be handled elsewhere!"); unsigned Count = 0; while (Val != 1) { if (Val & 1) return 0; // Multiple bits set? Val >>= 1; ++Count; } return Count; } // AddOne, SubOne - Add or subtract a constant one from an integer constant... static ConstantInt *AddOne(ConstantInt *C) { return cast(ConstantExpr::getAdd(C, ConstantInt::get(C->getType(), 1))); } static ConstantInt *SubOne(ConstantInt *C) { return cast(ConstantExpr::getSub(C, ConstantInt::get(C->getType(), 1))); } // isTrueWhenEqual - Return true if the specified setcondinst instruction is // true when both operands are equal... // static bool isTrueWhenEqual(Instruction &I) { return I.getOpcode() == Instruction::SetEQ || I.getOpcode() == Instruction::SetGE || I.getOpcode() == Instruction::SetLE; } /// AssociativeOpt - Perform an optimization on an associative operator. This /// function is designed to check a chain of associative operators for a /// potential to apply a certain optimization. Since the optimization may be /// applicable if the expression was reassociated, this checks the chain, then /// reassociates the expression as necessary to expose the optimization /// opportunity. This makes use of a special Functor, which must define /// 'shouldApply' and 'apply' methods. /// template Instruction *AssociativeOpt(BinaryOperator &Root, const Functor &F) { unsigned Opcode = Root.getOpcode(); Value *LHS = Root.getOperand(0); // Quick check, see if the immediate LHS matches... if (F.shouldApply(LHS)) return F.apply(Root); // Otherwise, if the LHS is not of the same opcode as the root, return. Instruction *LHSI = dyn_cast(LHS); while (LHSI && LHSI->getOpcode() == Opcode && LHSI->hasOneUse()) { // Should we apply this transform to the RHS? bool ShouldApply = F.shouldApply(LHSI->getOperand(1)); // If not to the RHS, check to see if we should apply to the LHS... if (!ShouldApply && F.shouldApply(LHSI->getOperand(0))) { cast(LHSI)->swapOperands(); // Make the LHS the RHS ShouldApply = true; } // If the functor wants to apply the optimization to the RHS of LHSI, // reassociate the expression from ((? op A) op B) to (? op (A op B)) if (ShouldApply) { BasicBlock *BB = Root.getParent(); // Now all of the instructions are in the current basic block, go ahead // and perform the reassociation. Instruction *TmpLHSI = cast(Root.getOperand(0)); // First move the selected RHS to the LHS of the root... Root.setOperand(0, LHSI->getOperand(1)); // Make what used to be the LHS of the root be the user of the root... Value *ExtraOperand = TmpLHSI->getOperand(1); if (&Root == TmpLHSI) { Root.replaceAllUsesWith(Constant::getNullValue(TmpLHSI->getType())); return 0; } Root.replaceAllUsesWith(TmpLHSI); // Users now use TmpLHSI TmpLHSI->setOperand(1, &Root); // TmpLHSI now uses the root TmpLHSI->getParent()->getInstList().remove(TmpLHSI); BasicBlock::iterator ARI = &Root; ++ARI; BB->getInstList().insert(ARI, TmpLHSI); // Move TmpLHSI to after Root ARI = Root; // Now propagate the ExtraOperand down the chain of instructions until we // get to LHSI. while (TmpLHSI != LHSI) { Instruction *NextLHSI = cast(TmpLHSI->getOperand(0)); // Move the instruction to immediately before the chain we are // constructing to avoid breaking dominance properties. NextLHSI->getParent()->getInstList().remove(NextLHSI); BB->getInstList().insert(ARI, NextLHSI); ARI = NextLHSI; Value *NextOp = NextLHSI->getOperand(1); NextLHSI->setOperand(1, ExtraOperand); TmpLHSI = NextLHSI; ExtraOperand = NextOp; } // Now that the instructions are reassociated, have the functor perform // the transformation... return F.apply(Root); } LHSI = dyn_cast(LHSI->getOperand(0)); } return 0; } // AddRHS - Implements: X + X --> X << 1 struct AddRHS { Value *RHS; AddRHS(Value *rhs) : RHS(rhs) {} bool shouldApply(Value *LHS) const { return LHS == RHS; } Instruction *apply(BinaryOperator &Add) const { return new ShiftInst(Instruction::Shl, Add.getOperand(0), ConstantInt::get(Type::UByteTy, 1)); } }; // AddMaskingAnd - Implements (A & C1)+(B & C2) --> (A & C1)|(B & C2) // iff C1&C2 == 0 struct AddMaskingAnd { Constant *C2; AddMaskingAnd(Constant *c) : C2(c) {} bool shouldApply(Value *LHS) const { ConstantInt *C1; return match(LHS, m_And(m_Value(), m_ConstantInt(C1))) && ConstantExpr::getAnd(C1, C2)->isNullValue(); } Instruction *apply(BinaryOperator &Add) const { return BinaryOperator::createOr(Add.getOperand(0), Add.getOperand(1)); } }; static Value *FoldOperationIntoSelectOperand(Instruction &BI, Value *SO, InstCombiner *IC) { // Figure out if the constant is the left or the right argument. bool ConstIsRHS = isa(BI.getOperand(1)); Constant *ConstOperand = cast(BI.getOperand(ConstIsRHS)); if (Constant *SOC = dyn_cast(SO)) { if (ConstIsRHS) return ConstantExpr::get(BI.getOpcode(), SOC, ConstOperand); return ConstantExpr::get(BI.getOpcode(), ConstOperand, SOC); } Value *Op0 = SO, *Op1 = ConstOperand; if (!ConstIsRHS) std::swap(Op0, Op1); Instruction *New; if (BinaryOperator *BO = dyn_cast(&BI)) New = BinaryOperator::create(BO->getOpcode(), Op0, Op1); else if (ShiftInst *SI = dyn_cast(&BI)) New = new ShiftInst(SI->getOpcode(), Op0, Op1); else { assert(0 && "Unknown binary instruction type!"); abort(); } return IC->InsertNewInstBefore(New, BI); } /// FoldOpIntoPhi - Given a binary operator or cast instruction which has a PHI /// node as operand #0, see if we can fold the instruction into the PHI (which /// is only possible if all operands to the PHI are constants). Instruction *InstCombiner::FoldOpIntoPhi(Instruction &I) { PHINode *PN = cast(I.getOperand(0)); unsigned NumPHIValues = PN->getNumIncomingValues(); if (!PN->hasOneUse() || NumPHIValues == 0 || !isa(PN->getIncomingValue(0))) return 0; // Check to see if all of the operands of the PHI are constants. If not, we // cannot do the transformation. for (unsigned i = 1; i != NumPHIValues; ++i) if (!isa(PN->getIncomingValue(i))) return 0; // Okay, we can do the transformation: create the new PHI node. PHINode *NewPN = new PHINode(I.getType(), I.getName()); I.setName(""); NewPN->op_reserve(PN->getNumOperands()); InsertNewInstBefore(NewPN, *PN); // Next, add all of the operands to the PHI. if (I.getNumOperands() == 2) { Constant *C = cast(I.getOperand(1)); for (unsigned i = 0; i != NumPHIValues; ++i) { Constant *InV = cast(PN->getIncomingValue(i)); NewPN->addIncoming(ConstantExpr::get(I.getOpcode(), InV, C), PN->getIncomingBlock(i)); } } else { assert(isa(I) && "Unary op should be a cast!"); const Type *RetTy = I.getType(); for (unsigned i = 0; i != NumPHIValues; ++i) { Constant *InV = cast(PN->getIncomingValue(i)); NewPN->addIncoming(ConstantExpr::getCast(InV, RetTy), PN->getIncomingBlock(i)); } } return ReplaceInstUsesWith(I, NewPN); } // FoldBinOpIntoSelect - Given an instruction with a select as one operand and a // constant as the other operand, try to fold the binary operator into the // select arguments. static Instruction *FoldBinOpIntoSelect(Instruction &BI, SelectInst *SI, InstCombiner *IC) { // Don't modify shared select instructions if (!SI->hasOneUse()) return 0; Value *TV = SI->getOperand(1); Value *FV = SI->getOperand(2); if (isa(TV) || isa(FV)) { Value *SelectTrueVal = FoldOperationIntoSelectOperand(BI, TV, IC); Value *SelectFalseVal = FoldOperationIntoSelectOperand(BI, FV, IC); return new SelectInst(SI->getCondition(), SelectTrueVal, SelectFalseVal); } return 0; } Instruction *InstCombiner::visitAdd(BinaryOperator &I) { bool Changed = SimplifyCommutative(I); Value *LHS = I.getOperand(0), *RHS = I.getOperand(1); if (Constant *RHSC = dyn_cast(RHS)) { // X + undef -> undef if (isa(RHS)) return ReplaceInstUsesWith(I, RHS); // X + 0 --> X if (!I.getType()->isFloatingPoint() && // -0 + +0 = +0, so it's not a noop RHSC->isNullValue()) return ReplaceInstUsesWith(I, LHS); // X + (signbit) --> X ^ signbit if (ConstantInt *CI = dyn_cast(RHSC)) { unsigned NumBits = CI->getType()->getPrimitiveSize()*8; uint64_t Val = CI->getRawValue() & (1ULL << NumBits)-1; if (Val == (1ULL << (NumBits-1))) return BinaryOperator::createXor(LHS, RHS); } if (isa(LHS)) if (Instruction *NV = FoldOpIntoPhi(I)) return NV; } // X + X --> X << 1 if (I.getType()->isInteger()) { if (Instruction *Result = AssociativeOpt(I, AddRHS(RHS))) return Result; } // -A + B --> B - A if (Value *V = dyn_castNegVal(LHS)) return BinaryOperator::createSub(RHS, V); // A + -B --> A - B if (!isa(RHS)) if (Value *V = dyn_castNegVal(RHS)) return BinaryOperator::createSub(LHS, V); ConstantInt *C2; if (Value *X = dyn_castFoldableMul(LHS, C2)) { if (X == RHS) // X*C + X --> X * (C+1) return BinaryOperator::createMul(RHS, AddOne(C2)); // X*C1 + X*C2 --> X * (C1+C2) ConstantInt *C1; if (X == dyn_castFoldableMul(RHS, C1)) return BinaryOperator::createMul(X, ConstantExpr::getAdd(C1, C2)); } // X + X*C --> X * (C+1) if (dyn_castFoldableMul(RHS, C2) == LHS) return BinaryOperator::createMul(LHS, AddOne(C2)); // (A & C1)+(B & C2) --> (A & C1)|(B & C2) iff C1&C2 == 0 if (match(RHS, m_And(m_Value(), m_ConstantInt(C2)))) if (Instruction *R = AssociativeOpt(I, AddMaskingAnd(C2))) return R; if (ConstantInt *CRHS = dyn_cast(RHS)) { Value *X; if (match(LHS, m_Not(m_Value(X)))) { // ~X + C --> (C-1) - X Constant *C= ConstantExpr::getSub(CRHS, ConstantInt::get(I.getType(), 1)); return BinaryOperator::createSub(C, X); } // (X & FF00) + xx00 -> (X+xx00) & FF00 if (LHS->hasOneUse() && match(LHS, m_And(m_Value(X), m_ConstantInt(C2)))) { Constant *Anded = ConstantExpr::getAnd(CRHS, C2); if (Anded == CRHS) { // See if all bits from the first bit set in the Add RHS up are included // in the mask. First, get the rightmost bit. uint64_t AddRHSV = CRHS->getRawValue(); // Form a mask of all bits from the lowest bit added through the top. uint64_t AddRHSHighBits = ~((AddRHSV & -AddRHSV)-1); AddRHSHighBits &= (1ULL << C2->getType()->getPrimitiveSize()*8)-1; // See if the and mask includes all of these bits. uint64_t AddRHSHighBitsAnd = AddRHSHighBits & C2->getRawValue(); if (AddRHSHighBits == AddRHSHighBitsAnd) { // Okay, the xform is safe. Insert the new add pronto. Value *NewAdd = InsertNewInstBefore(BinaryOperator::createAdd(X, CRHS, LHS->getName()), I); return BinaryOperator::createAnd(NewAdd, C2); } } } // Try to fold constant add into select arguments. if (SelectInst *SI = dyn_cast(LHS)) if (Instruction *R = FoldBinOpIntoSelect(I, SI, this)) return R; } return Changed ? &I : 0; } // isSignBit - Return true if the value represented by the constant only has the // highest order bit set. static bool isSignBit(ConstantInt *CI) { unsigned NumBits = CI->getType()->getPrimitiveSize()*8; return (CI->getRawValue() & ~(-1LL << NumBits)) == (1ULL << (NumBits-1)); } static unsigned getTypeSizeInBits(const Type *Ty) { return Ty == Type::BoolTy ? 1 : Ty->getPrimitiveSize()*8; } /// RemoveNoopCast - Strip off nonconverting casts from the value. /// static Value *RemoveNoopCast(Value *V) { if (CastInst *CI = dyn_cast(V)) { const Type *CTy = CI->getType(); const Type *OpTy = CI->getOperand(0)->getType(); if (CTy->isInteger() && OpTy->isInteger()) { if (CTy->getPrimitiveSize() == OpTy->getPrimitiveSize()) return RemoveNoopCast(CI->getOperand(0)); } else if (isa(CTy) && isa(OpTy)) return RemoveNoopCast(CI->getOperand(0)); } return V; } Instruction *InstCombiner::visitSub(BinaryOperator &I) { Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1); if (Op0 == Op1) // sub X, X -> 0 return ReplaceInstUsesWith(I, Constant::getNullValue(I.getType())); // If this is a 'B = x-(-A)', change to B = x+A... if (Value *V = dyn_castNegVal(Op1)) return BinaryOperator::createAdd(Op0, V); if (isa(Op0)) return ReplaceInstUsesWith(I, Op0); // undef - X -> undef if (isa(Op1)) return ReplaceInstUsesWith(I, Op1); // X - undef -> undef if (ConstantInt *C = dyn_cast(Op0)) { // Replace (-1 - A) with (~A)... if (C->isAllOnesValue()) return BinaryOperator::createNot(Op1); // C - ~X == X + (1+C) Value *X; if (match(Op1, m_Not(m_Value(X)))) return BinaryOperator::createAdd(X, ConstantExpr::getAdd(C, ConstantInt::get(I.getType(), 1))); // -((uint)X >> 31) -> ((int)X >> 31) // -((int)X >> 31) -> ((uint)X >> 31) if (C->isNullValue()) { Value *NoopCastedRHS = RemoveNoopCast(Op1); if (ShiftInst *SI = dyn_cast(NoopCastedRHS)) if (SI->getOpcode() == Instruction::Shr) if (ConstantUInt *CU = dyn_cast(SI->getOperand(1))) { const Type *NewTy; if (SI->getType()->isSigned()) NewTy = SI->getType()->getUnsignedVersion(); else NewTy = SI->getType()->getSignedVersion(); // Check to see if we are shifting out everything but the sign bit. if (CU->getValue() == SI->getType()->getPrimitiveSize()*8-1) { // Ok, the transformation is safe. Insert a cast of the incoming // value, then the new shift, then the new cast. Instruction *FirstCast = new CastInst(SI->getOperand(0), NewTy, SI->getOperand(0)->getName()); Value *InV = InsertNewInstBefore(FirstCast, I); Instruction *NewShift = new ShiftInst(Instruction::Shr, FirstCast, CU, SI->getName()); if (NewShift->getType() == I.getType()) return NewShift; else { InV = InsertNewInstBefore(NewShift, I); return new CastInst(NewShift, I.getType()); } } } } // Try to fold constant sub into select arguments. if (SelectInst *SI = dyn_cast(Op1)) if (Instruction *R = FoldBinOpIntoSelect(I, SI, this)) return R; if (isa(Op0)) if (Instruction *NV = FoldOpIntoPhi(I)) return NV; } if (BinaryOperator *Op1I = dyn_cast(Op1)) if (Op1I->hasOneUse()) { // Replace (x - (y - z)) with (x + (z - y)) if the (y - z) subexpression // is not used by anyone else... // if (Op1I->getOpcode() == Instruction::Sub && !Op1I->getType()->isFloatingPoint()) { // Swap the two operands of the subexpr... Value *IIOp0 = Op1I->getOperand(0), *IIOp1 = Op1I->getOperand(1); Op1I->setOperand(0, IIOp1); Op1I->setOperand(1, IIOp0); // Create the new top level add instruction... return BinaryOperator::createAdd(Op0, Op1); } // Replace (A - (A & B)) with (A & ~B) if this is the only use of (A&B)... // if (Op1I->getOpcode() == Instruction::And && (Op1I->getOperand(0) == Op0 || Op1I->getOperand(1) == Op0)) { Value *OtherOp = Op1I->getOperand(Op1I->getOperand(0) == Op0); Value *NewNot = InsertNewInstBefore(BinaryOperator::createNot(OtherOp, "B.not"), I); return BinaryOperator::createAnd(Op0, NewNot); } // -(X sdiv C) -> (X sdiv -C) if (Op1I->getOpcode() == Instruction::Div) if (ConstantSInt *CSI = dyn_cast(Op0)) if (CSI->getValue() == 0) if (Constant *DivRHS = dyn_cast(Op1I->getOperand(1))) return BinaryOperator::createDiv(Op1I->getOperand(0), ConstantExpr::getNeg(DivRHS)); // X - X*C --> X * (1-C) ConstantInt *C2; if (dyn_castFoldableMul(Op1I, C2) == Op0) { Constant *CP1 = ConstantExpr::getSub(ConstantInt::get(I.getType(), 1), C2); return BinaryOperator::createMul(Op0, CP1); } } ConstantInt *C1; if (Value *X = dyn_castFoldableMul(Op0, C1)) { if (X == Op1) { // X*C - X --> X * (C-1) Constant *CP1 = ConstantExpr::getSub(C1, ConstantInt::get(I.getType(),1)); return BinaryOperator::createMul(Op1, CP1); } ConstantInt *C2; // X*C1 - X*C2 -> X * (C1-C2) if (X == dyn_castFoldableMul(Op1, C2)) return BinaryOperator::createMul(Op1, ConstantExpr::getSub(C1, C2)); } return 0; } /// isSignBitCheck - Given an exploded setcc instruction, return true if it is /// really just returns true if the most significant (sign) bit is set. static bool isSignBitCheck(unsigned Opcode, Value *LHS, ConstantInt *RHS) { if (RHS->getType()->isSigned()) { // True if source is LHS < 0 or LHS <= -1 return Opcode == Instruction::SetLT && RHS->isNullValue() || Opcode == Instruction::SetLE && RHS->isAllOnesValue(); } else { ConstantUInt *RHSC = cast(RHS); // True if source is LHS > 127 or LHS >= 128, where the constants depend on // the size of the integer type. if (Opcode == Instruction::SetGE) return RHSC->getValue() == 1ULL<<(RHS->getType()->getPrimitiveSize()*8-1); if (Opcode == Instruction::SetGT) return RHSC->getValue() == (1ULL << (RHS->getType()->getPrimitiveSize()*8-1))-1; } return false; } Instruction *InstCombiner::visitMul(BinaryOperator &I) { bool Changed = SimplifyCommutative(I); Value *Op0 = I.getOperand(0); if (isa(I.getOperand(1))) // undef * X -> 0 return ReplaceInstUsesWith(I, Constant::getNullValue(I.getType())); // Simplify mul instructions with a constant RHS... if (Constant *Op1 = dyn_cast(I.getOperand(1))) { if (ConstantInt *CI = dyn_cast(Op1)) { // ((X << C1)*C2) == (X * (C2 << C1)) if (ShiftInst *SI = dyn_cast(Op0)) if (SI->getOpcode() == Instruction::Shl) if (Constant *ShOp = dyn_cast(SI->getOperand(1))) return BinaryOperator::createMul(SI->getOperand(0), ConstantExpr::getShl(CI, ShOp)); if (CI->isNullValue()) return ReplaceInstUsesWith(I, Op1); // X * 0 == 0 if (CI->equalsInt(1)) // X * 1 == X return ReplaceInstUsesWith(I, Op0); if (CI->isAllOnesValue()) // X * -1 == 0 - X return BinaryOperator::createNeg(Op0, I.getName()); int64_t Val = (int64_t)cast(CI)->getRawValue(); if (uint64_t C = Log2(Val)) // Replace X*(2^C) with X << C return new ShiftInst(Instruction::Shl, Op0, ConstantUInt::get(Type::UByteTy, C)); } else if (ConstantFP *Op1F = dyn_cast(Op1)) { if (Op1F->isNullValue()) return ReplaceInstUsesWith(I, Op1); // "In IEEE floating point, x*1 is not equivalent to x for nans. However, // ANSI says we can drop signals, so we can do this anyway." (from GCC) if (Op1F->getValue() == 1.0) return ReplaceInstUsesWith(I, Op0); // Eliminate 'mul double %X, 1.0' } // Try to fold constant mul into select arguments. if (SelectInst *SI = dyn_cast(Op0)) if (Instruction *R = FoldBinOpIntoSelect(I, SI, this)) return R; if (isa(Op0)) if (Instruction *NV = FoldOpIntoPhi(I)) return NV; } if (Value *Op0v = dyn_castNegVal(Op0)) // -X * -Y = X*Y if (Value *Op1v = dyn_castNegVal(I.getOperand(1))) return BinaryOperator::createMul(Op0v, Op1v); // If one of the operands of the multiply is a cast from a boolean value, then // we know the bool is either zero or one, so this is a 'masking' multiply. // See if we can simplify things based on how the boolean was originally // formed. CastInst *BoolCast = 0; if (CastInst *CI = dyn_cast(I.getOperand(0))) if (CI->getOperand(0)->getType() == Type::BoolTy) BoolCast = CI; if (!BoolCast) if (CastInst *CI = dyn_cast(I.getOperand(1))) if (CI->getOperand(0)->getType() == Type::BoolTy) BoolCast = CI; if (BoolCast) { if (SetCondInst *SCI = dyn_cast(BoolCast->getOperand(0))) { Value *SCIOp0 = SCI->getOperand(0), *SCIOp1 = SCI->getOperand(1); const Type *SCOpTy = SCIOp0->getType(); // If the setcc is true iff the sign bit of X is set, then convert this // multiply into a shift/and combination. if (isa(SCIOp1) && isSignBitCheck(SCI->getOpcode(), SCIOp0, cast(SCIOp1))) { // Shift the X value right to turn it into "all signbits". Constant *Amt = ConstantUInt::get(Type::UByteTy, SCOpTy->getPrimitiveSize()*8-1); if (SCIOp0->getType()->isUnsigned()) { const Type *NewTy = SCIOp0->getType()->getSignedVersion(); SCIOp0 = InsertNewInstBefore(new CastInst(SCIOp0, NewTy, SCIOp0->getName()), I); } Value *V = InsertNewInstBefore(new ShiftInst(Instruction::Shr, SCIOp0, Amt, BoolCast->getOperand(0)->getName()+ ".mask"), I); // If the multiply type is not the same as the source type, sign extend // or truncate to the multiply type. if (I.getType() != V->getType()) V = InsertNewInstBefore(new CastInst(V, I.getType(), V->getName()),I); Value *OtherOp = Op0 == BoolCast ? I.getOperand(1) : Op0; return BinaryOperator::createAnd(V, OtherOp); } } } return Changed ? &I : 0; } Instruction *InstCombiner::visitDiv(BinaryOperator &I) { if (isa(I.getOperand(0))) // undef / X -> 0 return ReplaceInstUsesWith(I, Constant::getNullValue(I.getType())); if (isa(I.getOperand(1))) return ReplaceInstUsesWith(I, I.getOperand(1)); // X / undef -> undef if (ConstantInt *RHS = dyn_cast(I.getOperand(1))) { // div X, 1 == X if (RHS->equalsInt(1)) return ReplaceInstUsesWith(I, I.getOperand(0)); // div X, -1 == -X if (RHS->isAllOnesValue()) return BinaryOperator::createNeg(I.getOperand(0)); if (Instruction *LHS = dyn_cast(I.getOperand(0))) if (LHS->getOpcode() == Instruction::Div) if (ConstantInt *LHSRHS = dyn_cast(LHS->getOperand(1))) { // (X / C1) / C2 -> X / (C1*C2) return BinaryOperator::createDiv(LHS->getOperand(0), ConstantExpr::getMul(RHS, LHSRHS)); } // Check to see if this is an unsigned division with an exact power of 2, // if so, convert to a right shift. if (ConstantUInt *C = dyn_cast(RHS)) if (uint64_t Val = C->getValue()) // Don't break X / 0 if (uint64_t C = Log2(Val)) return new ShiftInst(Instruction::Shr, I.getOperand(0), ConstantUInt::get(Type::UByteTy, C)); // -X/C -> X/-C if (RHS->getType()->isSigned()) if (Value *LHSNeg = dyn_castNegVal(I.getOperand(0))) return BinaryOperator::createDiv(LHSNeg, ConstantExpr::getNeg(RHS)); if (isa(I.getOperand(0)) && !RHS->isNullValue()) if (Instruction *NV = FoldOpIntoPhi(I)) return NV; } // 0 / X == 0, we don't need to preserve faults! if (ConstantInt *LHS = dyn_cast(I.getOperand(0))) if (LHS->equalsInt(0)) return ReplaceInstUsesWith(I, Constant::getNullValue(I.getType())); return 0; } Instruction *InstCombiner::visitRem(BinaryOperator &I) { if (I.getType()->isSigned()) if (Value *RHSNeg = dyn_castNegVal(I.getOperand(1))) if (!isa(RHSNeg) || cast(RHSNeg)->getValue() > 0) { // X % -Y -> X % Y AddUsesToWorkList(I); I.setOperand(1, RHSNeg); return &I; } if (isa(I.getOperand(0))) // undef % X -> 0 return ReplaceInstUsesWith(I, Constant::getNullValue(I.getType())); if (isa(I.getOperand(1))) return ReplaceInstUsesWith(I, I.getOperand(1)); // X % undef -> undef if (ConstantInt *RHS = dyn_cast(I.getOperand(1))) { if (RHS->equalsInt(1)) // X % 1 == 0 return ReplaceInstUsesWith(I, Constant::getNullValue(I.getType())); // Check to see if this is an unsigned remainder with an exact power of 2, // if so, convert to a bitwise and. if (ConstantUInt *C = dyn_cast(RHS)) if (uint64_t Val = C->getValue()) // Don't break X % 0 (divide by zero) if (!(Val & (Val-1))) // Power of 2 return BinaryOperator::createAnd(I.getOperand(0), ConstantUInt::get(I.getType(), Val-1)); if (isa(I.getOperand(0)) && !RHS->isNullValue()) if (Instruction *NV = FoldOpIntoPhi(I)) return NV; } // 0 % X == 0, we don't need to preserve faults! if (ConstantInt *LHS = dyn_cast(I.getOperand(0))) if (LHS->equalsInt(0)) return ReplaceInstUsesWith(I, Constant::getNullValue(I.getType())); return 0; } // isMaxValueMinusOne - return true if this is Max-1 static bool isMaxValueMinusOne(const ConstantInt *C) { if (const ConstantUInt *CU = dyn_cast(C)) { // Calculate -1 casted to the right type... unsigned TypeBits = C->getType()->getPrimitiveSize()*8; uint64_t Val = ~0ULL; // All ones Val >>= 64-TypeBits; // Shift out unwanted 1 bits... return CU->getValue() == Val-1; } const ConstantSInt *CS = cast(C); // Calculate 0111111111..11111 unsigned TypeBits = C->getType()->getPrimitiveSize()*8; int64_t Val = INT64_MAX; // All ones Val >>= 64-TypeBits; // Shift out unwanted 1 bits... return CS->getValue() == Val-1; } // isMinValuePlusOne - return true if this is Min+1 static bool isMinValuePlusOne(const ConstantInt *C) { if (const ConstantUInt *CU = dyn_cast(C)) return CU->getValue() == 1; const ConstantSInt *CS = cast(C); // Calculate 1111111111000000000000 unsigned TypeBits = C->getType()->getPrimitiveSize()*8; int64_t Val = -1; // All ones Val <<= TypeBits-1; // Shift over to the right spot return CS->getValue() == Val+1; } // isOneBitSet - Return true if there is exactly one bit set in the specified // constant. static bool isOneBitSet(const ConstantInt *CI) { uint64_t V = CI->getRawValue(); return V && (V & (V-1)) == 0; } #if 0 // Currently unused // isLowOnes - Return true if the constant is of the form 0+1+. static bool isLowOnes(const ConstantInt *CI) { uint64_t V = CI->getRawValue(); // There won't be bits set in parts that the type doesn't contain. V &= ConstantInt::getAllOnesValue(CI->getType())->getRawValue(); uint64_t U = V+1; // If it is low ones, this should be a power of two. return U && V && (U & V) == 0; } #endif // isHighOnes - Return true if the constant is of the form 1+0+. // This is the same as lowones(~X). static bool isHighOnes(const ConstantInt *CI) { uint64_t V = ~CI->getRawValue(); // There won't be bits set in parts that the type doesn't contain. V &= ConstantInt::getAllOnesValue(CI->getType())->getRawValue(); uint64_t U = V+1; // If it is low ones, this should be a power of two. return U && V && (U & V) == 0; } /// getSetCondCode - Encode a setcc opcode into a three bit mask. These bits /// are carefully arranged to allow folding of expressions such as: /// /// (A < B) | (A > B) --> (A != B) /// /// Bit value '4' represents that the comparison is true if A > B, bit value '2' /// represents that the comparison is true if A == B, and bit value '1' is true /// if A < B. /// static unsigned getSetCondCode(const SetCondInst *SCI) { switch (SCI->getOpcode()) { // False -> 0 case Instruction::SetGT: return 1; case Instruction::SetEQ: return 2; case Instruction::SetGE: return 3; case Instruction::SetLT: return 4; case Instruction::SetNE: return 5; case Instruction::SetLE: return 6; // True -> 7 default: assert(0 && "Invalid SetCC opcode!"); return 0; } } /// getSetCCValue - This is the complement of getSetCondCode, which turns an /// opcode and two operands into either a constant true or false, or a brand new /// SetCC instruction. static Value *getSetCCValue(unsigned Opcode, Value *LHS, Value *RHS) { switch (Opcode) { case 0: return ConstantBool::False; case 1: return new SetCondInst(Instruction::SetGT, LHS, RHS); case 2: return new SetCondInst(Instruction::SetEQ, LHS, RHS); case 3: return new SetCondInst(Instruction::SetGE, LHS, RHS); case 4: return new SetCondInst(Instruction::SetLT, LHS, RHS); case 5: return new SetCondInst(Instruction::SetNE, LHS, RHS); case 6: return new SetCondInst(Instruction::SetLE, LHS, RHS); case 7: return ConstantBool::True; default: assert(0 && "Illegal SetCCCode!"); return 0; } } // FoldSetCCLogical - Implements (setcc1 A, B) & (setcc2 A, B) --> (setcc3 A, B) struct FoldSetCCLogical { InstCombiner &IC; Value *LHS, *RHS; FoldSetCCLogical(InstCombiner &ic, SetCondInst *SCI) : IC(ic), LHS(SCI->getOperand(0)), RHS(SCI->getOperand(1)) {} bool shouldApply(Value *V) const { if (SetCondInst *SCI = dyn_cast(V)) return (SCI->getOperand(0) == LHS && SCI->getOperand(1) == RHS || SCI->getOperand(0) == RHS && SCI->getOperand(1) == LHS); return false; } Instruction *apply(BinaryOperator &Log) const { SetCondInst *SCI = cast(Log.getOperand(0)); if (SCI->getOperand(0) != LHS) { assert(SCI->getOperand(1) == LHS); SCI->swapOperands(); // Swap the LHS and RHS of the SetCC } unsigned LHSCode = getSetCondCode(SCI); unsigned RHSCode = getSetCondCode(cast(Log.getOperand(1))); unsigned Code; switch (Log.getOpcode()) { case Instruction::And: Code = LHSCode & RHSCode; break; case Instruction::Or: Code = LHSCode | RHSCode; break; case Instruction::Xor: Code = LHSCode ^ RHSCode; break; default: assert(0 && "Illegal logical opcode!"); return 0; } Value *RV = getSetCCValue(Code, LHS, RHS); if (Instruction *I = dyn_cast(RV)) return I; // Otherwise, it's a constant boolean value... return IC.ReplaceInstUsesWith(Log, RV); } }; // OptAndOp - This handles expressions of the form ((val OP C1) & C2). Where // the Op parameter is 'OP', OpRHS is 'C1', and AndRHS is 'C2'. Op is // guaranteed to be either a shift instruction or a binary operator. Instruction *InstCombiner::OptAndOp(Instruction *Op, ConstantIntegral *OpRHS, ConstantIntegral *AndRHS, BinaryOperator &TheAnd) { Value *X = Op->getOperand(0); Constant *Together = 0; if (!isa(Op)) Together = ConstantExpr::getAnd(AndRHS, OpRHS); switch (Op->getOpcode()) { case Instruction::Xor: if (Together->isNullValue()) { // (X ^ C1) & C2 --> (X & C2) iff (C1&C2) == 0 return BinaryOperator::createAnd(X, AndRHS); } else if (Op->hasOneUse()) { // (X ^ C1) & C2 --> (X & C2) ^ (C1&C2) std::string OpName = Op->getName(); Op->setName(""); Instruction *And = BinaryOperator::createAnd(X, AndRHS, OpName); InsertNewInstBefore(And, TheAnd); return BinaryOperator::createXor(And, Together); } break; case Instruction::Or: // (X | C1) & C2 --> X & C2 iff C1 & C1 == 0 if (Together->isNullValue()) return BinaryOperator::createAnd(X, AndRHS); else { if (Together == AndRHS) // (X | C) & C --> C return ReplaceInstUsesWith(TheAnd, AndRHS); if (Op->hasOneUse() && Together != OpRHS) { // (X | C1) & C2 --> (X | (C1&C2)) & C2 std::string Op0Name = Op->getName(); Op->setName(""); Instruction *Or = BinaryOperator::createOr(X, Together, Op0Name); InsertNewInstBefore(Or, TheAnd); return BinaryOperator::createAnd(Or, AndRHS); } } break; case Instruction::Add: if (Op->hasOneUse()) { // Adding a one to a single bit bit-field should be turned into an XOR // of the bit. First thing to check is to see if this AND is with a // single bit constant. uint64_t AndRHSV = cast(AndRHS)->getRawValue(); // Clear bits that are not part of the constant. AndRHSV &= (1ULL << AndRHS->getType()->getPrimitiveSize()*8)-1; // If there is only one bit set... if (isOneBitSet(cast(AndRHS))) { // Ok, at this point, we know that we are masking the result of the // ADD down to exactly one bit. If the constant we are adding has // no bits set below this bit, then we can eliminate the ADD. uint64_t AddRHS = cast(OpRHS)->getRawValue(); // Check to see if any bits below the one bit set in AndRHSV are set. if ((AddRHS & (AndRHSV-1)) == 0) { // If not, the only thing that can effect the output of the AND is // the bit specified by AndRHSV. If that bit is set, the effect of // the XOR is to toggle the bit. If it is clear, then the ADD has // no effect. if ((AddRHS & AndRHSV) == 0) { // Bit is not set, noop TheAnd.setOperand(0, X); return &TheAnd; } else { std::string Name = Op->getName(); Op->setName(""); // Pull the XOR out of the AND. Instruction *NewAnd = BinaryOperator::createAnd(X, AndRHS, Name); InsertNewInstBefore(NewAnd, TheAnd); return BinaryOperator::createXor(NewAnd, AndRHS); } } } } break; case Instruction::Shl: { // We know that the AND will not produce any of the bits shifted in, so if // the anded constant includes them, clear them now! // Constant *AllOne = ConstantIntegral::getAllOnesValue(AndRHS->getType()); Constant *ShlMask = ConstantExpr::getShl(AllOne, OpRHS); Constant *CI = ConstantExpr::getAnd(AndRHS, ShlMask); if (CI == ShlMask) { // Masking out bits that the shift already masks return ReplaceInstUsesWith(TheAnd, Op); // No need for the and. } else if (CI != AndRHS) { // Reducing bits set in and. TheAnd.setOperand(1, CI); return &TheAnd; } break; } case Instruction::Shr: // We know that the AND will not produce any of the bits shifted in, so if // the anded constant includes them, clear them now! This only applies to // unsigned shifts, because a signed shr may bring in set bits! // if (AndRHS->getType()->isUnsigned()) { Constant *AllOne = ConstantIntegral::getAllOnesValue(AndRHS->getType()); Constant *ShrMask = ConstantExpr::getShr(AllOne, OpRHS); Constant *CI = ConstantExpr::getAnd(AndRHS, ShrMask); if (CI == ShrMask) { // Masking out bits that the shift already masks. return ReplaceInstUsesWith(TheAnd, Op); } else if (CI != AndRHS) { TheAnd.setOperand(1, CI); // Reduce bits set in and cst. return &TheAnd; } } else { // Signed shr. // See if this is shifting in some sign extension, then masking it out // with an and. if (Op->hasOneUse()) { Constant *AllOne = ConstantIntegral::getAllOnesValue(AndRHS->getType()); Constant *ShrMask = ConstantExpr::getUShr(AllOne, OpRHS); Constant *CI = ConstantExpr::getAnd(AndRHS, ShrMask); if (CI == AndRHS) { // Masking out bits shifted in. // Make the argument unsigned. Value *ShVal = Op->getOperand(0); ShVal = InsertCastBefore(ShVal, ShVal->getType()->getUnsignedVersion(), TheAnd); ShVal = InsertNewInstBefore(new ShiftInst(Instruction::Shr, ShVal, OpRHS, Op->getName()), TheAnd); Value *AndRHS2 = ConstantExpr::getCast(AndRHS, ShVal->getType()); ShVal = InsertNewInstBefore(BinaryOperator::createAnd(ShVal, AndRHS2, TheAnd.getName()), TheAnd); return new CastInst(ShVal, Op->getType()); } } } break; } return 0; } /// InsertRangeTest - Emit a computation of: (V >= Lo && V < Hi) if Inside is /// true, otherwise (V < Lo || V >= Hi). In pratice, we emit the more efficient /// (V-Lo) (ConstantExpr::getSetLE(Lo, Hi))->getValue() && "Lo is not <= Hi in range emission code!"); if (Inside) { if (Lo == Hi) // Trivially false. return new SetCondInst(Instruction::SetNE, V, V); if (cast(Lo)->isMinValue()) return new SetCondInst(Instruction::SetLT, V, Hi); Constant *AddCST = ConstantExpr::getNeg(Lo); Instruction *Add = BinaryOperator::createAdd(V, AddCST,V->getName()+".off"); InsertNewInstBefore(Add, IB); // Convert to unsigned for the comparison. const Type *UnsType = Add->getType()->getUnsignedVersion(); Value *OffsetVal = InsertCastBefore(Add, UnsType, IB); AddCST = ConstantExpr::getAdd(AddCST, Hi); AddCST = ConstantExpr::getCast(AddCST, UnsType); return new SetCondInst(Instruction::SetLT, OffsetVal, AddCST); } if (Lo == Hi) // Trivially true. return new SetCondInst(Instruction::SetEQ, V, V); Hi = SubOne(cast(Hi)); if (cast(Lo)->isMinValue()) // V < 0 || V >= Hi ->'V > Hi-1' return new SetCondInst(Instruction::SetGT, V, Hi); // Emit X-Lo > Hi-Lo-1 Constant *AddCST = ConstantExpr::getNeg(Lo); Instruction *Add = BinaryOperator::createAdd(V, AddCST, V->getName()+".off"); InsertNewInstBefore(Add, IB); // Convert to unsigned for the comparison. const Type *UnsType = Add->getType()->getUnsignedVersion(); Value *OffsetVal = InsertCastBefore(Add, UnsType, IB); AddCST = ConstantExpr::getAdd(AddCST, Hi); AddCST = ConstantExpr::getCast(AddCST, UnsType); return new SetCondInst(Instruction::SetGT, OffsetVal, AddCST); } Instruction *InstCombiner::visitAnd(BinaryOperator &I) { bool Changed = SimplifyCommutative(I); Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1); if (isa(Op1)) // X & undef -> 0 return ReplaceInstUsesWith(I, Constant::getNullValue(I.getType())); // and X, X = X and X, 0 == 0 if (Op0 == Op1 || Op1 == Constant::getNullValue(I.getType())) return ReplaceInstUsesWith(I, Op1); // and X, -1 == X if (ConstantIntegral *RHS = dyn_cast(Op1)) { if (RHS->isAllOnesValue()) return ReplaceInstUsesWith(I, Op0); // Optimize a variety of ((val OP C1) & C2) combinations... if (isa(Op0) || isa(Op0)) { Instruction *Op0I = cast(Op0); Value *X = Op0I->getOperand(0); if (ConstantInt *Op0CI = dyn_cast(Op0I->getOperand(1))) if (Instruction *Res = OptAndOp(Op0I, Op0CI, RHS, I)) return Res; } // Try to fold constant and into select arguments. if (SelectInst *SI = dyn_cast(Op0)) if (Instruction *R = FoldBinOpIntoSelect(I, SI, this)) return R; if (isa(Op0)) if (Instruction *NV = FoldOpIntoPhi(I)) return NV; } Value *Op0NotVal = dyn_castNotVal(Op0); Value *Op1NotVal = dyn_castNotVal(Op1); if (Op0NotVal == Op1 || Op1NotVal == Op0) // A & ~A == ~A & A == 0 return ReplaceInstUsesWith(I, Constant::getNullValue(I.getType())); // (~A & ~B) == (~(A | B)) - De Morgan's Law if (Op0NotVal && Op1NotVal && isOnlyUse(Op0) && isOnlyUse(Op1)) { Instruction *Or = BinaryOperator::createOr(Op0NotVal, Op1NotVal, I.getName()+".demorgan"); InsertNewInstBefore(Or, I); return BinaryOperator::createNot(Or); } if (SetCondInst *RHS = dyn_cast(Op1)) { // (setcc1 A, B) & (setcc2 A, B) --> (setcc3 A, B) if (Instruction *R = AssociativeOpt(I, FoldSetCCLogical(*this, RHS))) return R; Value *LHSVal, *RHSVal; ConstantInt *LHSCst, *RHSCst; Instruction::BinaryOps LHSCC, RHSCC; if (match(Op0, m_SetCond(LHSCC, m_Value(LHSVal), m_ConstantInt(LHSCst)))) if (match(RHS, m_SetCond(RHSCC, m_Value(RHSVal), m_ConstantInt(RHSCst)))) if (LHSVal == RHSVal && // Found (X setcc C1) & (X setcc C2) // Set[GL]E X, CST is folded to Set[GL]T elsewhere. LHSCC != Instruction::SetGE && LHSCC != Instruction::SetLE && RHSCC != Instruction::SetGE && RHSCC != Instruction::SetLE) { // Ensure that the larger constant is on the RHS. Constant *Cmp = ConstantExpr::getSetGT(LHSCst, RHSCst); SetCondInst *LHS = cast(Op0); if (cast(Cmp)->getValue()) { std::swap(LHS, RHS); std::swap(LHSCst, RHSCst); std::swap(LHSCC, RHSCC); } // At this point, we know we have have two setcc instructions // comparing a value against two constants and and'ing the result // together. Because of the above check, we know that we only have // SetEQ, SetNE, SetLT, and SetGT here. We also know (from the // FoldSetCCLogical check above), that the two constants are not // equal. assert(LHSCst != RHSCst && "Compares not folded above?"); switch (LHSCC) { default: assert(0 && "Unknown integer condition code!"); case Instruction::SetEQ: switch (RHSCC) { default: assert(0 && "Unknown integer condition code!"); case Instruction::SetEQ: // (X == 13 & X == 15) -> false case Instruction::SetGT: // (X == 13 & X > 15) -> false return ReplaceInstUsesWith(I, ConstantBool::False); case Instruction::SetNE: // (X == 13 & X != 15) -> X == 13 case Instruction::SetLT: // (X == 13 & X < 15) -> X == 13 return ReplaceInstUsesWith(I, LHS); } case Instruction::SetNE: switch (RHSCC) { default: assert(0 && "Unknown integer condition code!"); case Instruction::SetLT: if (LHSCst == SubOne(RHSCst)) // (X != 13 & X < 14) -> X < 13 return new SetCondInst(Instruction::SetLT, LHSVal, LHSCst); break; // (X != 13 & X < 15) -> no change case Instruction::SetEQ: // (X != 13 & X == 15) -> X == 15 case Instruction::SetGT: // (X != 13 & X > 15) -> X > 15 return ReplaceInstUsesWith(I, RHS); case Instruction::SetNE: if (LHSCst == SubOne(RHSCst)) {// (X != 13 & X != 14) -> X-13 >u 1 Constant *AddCST = ConstantExpr::getNeg(LHSCst); Instruction *Add = BinaryOperator::createAdd(LHSVal, AddCST, LHSVal->getName()+".off"); InsertNewInstBefore(Add, I); const Type *UnsType = Add->getType()->getUnsignedVersion(); Value *OffsetVal = InsertCastBefore(Add, UnsType, I); AddCST = ConstantExpr::getSub(RHSCst, LHSCst); AddCST = ConstantExpr::getCast(AddCST, UnsType); return new SetCondInst(Instruction::SetGT, OffsetVal, AddCST); } break; // (X != 13 & X != 15) -> no change } break; case Instruction::SetLT: switch (RHSCC) { default: assert(0 && "Unknown integer condition code!"); case Instruction::SetEQ: // (X < 13 & X == 15) -> false case Instruction::SetGT: // (X < 13 & X > 15) -> false return ReplaceInstUsesWith(I, ConstantBool::False); case Instruction::SetNE: // (X < 13 & X != 15) -> X < 13 case Instruction::SetLT: // (X < 13 & X < 15) -> X < 13 return ReplaceInstUsesWith(I, LHS); } case Instruction::SetGT: switch (RHSCC) { default: assert(0 && "Unknown integer condition code!"); case Instruction::SetEQ: // (X > 13 & X == 15) -> X > 13 return ReplaceInstUsesWith(I, LHS); case Instruction::SetGT: // (X > 13 & X > 15) -> X > 15 return ReplaceInstUsesWith(I, RHS); case Instruction::SetNE: if (RHSCst == AddOne(LHSCst)) // (X > 13 & X != 14) -> X > 14 return new SetCondInst(Instruction::SetGT, LHSVal, RHSCst); break; // (X > 13 & X != 15) -> no change case Instruction::SetLT: // (X > 13 & X < 15) -> (X-14) (Op1)) return ReplaceInstUsesWith(I, // X | undef -> -1 ConstantIntegral::getAllOnesValue(I.getType())); // or X, X = X or X, 0 == X if (Op0 == Op1 || Op1 == Constant::getNullValue(I.getType())) return ReplaceInstUsesWith(I, Op0); // or X, -1 == -1 if (ConstantIntegral *RHS = dyn_cast(Op1)) { if (RHS->isAllOnesValue()) return ReplaceInstUsesWith(I, Op1); ConstantInt *C1; Value *X; // (X & C1) | C2 --> (X | C2) & (C1|C2) if (match(Op0, m_And(m_Value(X), m_ConstantInt(C1))) && isOnlyUse(Op0)) { std::string Op0Name = Op0->getName(); Op0->setName(""); Instruction *Or = BinaryOperator::createOr(X, RHS, Op0Name); InsertNewInstBefore(Or, I); return BinaryOperator::createAnd(Or, ConstantExpr::getOr(RHS, C1)); } // (X ^ C1) | C2 --> (X | C2) ^ (C1&~C2) if (match(Op0, m_Xor(m_Value(X), m_ConstantInt(C1))) && isOnlyUse(Op0)) { std::string Op0Name = Op0->getName(); Op0->setName(""); Instruction *Or = BinaryOperator::createOr(X, RHS, Op0Name); InsertNewInstBefore(Or, I); return BinaryOperator::createXor(Or, ConstantExpr::getAnd(C1, ConstantExpr::getNot(RHS))); } // Try to fold constant and into select arguments. if (SelectInst *SI = dyn_cast(Op0)) if (Instruction *R = FoldBinOpIntoSelect(I, SI, this)) return R; if (isa(Op0)) if (Instruction *NV = FoldOpIntoPhi(I)) return NV; } // (A & C1)|(A & C2) == A & (C1|C2) Value *A, *B; ConstantInt *C1, *C2; if (match(Op0, m_And(m_Value(A), m_ConstantInt(C1))) && match(Op1, m_And(m_Value(B), m_ConstantInt(C2))) && A == B) return BinaryOperator::createAnd(A, ConstantExpr::getOr(C1, C2)); if (match(Op0, m_Not(m_Value(A)))) { // ~A | Op1 if (A == Op1) // ~A | A == -1 return ReplaceInstUsesWith(I, ConstantIntegral::getAllOnesValue(I.getType())); } else { A = 0; } if (match(Op1, m_Not(m_Value(B)))) { // Op0 | ~B if (Op0 == B) return ReplaceInstUsesWith(I, ConstantIntegral::getAllOnesValue(I.getType())); // (~A | ~B) == (~(A & B)) - De Morgan's Law if (A && isOnlyUse(Op0) && isOnlyUse(Op1)) { Value *And = InsertNewInstBefore(BinaryOperator::createAnd(A, B, I.getName()+".demorgan"), I); return BinaryOperator::createNot(And); } } // (setcc1 A, B) | (setcc2 A, B) --> (setcc3 A, B) if (SetCondInst *RHS = dyn_cast(I.getOperand(1))) { if (Instruction *R = AssociativeOpt(I, FoldSetCCLogical(*this, RHS))) return R; Value *LHSVal, *RHSVal; ConstantInt *LHSCst, *RHSCst; Instruction::BinaryOps LHSCC, RHSCC; if (match(Op0, m_SetCond(LHSCC, m_Value(LHSVal), m_ConstantInt(LHSCst)))) if (match(RHS, m_SetCond(RHSCC, m_Value(RHSVal), m_ConstantInt(RHSCst)))) if (LHSVal == RHSVal && // Found (X setcc C1) | (X setcc C2) // Set[GL]E X, CST is folded to Set[GL]T elsewhere. LHSCC != Instruction::SetGE && LHSCC != Instruction::SetLE && RHSCC != Instruction::SetGE && RHSCC != Instruction::SetLE) { // Ensure that the larger constant is on the RHS. Constant *Cmp = ConstantExpr::getSetGT(LHSCst, RHSCst); SetCondInst *LHS = cast(Op0); if (cast(Cmp)->getValue()) { std::swap(LHS, RHS); std::swap(LHSCst, RHSCst); std::swap(LHSCC, RHSCC); } // At this point, we know we have have two setcc instructions // comparing a value against two constants and or'ing the result // together. Because of the above check, we know that we only have // SetEQ, SetNE, SetLT, and SetGT here. We also know (from the // FoldSetCCLogical check above), that the two constants are not // equal. assert(LHSCst != RHSCst && "Compares not folded above?"); switch (LHSCC) { default: assert(0 && "Unknown integer condition code!"); case Instruction::SetEQ: switch (RHSCC) { default: assert(0 && "Unknown integer condition code!"); case Instruction::SetEQ: if (LHSCst == SubOne(RHSCst)) {// (X == 13 | X == 14) -> X-13 getName()+".off"); InsertNewInstBefore(Add, I); const Type *UnsType = Add->getType()->getUnsignedVersion(); Value *OffsetVal = InsertCastBefore(Add, UnsType, I); AddCST = ConstantExpr::getSub(AddOne(RHSCst), LHSCst); AddCST = ConstantExpr::getCast(AddCST, UnsType); return new SetCondInst(Instruction::SetLT, OffsetVal, AddCST); } break; // (X == 13 | X == 15) -> no change case Instruction::SetGT: if (LHSCst == SubOne(RHSCst)) // (X == 13 | X > 14) -> X > 13 return new SetCondInst(Instruction::SetGT, LHSVal, LHSCst); break; // (X == 13 | X > 15) -> no change case Instruction::SetNE: // (X == 13 | X != 15) -> X != 15 case Instruction::SetLT: // (X == 13 | X < 15) -> X < 15 return ReplaceInstUsesWith(I, RHS); } break; case Instruction::SetNE: switch (RHSCC) { default: assert(0 && "Unknown integer condition code!"); case Instruction::SetLT: // (X != 13 | X < 15) -> X < 15 return ReplaceInstUsesWith(I, RHS); case Instruction::SetEQ: // (X != 13 | X == 15) -> X != 13 case Instruction::SetGT: // (X != 13 | X > 15) -> X != 13 return ReplaceInstUsesWith(I, LHS); case Instruction::SetNE: // (X != 13 | X != 15) -> true return ReplaceInstUsesWith(I, ConstantBool::True); } break; case Instruction::SetLT: switch (RHSCC) { default: assert(0 && "Unknown integer condition code!"); case Instruction::SetEQ: // (X < 13 | X == 14) -> no change break; case Instruction::SetGT: // (X < 13 | X > 15) -> (X-13) > 2 return InsertRangeTest(LHSVal, LHSCst, AddOne(RHSCst), false, I); case Instruction::SetNE: // (X < 13 | X != 15) -> X != 15 case Instruction::SetLT: // (X < 13 | X < 15) -> X < 15 return ReplaceInstUsesWith(I, RHS); } break; case Instruction::SetGT: switch (RHSCC) { default: assert(0 && "Unknown integer condition code!"); case Instruction::SetEQ: // (X > 13 | X == 15) -> X > 13 case Instruction::SetGT: // (X > 13 | X > 15) -> X > 13 return ReplaceInstUsesWith(I, LHS); case Instruction::SetNE: // (X > 13 | X != 15) -> true case Instruction::SetLT: // (X > 13 | X < 15) -> true return ReplaceInstUsesWith(I, ConstantBool::True); } } } } return Changed ? &I : 0; } // XorSelf - Implements: X ^ X --> 0 struct XorSelf { Value *RHS; XorSelf(Value *rhs) : RHS(rhs) {} bool shouldApply(Value *LHS) const { return LHS == RHS; } Instruction *apply(BinaryOperator &Xor) const { return &Xor; } }; Instruction *InstCombiner::visitXor(BinaryOperator &I) { bool Changed = SimplifyCommutative(I); Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1); if (isa(Op1)) return ReplaceInstUsesWith(I, Op1); // X ^ undef -> undef // xor X, X = 0, even if X is nested in a sequence of Xor's. if (Instruction *Result = AssociativeOpt(I, XorSelf(Op1))) { assert(Result == &I && "AssociativeOpt didn't work?"); return ReplaceInstUsesWith(I, Constant::getNullValue(I.getType())); } if (ConstantIntegral *RHS = dyn_cast(Op1)) { // xor X, 0 == X if (RHS->isNullValue()) return ReplaceInstUsesWith(I, Op0); if (BinaryOperator *Op0I = dyn_cast(Op0)) { // xor (setcc A, B), true = not (setcc A, B) = setncc A, B if (SetCondInst *SCI = dyn_cast(Op0I)) if (RHS == ConstantBool::True && SCI->hasOneUse()) return new SetCondInst(SCI->getInverseCondition(), SCI->getOperand(0), SCI->getOperand(1)); // ~(c-X) == X-c-1 == X+(-c-1) if (Op0I->getOpcode() == Instruction::Sub && RHS->isAllOnesValue()) if (Constant *Op0I0C = dyn_cast(Op0I->getOperand(0))) { Constant *NegOp0I0C = ConstantExpr::getNeg(Op0I0C); Constant *ConstantRHS = ConstantExpr::getSub(NegOp0I0C, ConstantInt::get(I.getType(), 1)); return BinaryOperator::createAdd(Op0I->getOperand(1), ConstantRHS); } // ~(~X & Y) --> (X | ~Y) if (Op0I->getOpcode() == Instruction::And && RHS->isAllOnesValue()) { if (dyn_castNotVal(Op0I->getOperand(1))) Op0I->swapOperands(); if (Value *Op0NotVal = dyn_castNotVal(Op0I->getOperand(0))) { Instruction *NotY = BinaryOperator::createNot(Op0I->getOperand(1), Op0I->getOperand(1)->getName()+".not"); InsertNewInstBefore(NotY, I); return BinaryOperator::createOr(Op0NotVal, NotY); } } if (ConstantInt *Op0CI = dyn_cast(Op0I->getOperand(1))) switch (Op0I->getOpcode()) { case Instruction::Add: // ~(X-c) --> (-c-1)-X if (RHS->isAllOnesValue()) { Constant *NegOp0CI = ConstantExpr::getNeg(Op0CI); return BinaryOperator::createSub( ConstantExpr::getSub(NegOp0CI, ConstantInt::get(I.getType(), 1)), Op0I->getOperand(0)); } break; case Instruction::And: // (X & C1) ^ C2 --> (X & C1) | C2 iff (C1&C2) == 0 if (ConstantExpr::getAnd(RHS, Op0CI)->isNullValue()) return BinaryOperator::createOr(Op0, RHS); break; case Instruction::Or: // (X | C1) ^ C2 --> (X | C1) & ~C2 iff (C1&C2) == C2 if (ConstantExpr::getAnd(RHS, Op0CI) == RHS) return BinaryOperator::createAnd(Op0, ConstantExpr::getNot(RHS)); break; default: break; } } // Try to fold constant and into select arguments. if (SelectInst *SI = dyn_cast(Op0)) if (Instruction *R = FoldBinOpIntoSelect(I, SI, this)) return R; if (isa(Op0)) if (Instruction *NV = FoldOpIntoPhi(I)) return NV; } if (Value *X = dyn_castNotVal(Op0)) // ~A ^ A == -1 if (X == Op1) return ReplaceInstUsesWith(I, ConstantIntegral::getAllOnesValue(I.getType())); if (Value *X = dyn_castNotVal(Op1)) // A ^ ~A == -1 if (X == Op0) return ReplaceInstUsesWith(I, ConstantIntegral::getAllOnesValue(I.getType())); if (Instruction *Op1I = dyn_cast(Op1)) if (Op1I->getOpcode() == Instruction::Or) { if (Op1I->getOperand(0) == Op0) { // B^(B|A) == (A|B)^B cast(Op1I)->swapOperands(); I.swapOperands(); std::swap(Op0, Op1); } else if (Op1I->getOperand(1) == Op0) { // B^(A|B) == (A|B)^B I.swapOperands(); std::swap(Op0, Op1); } } else if (Op1I->getOpcode() == Instruction::Xor) { if (Op0 == Op1I->getOperand(0)) // A^(A^B) == B return ReplaceInstUsesWith(I, Op1I->getOperand(1)); else if (Op0 == Op1I->getOperand(1)) // A^(B^A) == B return ReplaceInstUsesWith(I, Op1I->getOperand(0)); } if (Instruction *Op0I = dyn_cast(Op0)) if (Op0I->getOpcode() == Instruction::Or && Op0I->hasOneUse()) { if (Op0I->getOperand(0) == Op1) // (B|A)^B == (A|B)^B cast(Op0I)->swapOperands(); if (Op0I->getOperand(1) == Op1) { // (A|B)^B == A & ~B Value *NotB = InsertNewInstBefore(BinaryOperator::createNot(Op1, Op1->getName()+".not"), I); return BinaryOperator::createAnd(Op0I->getOperand(0), NotB); } } else if (Op0I->getOpcode() == Instruction::Xor) { if (Op1 == Op0I->getOperand(0)) // (A^B)^A == B return ReplaceInstUsesWith(I, Op0I->getOperand(1)); else if (Op1 == Op0I->getOperand(1)) // (B^A)^A == B return ReplaceInstUsesWith(I, Op0I->getOperand(0)); } // (A & C1)^(B & C2) -> (A & C1)|(B & C2) iff C1&C2 == 0 Value *A, *B; ConstantInt *C1, *C2; if (match(Op0, m_And(m_Value(A), m_ConstantInt(C1))) && match(Op1, m_And(m_Value(B), m_ConstantInt(C2))) && ConstantExpr::getAnd(C1, C2)->isNullValue()) return BinaryOperator::createOr(Op0, Op1); // (setcc1 A, B) ^ (setcc2 A, B) --> (setcc3 A, B) if (SetCondInst *RHS = dyn_cast(I.getOperand(1))) if (Instruction *R = AssociativeOpt(I, FoldSetCCLogical(*this, RHS))) return R; return Changed ? &I : 0; } /// MulWithOverflow - Compute Result = In1*In2, returning true if the result /// overflowed for this type. static bool MulWithOverflow(ConstantInt *&Result, ConstantInt *In1, ConstantInt *In2) { Result = cast(ConstantExpr::getMul(In1, In2)); return !In2->isNullValue() && ConstantExpr::getDiv(Result, In2) != In1; } static bool isPositive(ConstantInt *C) { return cast(C)->getValue() >= 0; } /// AddWithOverflow - Compute Result = In1+In2, returning true if the result /// overflowed for this type. static bool AddWithOverflow(ConstantInt *&Result, ConstantInt *In1, ConstantInt *In2) { Result = cast(ConstantExpr::getAdd(In1, In2)); if (In1->getType()->isUnsigned()) return cast(Result)->getValue() < cast(In1)->getValue(); if (isPositive(In1) != isPositive(In2)) return false; if (isPositive(In1)) return cast(Result)->getValue() < cast(In1)->getValue(); return cast(Result)->getValue() > cast(In1)->getValue(); } Instruction *InstCombiner::visitSetCondInst(BinaryOperator &I) { bool Changed = SimplifyCommutative(I); Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1); const Type *Ty = Op0->getType(); // setcc X, X if (Op0 == Op1) return ReplaceInstUsesWith(I, ConstantBool::get(isTrueWhenEqual(I))); if (isa(Op1)) // X setcc undef -> undef return ReplaceInstUsesWith(I, UndefValue::get(Type::BoolTy)); // setcc , - Global/Stack value // addresses never equal each other! We already know that Op0 != Op1. if ((isa(Op0) || isa(Op0) || isa(Op0)) && (isa(Op1) || isa(Op1) || isa(Op1))) return ReplaceInstUsesWith(I, ConstantBool::get(!isTrueWhenEqual(I))); // setcc's with boolean values can always be turned into bitwise operations if (Ty == Type::BoolTy) { switch (I.getOpcode()) { default: assert(0 && "Invalid setcc instruction!"); case Instruction::SetEQ: { // seteq bool %A, %B -> ~(A^B) Instruction *Xor = BinaryOperator::createXor(Op0, Op1, I.getName()+"tmp"); InsertNewInstBefore(Xor, I); return BinaryOperator::createNot(Xor); } case Instruction::SetNE: return BinaryOperator::createXor(Op0, Op1); case Instruction::SetGT: std::swap(Op0, Op1); // Change setgt -> setlt // FALL THROUGH case Instruction::SetLT: { // setlt bool A, B -> ~X & Y Instruction *Not = BinaryOperator::createNot(Op0, I.getName()+"tmp"); InsertNewInstBefore(Not, I); return BinaryOperator::createAnd(Not, Op1); } case Instruction::SetGE: std::swap(Op0, Op1); // Change setge -> setle // FALL THROUGH case Instruction::SetLE: { // setle bool %A, %B -> ~A | B Instruction *Not = BinaryOperator::createNot(Op0, I.getName()+"tmp"); InsertNewInstBefore(Not, I); return BinaryOperator::createOr(Not, Op1); } } } // See if we are doing a comparison between a constant and an instruction that // can be folded into the comparison. if (ConstantInt *CI = dyn_cast(Op1)) { // Check to see if we are comparing against the minimum or maximum value... if (CI->isMinValue()) { if (I.getOpcode() == Instruction::SetLT) // A < MIN -> FALSE return ReplaceInstUsesWith(I, ConstantBool::False); if (I.getOpcode() == Instruction::SetGE) // A >= MIN -> TRUE return ReplaceInstUsesWith(I, ConstantBool::True); if (I.getOpcode() == Instruction::SetLE) // A <= MIN -> A == MIN return BinaryOperator::createSetEQ(Op0, Op1); if (I.getOpcode() == Instruction::SetGT) // A > MIN -> A != MIN return BinaryOperator::createSetNE(Op0, Op1); } else if (CI->isMaxValue()) { if (I.getOpcode() == Instruction::SetGT) // A > MAX -> FALSE return ReplaceInstUsesWith(I, ConstantBool::False); if (I.getOpcode() == Instruction::SetLE) // A <= MAX -> TRUE return ReplaceInstUsesWith(I, ConstantBool::True); if (I.getOpcode() == Instruction::SetGE) // A >= MAX -> A == MAX return BinaryOperator::createSetEQ(Op0, Op1); if (I.getOpcode() == Instruction::SetLT) // A < MAX -> A != MAX return BinaryOperator::createSetNE(Op0, Op1); // Comparing against a value really close to min or max? } else if (isMinValuePlusOne(CI)) { if (I.getOpcode() == Instruction::SetLT) // A < MIN+1 -> A == MIN return BinaryOperator::createSetEQ(Op0, SubOne(CI)); if (I.getOpcode() == Instruction::SetGE) // A >= MIN-1 -> A != MIN return BinaryOperator::createSetNE(Op0, SubOne(CI)); } else if (isMaxValueMinusOne(CI)) { if (I.getOpcode() == Instruction::SetGT) // A > MAX-1 -> A == MAX return BinaryOperator::createSetEQ(Op0, AddOne(CI)); if (I.getOpcode() == Instruction::SetLE) // A <= MAX-1 -> A != MAX return BinaryOperator::createSetNE(Op0, AddOne(CI)); } // If we still have a setle or setge instruction, turn it into the // appropriate setlt or setgt instruction. Since the border cases have // already been handled above, this requires little checking. // if (I.getOpcode() == Instruction::SetLE) return BinaryOperator::createSetLT(Op0, AddOne(CI)); if (I.getOpcode() == Instruction::SetGE) return BinaryOperator::createSetGT(Op0, SubOne(CI)); if (Instruction *LHSI = dyn_cast(Op0)) switch (LHSI->getOpcode()) { case Instruction::PHI: if (Instruction *NV = FoldOpIntoPhi(I)) return NV; break; case Instruction::And: if (LHSI->hasOneUse() && isa(LHSI->getOperand(1)) && LHSI->getOperand(0)->hasOneUse()) { // If this is: (X >> C1) & C2 != C3 (where any shift and any compare // could exist), turn it into (X & (C2 << C1)) != (C3 << C1). This // happens a LOT in code produced by the C front-end, for bitfield // access. ShiftInst *Shift = dyn_cast(LHSI->getOperand(0)); ConstantUInt *ShAmt; ShAmt = Shift ? dyn_cast(Shift->getOperand(1)) : 0; ConstantInt *AndCST = cast(LHSI->getOperand(1)); const Type *Ty = LHSI->getType(); // We can fold this as long as we can't shift unknown bits // into the mask. This can only happen with signed shift // rights, as they sign-extend. if (ShAmt) { bool CanFold = Shift->getOpcode() != Instruction::Shr || Shift->getType()->isUnsigned(); if (!CanFold) { // To test for the bad case of the signed shr, see if any // of the bits shifted in could be tested after the mask. Constant *OShAmt = ConstantUInt::get(Type::UByteTy, Ty->getPrimitiveSize()*8-ShAmt->getValue()); Constant *ShVal = ConstantExpr::getShl(ConstantInt::getAllOnesValue(Ty), OShAmt); if (ConstantExpr::getAnd(ShVal, AndCST)->isNullValue()) CanFold = true; } if (CanFold) { Constant *NewCst; if (Shift->getOpcode() == Instruction::Shl) NewCst = ConstantExpr::getUShr(CI, ShAmt); else NewCst = ConstantExpr::getShl(CI, ShAmt); // Check to see if we are shifting out any of the bits being // compared. if (ConstantExpr::get(Shift->getOpcode(), NewCst, ShAmt) != CI){ // If we shifted bits out, the fold is not going to work out. // As a special case, check to see if this means that the // result is always true or false now. if (I.getOpcode() == Instruction::SetEQ) return ReplaceInstUsesWith(I, ConstantBool::False); if (I.getOpcode() == Instruction::SetNE) return ReplaceInstUsesWith(I, ConstantBool::True); } else { I.setOperand(1, NewCst); Constant *NewAndCST; if (Shift->getOpcode() == Instruction::Shl) NewAndCST = ConstantExpr::getUShr(AndCST, ShAmt); else NewAndCST = ConstantExpr::getShl(AndCST, ShAmt); LHSI->setOperand(1, NewAndCST); LHSI->setOperand(0, Shift->getOperand(0)); WorkList.push_back(Shift); // Shift is dead. AddUsesToWorkList(I); return &I; } } } } break; // (setcc (cast X to larger), CI) case Instruction::Cast: { Instruction* replacement = visitSetCondInstWithCastAndConstant(I,cast(LHSI),CI); if (replacement) return replacement; break; } case Instruction::Shl: // (setcc (shl X, ShAmt), CI) if (ConstantUInt *ShAmt = dyn_cast(LHSI->getOperand(1))) { switch (I.getOpcode()) { default: break; case Instruction::SetEQ: case Instruction::SetNE: { // If we are comparing against bits always shifted out, the // comparison cannot succeed. Constant *Comp = ConstantExpr::getShl(ConstantExpr::getShr(CI, ShAmt), ShAmt); if (Comp != CI) {// Comparing against a bit that we know is zero. bool IsSetNE = I.getOpcode() == Instruction::SetNE; Constant *Cst = ConstantBool::get(IsSetNE); return ReplaceInstUsesWith(I, Cst); } if (LHSI->hasOneUse()) { // Otherwise strength reduce the shift into an and. unsigned ShAmtVal = ShAmt->getValue(); unsigned TypeBits = CI->getType()->getPrimitiveSize()*8; uint64_t Val = (1ULL << (TypeBits-ShAmtVal))-1; Constant *Mask; if (CI->getType()->isUnsigned()) { Mask = ConstantUInt::get(CI->getType(), Val); } else if (ShAmtVal != 0) { Mask = ConstantSInt::get(CI->getType(), Val); } else { Mask = ConstantInt::getAllOnesValue(CI->getType()); } Instruction *AndI = BinaryOperator::createAnd(LHSI->getOperand(0), Mask, LHSI->getName()+".mask"); Value *And = InsertNewInstBefore(AndI, I); return new SetCondInst(I.getOpcode(), And, ConstantExpr::getUShr(CI, ShAmt)); } } } } break; case Instruction::Shr: // (setcc (shr X, ShAmt), CI) if (ConstantUInt *ShAmt = dyn_cast(LHSI->getOperand(1))) { switch (I.getOpcode()) { default: break; case Instruction::SetEQ: case Instruction::SetNE: { // If we are comparing against bits always shifted out, the // comparison cannot succeed. Constant *Comp = ConstantExpr::getShr(ConstantExpr::getShl(CI, ShAmt), ShAmt); if (Comp != CI) {// Comparing against a bit that we know is zero. bool IsSetNE = I.getOpcode() == Instruction::SetNE; Constant *Cst = ConstantBool::get(IsSetNE); return ReplaceInstUsesWith(I, Cst); } if (LHSI->hasOneUse() || CI->isNullValue()) { unsigned ShAmtVal = ShAmt->getValue(); // Otherwise strength reduce the shift into an and. uint64_t Val = ~0ULL; // All ones. Val <<= ShAmtVal; // Shift over to the right spot. Constant *Mask; if (CI->getType()->isUnsigned()) { unsigned TypeBits = CI->getType()->getPrimitiveSize()*8; Val &= (1ULL << TypeBits)-1; Mask = ConstantUInt::get(CI->getType(), Val); } else { Mask = ConstantSInt::get(CI->getType(), Val); } Instruction *AndI = BinaryOperator::createAnd(LHSI->getOperand(0), Mask, LHSI->getName()+".mask"); Value *And = InsertNewInstBefore(AndI, I); return new SetCondInst(I.getOpcode(), And, ConstantExpr::getShl(CI, ShAmt)); } break; } } } break; case Instruction::Div: // Fold: (div X, C1) op C2 -> range check if (ConstantInt *DivRHS = dyn_cast(LHSI->getOperand(1))) { // Fold this div into the comparison, producing a range check. // Determine, based on the divide type, what the range is being // checked. If there is an overflow on the low or high side, remember // it, otherwise compute the range [low, hi) bounding the new value. bool LoOverflow = false, HiOverflow = 0; ConstantInt *LoBound = 0, *HiBound = 0; ConstantInt *Prod; bool ProdOV = MulWithOverflow(Prod, CI, DivRHS); Instruction::BinaryOps Opcode = I.getOpcode(); if (DivRHS->isNullValue()) { // Don't hack on divide by zeros. } else if (LHSI->getType()->isUnsigned()) { // udiv LoBound = Prod; LoOverflow = ProdOV; HiOverflow = ProdOV || AddWithOverflow(HiBound, LoBound, DivRHS); } else if (isPositive(DivRHS)) { // Divisor is > 0. if (CI->isNullValue()) { // (X / pos) op 0 // Can't overflow. LoBound = cast(ConstantExpr::getNeg(SubOne(DivRHS))); HiBound = DivRHS; } else if (isPositive(CI)) { // (X / pos) op pos LoBound = Prod; LoOverflow = ProdOV; HiOverflow = ProdOV || AddWithOverflow(HiBound, Prod, DivRHS); } else { // (X / pos) op neg Constant *DivRHSH = ConstantExpr::getNeg(SubOne(DivRHS)); LoOverflow = AddWithOverflow(LoBound, Prod, cast(DivRHSH)); HiBound = Prod; HiOverflow = ProdOV; } } else { // Divisor is < 0. if (CI->isNullValue()) { // (X / neg) op 0 LoBound = AddOne(DivRHS); HiBound = cast(ConstantExpr::getNeg(DivRHS)); } else if (isPositive(CI)) { // (X / neg) op pos HiOverflow = LoOverflow = ProdOV; if (!LoOverflow) LoOverflow = AddWithOverflow(LoBound, Prod, AddOne(DivRHS)); HiBound = AddOne(Prod); } else { // (X / neg) op neg LoBound = Prod; LoOverflow = HiOverflow = ProdOV; HiBound = cast(ConstantExpr::getSub(Prod, DivRHS)); } // Dividing by a negate swaps the condition. Opcode = SetCondInst::getSwappedCondition(Opcode); } if (LoBound) { Value *X = LHSI->getOperand(0); switch (Opcode) { default: assert(0 && "Unhandled setcc opcode!"); case Instruction::SetEQ: if (LoOverflow && HiOverflow) return ReplaceInstUsesWith(I, ConstantBool::False); else if (HiOverflow) return new SetCondInst(Instruction::SetGE, X, LoBound); else if (LoOverflow) return new SetCondInst(Instruction::SetLT, X, HiBound); else return InsertRangeTest(X, LoBound, HiBound, true, I); case Instruction::SetNE: if (LoOverflow && HiOverflow) return ReplaceInstUsesWith(I, ConstantBool::True); else if (HiOverflow) return new SetCondInst(Instruction::SetLT, X, LoBound); else if (LoOverflow) return new SetCondInst(Instruction::SetGE, X, HiBound); else return InsertRangeTest(X, LoBound, HiBound, false, I); case Instruction::SetLT: if (LoOverflow) return ReplaceInstUsesWith(I, ConstantBool::False); return new SetCondInst(Instruction::SetLT, X, LoBound); case Instruction::SetGT: if (HiOverflow) return ReplaceInstUsesWith(I, ConstantBool::False); return new SetCondInst(Instruction::SetGE, X, HiBound); } } } break; case Instruction::Select: // If either operand of the select is a constant, we can fold the // comparison into the select arms, which will cause one to be // constant folded and the select turned into a bitwise or. Value *Op1 = 0, *Op2 = 0; if (LHSI->hasOneUse()) { if (Constant *C = dyn_cast(LHSI->getOperand(1))) { // Fold the known value into the constant operand. Op1 = ConstantExpr::get(I.getOpcode(), C, CI); // Insert a new SetCC of the other select operand. Op2 = InsertNewInstBefore(new SetCondInst(I.getOpcode(), LHSI->getOperand(2), CI, I.getName()), I); } else if (Constant *C = dyn_cast(LHSI->getOperand(2))) { // Fold the known value into the constant operand. Op2 = ConstantExpr::get(I.getOpcode(), C, CI); // Insert a new SetCC of the other select operand. Op1 = InsertNewInstBefore(new SetCondInst(I.getOpcode(), LHSI->getOperand(1), CI, I.getName()), I); } } if (Op1) return new SelectInst(LHSI->getOperand(0), Op1, Op2); break; } // Simplify seteq and setne instructions... if (I.getOpcode() == Instruction::SetEQ || I.getOpcode() == Instruction::SetNE) { bool isSetNE = I.getOpcode() == Instruction::SetNE; // If the first operand is (and|or|xor) with a constant, and the second // operand is a constant, simplify a bit. if (BinaryOperator *BO = dyn_cast(Op0)) { switch (BO->getOpcode()) { case Instruction::Rem: // If we have a signed (X % (2^c)) == 0, turn it into an unsigned one. if (CI->isNullValue() && isa(BO->getOperand(1)) && BO->hasOneUse() && cast(BO->getOperand(1))->getValue() > 1) if (unsigned L2 = Log2(cast(BO->getOperand(1))->getValue())) { const Type *UTy = BO->getType()->getUnsignedVersion(); Value *NewX = InsertNewInstBefore(new CastInst(BO->getOperand(0), UTy, "tmp"), I); Constant *RHSCst = ConstantUInt::get(UTy, 1ULL << L2); Value *NewRem =InsertNewInstBefore(BinaryOperator::createRem(NewX, RHSCst, BO->getName()), I); return BinaryOperator::create(I.getOpcode(), NewRem, Constant::getNullValue(UTy)); } break; case Instruction::Add: // Replace ((add A, B) != C) with (A != C-B) if B & C are constants. if (ConstantInt *BOp1C = dyn_cast(BO->getOperand(1))) { if (BO->hasOneUse()) return new SetCondInst(I.getOpcode(), BO->getOperand(0), ConstantExpr::getSub(CI, BOp1C)); } else if (CI->isNullValue()) { // Replace ((add A, B) != 0) with (A != -B) if A or B is // efficiently invertible, or if the add has just this one use. Value *BOp0 = BO->getOperand(0), *BOp1 = BO->getOperand(1); if (Value *NegVal = dyn_castNegVal(BOp1)) return new SetCondInst(I.getOpcode(), BOp0, NegVal); else if (Value *NegVal = dyn_castNegVal(BOp0)) return new SetCondInst(I.getOpcode(), NegVal, BOp1); else if (BO->hasOneUse()) { Instruction *Neg = BinaryOperator::createNeg(BOp1, BO->getName()); BO->setName(""); InsertNewInstBefore(Neg, I); return new SetCondInst(I.getOpcode(), BOp0, Neg); } } break; case Instruction::Xor: // For the xor case, we can xor two constants together, eliminating // the explicit xor. if (Constant *BOC = dyn_cast(BO->getOperand(1))) return BinaryOperator::create(I.getOpcode(), BO->getOperand(0), ConstantExpr::getXor(CI, BOC)); // FALLTHROUGH case Instruction::Sub: // Replace (([sub|xor] A, B) != 0) with (A != B) if (CI->isNullValue()) return new SetCondInst(I.getOpcode(), BO->getOperand(0), BO->getOperand(1)); break; case Instruction::Or: // If bits are being or'd in that are not present in the constant we // are comparing against, then the comparison could never succeed! if (Constant *BOC = dyn_cast(BO->getOperand(1))) { Constant *NotCI = ConstantExpr::getNot(CI); if (!ConstantExpr::getAnd(BOC, NotCI)->isNullValue()) return ReplaceInstUsesWith(I, ConstantBool::get(isSetNE)); } break; case Instruction::And: if (ConstantInt *BOC = dyn_cast(BO->getOperand(1))) { // If bits are being compared against that are and'd out, then the // comparison can never succeed! if (!ConstantExpr::getAnd(CI, ConstantExpr::getNot(BOC))->isNullValue()) return ReplaceInstUsesWith(I, ConstantBool::get(isSetNE)); // If we have ((X & C) == C), turn it into ((X & C) != 0). if (CI == BOC && isOneBitSet(CI)) return new SetCondInst(isSetNE ? Instruction::SetEQ : Instruction::SetNE, Op0, Constant::getNullValue(CI->getType())); // Replace (and X, (1 << size(X)-1) != 0) with x < 0, converting X // to be a signed value as appropriate. if (isSignBit(BOC)) { Value *X = BO->getOperand(0); // If 'X' is not signed, insert a cast now... if (!BOC->getType()->isSigned()) { const Type *DestTy = BOC->getType()->getSignedVersion(); X = InsertCastBefore(X, DestTy, I); } return new SetCondInst(isSetNE ? Instruction::SetLT : Instruction::SetGE, X, Constant::getNullValue(X->getType())); } // ((X & ~7) == 0) --> X < 8 if (CI->isNullValue() && isHighOnes(BOC)) { Value *X = BO->getOperand(0); Constant *NegX = ConstantExpr::getNeg(BOC); // If 'X' is signed, insert a cast now. if (NegX->getType()->isSigned()) { const Type *DestTy = NegX->getType()->getUnsignedVersion(); X = InsertCastBefore(X, DestTy, I); NegX = ConstantExpr::getCast(NegX, DestTy); } return new SetCondInst(isSetNE ? Instruction::SetGE : Instruction::SetLT, X, NegX); } } default: break; } } } else { // Not a SetEQ/SetNE // If the LHS is a cast from an integral value of the same size, if (CastInst *Cast = dyn_cast(Op0)) { Value *CastOp = Cast->getOperand(0); const Type *SrcTy = CastOp->getType(); unsigned SrcTySize = SrcTy->getPrimitiveSize(); if (SrcTy != Cast->getType() && SrcTy->isInteger() && SrcTySize == Cast->getType()->getPrimitiveSize()) { assert((SrcTy->isSigned() ^ Cast->getType()->isSigned()) && "Source and destination signednesses should differ!"); if (Cast->getType()->isSigned()) { // If this is a signed comparison, check for comparisons in the // vicinity of zero. if (I.getOpcode() == Instruction::SetLT && CI->isNullValue()) // X < 0 => x > 127 return BinaryOperator::createSetGT(CastOp, ConstantUInt::get(SrcTy, (1ULL << (SrcTySize*8-1))-1)); else if (I.getOpcode() == Instruction::SetGT && cast(CI)->getValue() == -1) // X > -1 => x < 128 return BinaryOperator::createSetLT(CastOp, ConstantUInt::get(SrcTy, 1ULL << (SrcTySize*8-1))); } else { ConstantUInt *CUI = cast(CI); if (I.getOpcode() == Instruction::SetLT && CUI->getValue() == 1ULL << (SrcTySize*8-1)) // X < 128 => X > -1 return BinaryOperator::createSetGT(CastOp, ConstantSInt::get(SrcTy, -1)); else if (I.getOpcode() == Instruction::SetGT && CUI->getValue() == (1ULL << (SrcTySize*8-1))-1) // X > 127 => X < 0 return BinaryOperator::createSetLT(CastOp, Constant::getNullValue(SrcTy)); } } } } } // Test to see if the operands of the setcc are casted versions of other // values. If the cast can be stripped off both arguments, we do so now. if (CastInst *CI = dyn_cast(Op0)) { Value *CastOp0 = CI->getOperand(0); if (CastOp0->getType()->isLosslesslyConvertibleTo(CI->getType()) && (isa(Op1) || isa(Op1)) && (I.getOpcode() == Instruction::SetEQ || I.getOpcode() == Instruction::SetNE)) { // We keep moving the cast from the left operand over to the right // operand, where it can often be eliminated completely. Op0 = CastOp0; // If operand #1 is a cast instruction, see if we can eliminate it as // well. if (CastInst *CI2 = dyn_cast(Op1)) if (CI2->getOperand(0)->getType()->isLosslesslyConvertibleTo( Op0->getType())) Op1 = CI2->getOperand(0); // If Op1 is a constant, we can fold the cast into the constant. if (Op1->getType() != Op0->getType()) if (Constant *Op1C = dyn_cast(Op1)) { Op1 = ConstantExpr::getCast(Op1C, Op0->getType()); } else { // Otherwise, cast the RHS right before the setcc Op1 = new CastInst(Op1, Op0->getType(), Op1->getName()); InsertNewInstBefore(cast(Op1), I); } return BinaryOperator::create(I.getOpcode(), Op0, Op1); } // Handle the special case of: setcc (cast bool to X), // This comes up when you have code like // int X = A < B; // if (X) ... // For generality, we handle any zero-extension of any operand comparison // with a constant. if (ConstantInt *ConstantRHS = dyn_cast(Op1)) { const Type *SrcTy = CastOp0->getType(); const Type *DestTy = Op0->getType(); if (SrcTy->getPrimitiveSize() < DestTy->getPrimitiveSize() && (SrcTy->isUnsigned() || SrcTy == Type::BoolTy)) { // Ok, we have an expansion of operand 0 into a new type. Get the // constant value, masink off bits which are not set in the RHS. These // could be set if the destination value is signed. uint64_t ConstVal = ConstantRHS->getRawValue(); ConstVal &= (1ULL << DestTy->getPrimitiveSize()*8)-1; // If the constant we are comparing it with has high bits set, which // don't exist in the original value, the values could never be equal, // because the source would be zero extended. unsigned SrcBits = SrcTy == Type::BoolTy ? 1 : SrcTy->getPrimitiveSize()*8; bool HasSignBit = ConstVal & (1ULL << (DestTy->getPrimitiveSize()*8-1)); if (ConstVal & ~((1ULL << SrcBits)-1)) { switch (I.getOpcode()) { default: assert(0 && "Unknown comparison type!"); case Instruction::SetEQ: return ReplaceInstUsesWith(I, ConstantBool::False); case Instruction::SetNE: return ReplaceInstUsesWith(I, ConstantBool::True); case Instruction::SetLT: case Instruction::SetLE: if (DestTy->isSigned() && HasSignBit) return ReplaceInstUsesWith(I, ConstantBool::False); return ReplaceInstUsesWith(I, ConstantBool::True); case Instruction::SetGT: case Instruction::SetGE: if (DestTy->isSigned() && HasSignBit) return ReplaceInstUsesWith(I, ConstantBool::True); return ReplaceInstUsesWith(I, ConstantBool::False); } } // Otherwise, we can replace the setcc with a setcc of the smaller // operand value. Op1 = ConstantExpr::getCast(cast(Op1), SrcTy); return BinaryOperator::create(I.getOpcode(), CastOp0, Op1); } } } return Changed ? &I : 0; } // visitSetCondInstWithCastAndConstant - this method is part of the // visitSetCondInst method. It handles the situation where we have: // (setcc (cast X to larger), CI) // It tries to remove the cast and even the setcc if the CI value // and range of the cast allow it. Instruction * InstCombiner::visitSetCondInstWithCastAndConstant(BinaryOperator&I, CastInst* LHSI, ConstantInt* CI) { const Type *SrcTy = LHSI->getOperand(0)->getType(); const Type *DestTy = LHSI->getType(); if (SrcTy->isIntegral() && DestTy->isIntegral()) { unsigned SrcBits = SrcTy->getPrimitiveSize()*8; unsigned DestBits = DestTy->getPrimitiveSize()*8; if (SrcTy == Type::BoolTy) SrcBits = 1; if (DestTy == Type::BoolTy) DestBits = 1; if (SrcBits < DestBits) { // There are fewer bits in the source of the cast than in the result // of the cast. Any other case doesn't matter because the constant // value won't have changed due to sign extension. Constant *NewCst = ConstantExpr::getCast(CI, SrcTy); if (ConstantExpr::getCast(NewCst, DestTy) == CI) { // The constant value operand of the setCC before and after a // cast to the source type of the cast instruction is the same // value, so we just replace with the same setcc opcode, but // using the source value compared to the constant casted to the // source type. if (SrcTy->isSigned() && DestTy->isUnsigned()) { CastInst* Cst = new CastInst(LHSI->getOperand(0), SrcTy->getUnsignedVersion(), LHSI->getName()); InsertNewInstBefore(Cst,I); return new SetCondInst(I.getOpcode(), Cst, ConstantExpr::getCast(CI, SrcTy->getUnsignedVersion())); } return new SetCondInst(I.getOpcode(), LHSI->getOperand(0),NewCst); } // The constant value before and after a cast to the source type // is different, so various cases are possible depending on the // opcode and the signs of the types involved in the cast. switch (I.getOpcode()) { case Instruction::SetLT: { Constant* Max = ConstantIntegral::getMaxValue(SrcTy); Max = ConstantExpr::getCast(Max, DestTy); return ReplaceInstUsesWith(I, ConstantExpr::getSetLT(Max, CI)); } case Instruction::SetGT: { Constant* Min = ConstantIntegral::getMinValue(SrcTy); Min = ConstantExpr::getCast(Min, DestTy); return ReplaceInstUsesWith(I, ConstantExpr::getSetGT(Min, CI)); } case Instruction::SetEQ: // We're looking for equality, and we know the values are not // equal so replace with constant False. return ReplaceInstUsesWith(I, ConstantBool::False); case Instruction::SetNE: // We're testing for inequality, and we know the values are not // equal so replace with constant True. return ReplaceInstUsesWith(I, ConstantBool::True); case Instruction::SetLE: case Instruction::SetGE: assert(!"SetLE and SetGE should be handled elsewhere"); default: assert(!"unknown integer comparison"); } } } return 0; } Instruction *InstCombiner::visitShiftInst(ShiftInst &I) { assert(I.getOperand(1)->getType() == Type::UByteTy); Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1); bool isLeftShift = I.getOpcode() == Instruction::Shl; // shl X, 0 == X and shr X, 0 == X // shl 0, X == 0 and shr 0, X == 0 if (Op1 == Constant::getNullValue(Type::UByteTy) || Op0 == Constant::getNullValue(Op0->getType())) return ReplaceInstUsesWith(I, Op0); if (isa(Op0)) { // undef >>s X -> undef if (!isLeftShift && I.getType()->isSigned()) return ReplaceInstUsesWith(I, Op0); else // undef << X -> 0 AND undef >>u X -> 0 return ReplaceInstUsesWith(I, Constant::getNullValue(I.getType())); } if (isa(Op1)) { if (isLeftShift || I.getType()->isUnsigned()) return ReplaceInstUsesWith(I, Constant::getNullValue(I.getType())); else return ReplaceInstUsesWith(I, Op0); // X >>s undef -> X } // shr int -1, X = -1 (for any arithmetic shift rights of ~0) if (!isLeftShift) if (ConstantSInt *CSI = dyn_cast(Op0)) if (CSI->isAllOnesValue()) return ReplaceInstUsesWith(I, CSI); // Try to fold constant and into select arguments. if (isa(Op0)) if (SelectInst *SI = dyn_cast(Op1)) if (Instruction *R = FoldBinOpIntoSelect(I, SI, this)) return R; if (ConstantUInt *CUI = dyn_cast(Op1)) { // shl uint X, 32 = 0 and shr ubyte Y, 9 = 0, ... just don't eliminate shr // of a signed value. // unsigned TypeBits = Op0->getType()->getPrimitiveSize()*8; if (CUI->getValue() >= TypeBits) { if (!Op0->getType()->isSigned() || isLeftShift) return ReplaceInstUsesWith(I, Constant::getNullValue(Op0->getType())); else { I.setOperand(1, ConstantUInt::get(Type::UByteTy, TypeBits-1)); return &I; } } // ((X*C1) << C2) == (X * (C1 << C2)) if (BinaryOperator *BO = dyn_cast(Op0)) if (BO->getOpcode() == Instruction::Mul && isLeftShift) if (Constant *BOOp = dyn_cast(BO->getOperand(1))) return BinaryOperator::createMul(BO->getOperand(0), ConstantExpr::getShl(BOOp, CUI)); // Try to fold constant and into select arguments. if (SelectInst *SI = dyn_cast(Op0)) if (Instruction *R = FoldBinOpIntoSelect(I, SI, this)) return R; if (isa(Op0)) if (Instruction *NV = FoldOpIntoPhi(I)) return NV; // If the operand is an bitwise operator with a constant RHS, and the // shift is the only use, we can pull it out of the shift. if (Op0->hasOneUse()) if (BinaryOperator *Op0BO = dyn_cast(Op0)) if (ConstantInt *Op0C = dyn_cast(Op0BO->getOperand(1))) { bool isValid = true; // Valid only for And, Or, Xor bool highBitSet = false; // Transform if high bit of constant set? switch (Op0BO->getOpcode()) { default: isValid = false; break; // Do not perform transform! case Instruction::Add: isValid = isLeftShift; break; case Instruction::Or: case Instruction::Xor: highBitSet = false; break; case Instruction::And: highBitSet = true; break; } // If this is a signed shift right, and the high bit is modified // by the logical operation, do not perform the transformation. // The highBitSet boolean indicates the value of the high bit of // the constant which would cause it to be modified for this // operation. // if (isValid && !isLeftShift && !I.getType()->isUnsigned()) { uint64_t Val = Op0C->getRawValue(); isValid = ((Val & (1 << (TypeBits-1))) != 0) == highBitSet; } if (isValid) { Constant *NewRHS = ConstantExpr::get(I.getOpcode(), Op0C, CUI); Instruction *NewShift = new ShiftInst(I.getOpcode(), Op0BO->getOperand(0), CUI, Op0BO->getName()); Op0BO->setName(""); InsertNewInstBefore(NewShift, I); return BinaryOperator::create(Op0BO->getOpcode(), NewShift, NewRHS); } } // If this is a shift of a shift, see if we can fold the two together... if (ShiftInst *Op0SI = dyn_cast(Op0)) if (ConstantUInt *ShiftAmt1C = dyn_cast(Op0SI->getOperand(1))) { unsigned ShiftAmt1 = ShiftAmt1C->getValue(); unsigned ShiftAmt2 = CUI->getValue(); // Check for (A << c1) << c2 and (A >> c1) >> c2 if (I.getOpcode() == Op0SI->getOpcode()) { unsigned Amt = ShiftAmt1+ShiftAmt2; // Fold into one big shift... if (Op0->getType()->getPrimitiveSize()*8 < Amt) Amt = Op0->getType()->getPrimitiveSize()*8; return new ShiftInst(I.getOpcode(), Op0SI->getOperand(0), ConstantUInt::get(Type::UByteTy, Amt)); } // Check for (A << c1) >> c2 or visaversa. If we are dealing with // signed types, we can only support the (A >> c1) << c2 configuration, // because it can not turn an arbitrary bit of A into a sign bit. if (I.getType()->isUnsigned() || isLeftShift) { // Calculate bitmask for what gets shifted off the edge... Constant *C = ConstantIntegral::getAllOnesValue(I.getType()); if (isLeftShift) C = ConstantExpr::getShl(C, ShiftAmt1C); else C = ConstantExpr::getShr(C, ShiftAmt1C); Instruction *Mask = BinaryOperator::createAnd(Op0SI->getOperand(0), C, Op0SI->getOperand(0)->getName()+".mask"); InsertNewInstBefore(Mask, I); // Figure out what flavor of shift we should use... if (ShiftAmt1 == ShiftAmt2) return ReplaceInstUsesWith(I, Mask); // (A << c) >> c === A & c2 else if (ShiftAmt1 < ShiftAmt2) { return new ShiftInst(I.getOpcode(), Mask, ConstantUInt::get(Type::UByteTy, ShiftAmt2-ShiftAmt1)); } else { return new ShiftInst(Op0SI->getOpcode(), Mask, ConstantUInt::get(Type::UByteTy, ShiftAmt1-ShiftAmt2)); } } } } return 0; } enum CastType { Noop = 0, Truncate = 1, Signext = 2, Zeroext = 3 }; /// getCastType - In the future, we will split the cast instruction into these /// various types. Until then, we have to do the analysis here. static CastType getCastType(const Type *Src, const Type *Dest) { assert(Src->isIntegral() && Dest->isIntegral() && "Only works on integral types!"); unsigned SrcSize = Src->getPrimitiveSize()*8; if (Src == Type::BoolTy) SrcSize = 1; unsigned DestSize = Dest->getPrimitiveSize()*8; if (Dest == Type::BoolTy) DestSize = 1; if (SrcSize == DestSize) return Noop; if (SrcSize > DestSize) return Truncate; if (Src->isSigned()) return Signext; return Zeroext; } // isEliminableCastOfCast - Return true if it is valid to eliminate the CI // instruction. // static inline bool isEliminableCastOfCast(const Type *SrcTy, const Type *MidTy, const Type *DstTy, TargetData *TD) { // It is legal to eliminate the instruction if casting A->B->A if the sizes // are identical and the bits don't get reinterpreted (for example // int->float->int would not be allowed). if (SrcTy == DstTy && SrcTy->isLosslesslyConvertibleTo(MidTy)) return true; // If we are casting between pointer and integer types, treat pointers as // integers of the appropriate size for the code below. if (isa(SrcTy)) SrcTy = TD->getIntPtrType(); if (isa(MidTy)) MidTy = TD->getIntPtrType(); if (isa(DstTy)) DstTy = TD->getIntPtrType(); // Allow free casting and conversion of sizes as long as the sign doesn't // change... if (SrcTy->isIntegral() && MidTy->isIntegral() && DstTy->isIntegral()) { CastType FirstCast = getCastType(SrcTy, MidTy); CastType SecondCast = getCastType(MidTy, DstTy); // Capture the effect of these two casts. If the result is a legal cast, // the CastType is stored here, otherwise a special code is used. static const unsigned CastResult[] = { // First cast is noop 0, 1, 2, 3, // First cast is a truncate 1, 1, 4, 4, // trunc->extend is not safe to eliminate // First cast is a sign ext 2, 5, 2, 4, // signext->zeroext never ok // First cast is a zero ext 3, 5, 3, 3, }; unsigned Result = CastResult[FirstCast*4+SecondCast]; switch (Result) { default: assert(0 && "Illegal table value!"); case 0: case 1: case 2: case 3: // FIXME: in the future, when LLVM has explicit sign/zeroextends and // truncates, we could eliminate more casts. return (unsigned)getCastType(SrcTy, DstTy) == Result; case 4: return false; // Not possible to eliminate this here. case 5: // Sign or zero extend followed by truncate is always ok if the result // is a truncate or noop. CastType ResultCast = getCastType(SrcTy, DstTy); if (ResultCast == Noop || ResultCast == Truncate) return true; // Otherwise we are still growing the value, we are only safe if the // result will match the sign/zeroextendness of the result. return ResultCast == FirstCast; } } return false; } static bool ValueRequiresCast(const Value *V, const Type *Ty, TargetData *TD) { if (V->getType() == Ty || isa(V)) return false; if (const CastInst *CI = dyn_cast(V)) if (isEliminableCastOfCast(CI->getOperand(0)->getType(), CI->getType(), Ty, TD)) return false; return true; } /// InsertOperandCastBefore - This inserts a cast of V to DestTy before the /// InsertBefore instruction. This is specialized a bit to avoid inserting /// casts that are known to not do anything... /// Value *InstCombiner::InsertOperandCastBefore(Value *V, const Type *DestTy, Instruction *InsertBefore) { if (V->getType() == DestTy) return V; if (Constant *C = dyn_cast(V)) return ConstantExpr::getCast(C, DestTy); CastInst *CI = new CastInst(V, DestTy, V->getName()); InsertNewInstBefore(CI, *InsertBefore); return CI; } // CastInst simplification // Instruction *InstCombiner::visitCastInst(CastInst &CI) { Value *Src = CI.getOperand(0); // If the user is casting a value to the same type, eliminate this cast // instruction... if (CI.getType() == Src->getType()) return ReplaceInstUsesWith(CI, Src); if (isa(Src)) // cast undef -> undef return ReplaceInstUsesWith(CI, UndefValue::get(CI.getType())); // If casting the result of another cast instruction, try to eliminate this // one! // if (CastInst *CSrc = dyn_cast(Src)) { if (isEliminableCastOfCast(CSrc->getOperand(0)->getType(), CSrc->getType(), CI.getType(), TD)) { // This instruction now refers directly to the cast's src operand. This // has a good chance of making CSrc dead. CI.setOperand(0, CSrc->getOperand(0)); return &CI; } // If this is an A->B->A cast, and we are dealing with integral types, try // to convert this into a logical 'and' instruction. // if (CSrc->getOperand(0)->getType() == CI.getType() && CI.getType()->isInteger() && CSrc->getType()->isInteger() && CI.getType()->isUnsigned() && CSrc->getType()->isUnsigned() && CSrc->getType()->getPrimitiveSize() < CI.getType()->getPrimitiveSize()){ assert(CSrc->getType() != Type::ULongTy && "Cannot have type bigger than ulong!"); uint64_t AndValue = (1ULL << CSrc->getType()->getPrimitiveSize()*8)-1; Constant *AndOp = ConstantUInt::get(CI.getType(), AndValue); return BinaryOperator::createAnd(CSrc->getOperand(0), AndOp); } } // If this is a cast to bool, turn it into the appropriate setne instruction. if (CI.getType() == Type::BoolTy) return BinaryOperator::createSetNE(CI.getOperand(0), Constant::getNullValue(CI.getOperand(0)->getType())); // If casting the result of a getelementptr instruction with no offset, turn // this into a cast of the original pointer! // if (GetElementPtrInst *GEP = dyn_cast(Src)) { bool AllZeroOperands = true; for (unsigned i = 1, e = GEP->getNumOperands(); i != e; ++i) if (!isa(GEP->getOperand(i)) || !cast(GEP->getOperand(i))->isNullValue()) { AllZeroOperands = false; break; } if (AllZeroOperands) { CI.setOperand(0, GEP->getOperand(0)); return &CI; } } // If we are casting a malloc or alloca to a pointer to a type of the same // size, rewrite the allocation instruction to allocate the "right" type. // if (AllocationInst *AI = dyn_cast(Src)) if (AI->hasOneUse() && !AI->isArrayAllocation()) if (const PointerType *PTy = dyn_cast(CI.getType())) { // Get the type really allocated and the type casted to... const Type *AllocElTy = AI->getAllocatedType(); const Type *CastElTy = PTy->getElementType(); if (AllocElTy->isSized() && CastElTy->isSized()) { unsigned AllocElTySize = TD->getTypeSize(AllocElTy); unsigned CastElTySize = TD->getTypeSize(CastElTy); // If the allocation is for an even multiple of the cast type size if (CastElTySize && (AllocElTySize % CastElTySize == 0)) { Value *Amt = ConstantUInt::get(Type::UIntTy, AllocElTySize/CastElTySize); std::string Name = AI->getName(); AI->setName(""); AllocationInst *New; if (isa(AI)) New = new MallocInst(CastElTy, Amt, Name); else New = new AllocaInst(CastElTy, Amt, Name); InsertNewInstBefore(New, *AI); return ReplaceInstUsesWith(CI, New); } } } if (isa(Src)) if (Instruction *NV = FoldOpIntoPhi(CI)) return NV; // If the source value is an instruction with only this use, we can attempt to // propagate the cast into the instruction. Also, only handle integral types // for now. if (Instruction *SrcI = dyn_cast(Src)) if (SrcI->hasOneUse() && Src->getType()->isIntegral() && CI.getType()->isInteger()) { // Don't mess with casts to bool here const Type *DestTy = CI.getType(); unsigned SrcBitSize = getTypeSizeInBits(Src->getType()); unsigned DestBitSize = getTypeSizeInBits(DestTy); Value *Op0 = SrcI->getNumOperands() > 0 ? SrcI->getOperand(0) : 0; Value *Op1 = SrcI->getNumOperands() > 1 ? SrcI->getOperand(1) : 0; switch (SrcI->getOpcode()) { case Instruction::Add: case Instruction::Mul: case Instruction::And: case Instruction::Or: case Instruction::Xor: // If we are discarding information, or just changing the sign, rewrite. if (DestBitSize <= SrcBitSize && DestBitSize != 1) { // Don't insert two casts if they cannot be eliminated. We allow two // casts to be inserted if the sizes are the same. This could only be // converting signedness, which is a noop. if (DestBitSize == SrcBitSize || !ValueRequiresCast(Op1, DestTy,TD) || !ValueRequiresCast(Op0, DestTy, TD)) { Value *Op0c = InsertOperandCastBefore(Op0, DestTy, SrcI); Value *Op1c = InsertOperandCastBefore(Op1, DestTy, SrcI); return BinaryOperator::create(cast(SrcI) ->getOpcode(), Op0c, Op1c); } } break; case Instruction::Shl: // Allow changing the sign of the source operand. Do not allow changing // the size of the shift, UNLESS the shift amount is a constant. We // mush not change variable sized shifts to a smaller size, because it // is undefined to shift more bits out than exist in the value. if (DestBitSize == SrcBitSize || (DestBitSize < SrcBitSize && isa(Op1))) { Value *Op0c = InsertOperandCastBefore(Op0, DestTy, SrcI); return new ShiftInst(Instruction::Shl, Op0c, Op1); } break; } } return 0; } /// GetSelectFoldableOperands - We want to turn code that looks like this: /// %C = or %A, %B /// %D = select %cond, %C, %A /// into: /// %C = select %cond, %B, 0 /// %D = or %A, %C /// /// Assuming that the specified instruction is an operand to the select, return /// a bitmask indicating which operands of this instruction are foldable if they /// equal the other incoming value of the select. /// static unsigned GetSelectFoldableOperands(Instruction *I) { switch (I->getOpcode()) { case Instruction::Add: case Instruction::Mul: case Instruction::And: case Instruction::Or: case Instruction::Xor: return 3; // Can fold through either operand. case Instruction::Sub: // Can only fold on the amount subtracted. case Instruction::Shl: // Can only fold on the shift amount. case Instruction::Shr: return 1; default: return 0; // Cannot fold } } /// GetSelectFoldableConstant - For the same transformation as the previous /// function, return the identity constant that goes into the select. static Constant *GetSelectFoldableConstant(Instruction *I) { switch (I->getOpcode()) { default: assert(0 && "This cannot happen!"); abort(); case Instruction::Add: case Instruction::Sub: case Instruction::Or: case Instruction::Xor: return Constant::getNullValue(I->getType()); case Instruction::Shl: case Instruction::Shr: return Constant::getNullValue(Type::UByteTy); case Instruction::And: return ConstantInt::getAllOnesValue(I->getType()); case Instruction::Mul: return ConstantInt::get(I->getType(), 1); } } Instruction *InstCombiner::visitSelectInst(SelectInst &SI) { Value *CondVal = SI.getCondition(); Value *TrueVal = SI.getTrueValue(); Value *FalseVal = SI.getFalseValue(); // select true, X, Y -> X // select false, X, Y -> Y if (ConstantBool *C = dyn_cast(CondVal)) if (C == ConstantBool::True) return ReplaceInstUsesWith(SI, TrueVal); else { assert(C == ConstantBool::False); return ReplaceInstUsesWith(SI, FalseVal); } // select C, X, X -> X if (TrueVal == FalseVal) return ReplaceInstUsesWith(SI, TrueVal); if (isa(TrueVal)) // select C, undef, X -> X return ReplaceInstUsesWith(SI, FalseVal); if (isa(FalseVal)) // select C, X, undef -> X return ReplaceInstUsesWith(SI, TrueVal); if (isa(CondVal)) { // select undef, X, Y -> X or Y if (isa(TrueVal)) return ReplaceInstUsesWith(SI, TrueVal); else return ReplaceInstUsesWith(SI, FalseVal); } if (SI.getType() == Type::BoolTy) if (ConstantBool *C = dyn_cast(TrueVal)) { if (C == ConstantBool::True) { // Change: A = select B, true, C --> A = or B, C return BinaryOperator::createOr(CondVal, FalseVal); } else { // Change: A = select B, false, C --> A = and !B, C Value *NotCond = InsertNewInstBefore(BinaryOperator::createNot(CondVal, "not."+CondVal->getName()), SI); return BinaryOperator::createAnd(NotCond, FalseVal); } } else if (ConstantBool *C = dyn_cast(FalseVal)) { if (C == ConstantBool::False) { // Change: A = select B, C, false --> A = and B, C return BinaryOperator::createAnd(CondVal, TrueVal); } else { // Change: A = select B, C, true --> A = or !B, C Value *NotCond = InsertNewInstBefore(BinaryOperator::createNot(CondVal, "not."+CondVal->getName()), SI); return BinaryOperator::createOr(NotCond, TrueVal); } } // Selecting between two integer constants? if (ConstantInt *TrueValC = dyn_cast(TrueVal)) if (ConstantInt *FalseValC = dyn_cast(FalseVal)) { // select C, 1, 0 -> cast C to int if (FalseValC->isNullValue() && TrueValC->getRawValue() == 1) { return new CastInst(CondVal, SI.getType()); } else if (TrueValC->isNullValue() && FalseValC->getRawValue() == 1) { // select C, 0, 1 -> cast !C to int Value *NotCond = InsertNewInstBefore(BinaryOperator::createNot(CondVal, "not."+CondVal->getName()), SI); return new CastInst(NotCond, SI.getType()); } // If one of the constants is zero (we know they can't both be) and we // have a setcc instruction with zero, and we have an 'and' with the // non-constant value, eliminate this whole mess. This corresponds to // cases like this: ((X & 27) ? 27 : 0) if (TrueValC->isNullValue() || FalseValC->isNullValue()) if (Instruction *IC = dyn_cast(SI.getCondition())) if ((IC->getOpcode() == Instruction::SetEQ || IC->getOpcode() == Instruction::SetNE) && isa(IC->getOperand(1)) && cast(IC->getOperand(1))->isNullValue()) if (Instruction *ICA = dyn_cast(IC->getOperand(0))) if (ICA->getOpcode() == Instruction::And && isa(ICA->getOperand(1)) && (ICA->getOperand(1) == TrueValC || ICA->getOperand(1) == FalseValC) && isOneBitSet(cast(ICA->getOperand(1)))) { // Okay, now we know that everything is set up, we just don't // know whether we have a setne or seteq and whether the true or // false val is the zero. bool ShouldNotVal = !TrueValC->isNullValue(); ShouldNotVal ^= IC->getOpcode() == Instruction::SetNE; Value *V = ICA; if (ShouldNotVal) V = InsertNewInstBefore(BinaryOperator::create( Instruction::Xor, V, ICA->getOperand(1)), SI); return ReplaceInstUsesWith(SI, V); } } // See if we are selecting two values based on a comparison of the two values. if (SetCondInst *SCI = dyn_cast(CondVal)) { if (SCI->getOperand(0) == TrueVal && SCI->getOperand(1) == FalseVal) { // Transform (X == Y) ? X : Y -> Y if (SCI->getOpcode() == Instruction::SetEQ) return ReplaceInstUsesWith(SI, FalseVal); // Transform (X != Y) ? X : Y -> X if (SCI->getOpcode() == Instruction::SetNE) return ReplaceInstUsesWith(SI, TrueVal); // NOTE: if we wanted to, this is where to detect MIN/MAX/ABS/etc. } else if (SCI->getOperand(0) == FalseVal && SCI->getOperand(1) == TrueVal){ // Transform (X == Y) ? Y : X -> X if (SCI->getOpcode() == Instruction::SetEQ) return ReplaceInstUsesWith(SI, FalseVal); // Transform (X != Y) ? Y : X -> Y if (SCI->getOpcode() == Instruction::SetNE) return ReplaceInstUsesWith(SI, TrueVal); // NOTE: if we wanted to, this is where to detect MIN/MAX/ABS/etc. } } // See if we can fold the select into one of our operands. if (SI.getType()->isInteger()) { // See the comment above GetSelectFoldableOperands for a description of the // transformation we are doing here. if (Instruction *TVI = dyn_cast(TrueVal)) if (TVI->hasOneUse() && TVI->getNumOperands() == 2 && !isa(FalseVal)) if (unsigned SFO = GetSelectFoldableOperands(TVI)) { unsigned OpToFold = 0; if ((SFO & 1) && FalseVal == TVI->getOperand(0)) { OpToFold = 1; } else if ((SFO & 2) && FalseVal == TVI->getOperand(1)) { OpToFold = 2; } if (OpToFold) { Constant *C = GetSelectFoldableConstant(TVI); std::string Name = TVI->getName(); TVI->setName(""); Instruction *NewSel = new SelectInst(SI.getCondition(), TVI->getOperand(2-OpToFold), C, Name); InsertNewInstBefore(NewSel, SI); if (BinaryOperator *BO = dyn_cast(TVI)) return BinaryOperator::create(BO->getOpcode(), FalseVal, NewSel); else if (ShiftInst *SI = dyn_cast(TVI)) return new ShiftInst(SI->getOpcode(), FalseVal, NewSel); else { assert(0 && "Unknown instruction!!"); } } } if (Instruction *FVI = dyn_cast(FalseVal)) if (FVI->hasOneUse() && FVI->getNumOperands() == 2 && !isa(TrueVal)) if (unsigned SFO = GetSelectFoldableOperands(FVI)) { unsigned OpToFold = 0; if ((SFO & 1) && TrueVal == FVI->getOperand(0)) { OpToFold = 1; } else if ((SFO & 2) && TrueVal == FVI->getOperand(1)) { OpToFold = 2; } if (OpToFold) { Constant *C = GetSelectFoldableConstant(FVI); std::string Name = FVI->getName(); FVI->setName(""); Instruction *NewSel = new SelectInst(SI.getCondition(), C, FVI->getOperand(2-OpToFold), Name); InsertNewInstBefore(NewSel, SI); if (BinaryOperator *BO = dyn_cast(FVI)) return BinaryOperator::create(BO->getOpcode(), TrueVal, NewSel); else if (ShiftInst *SI = dyn_cast(FVI)) return new ShiftInst(SI->getOpcode(), TrueVal, NewSel); else { assert(0 && "Unknown instruction!!"); } } } } return 0; } // CallInst simplification // Instruction *InstCombiner::visitCallInst(CallInst &CI) { // Intrinsics cannot occur in an invoke, so handle them here instead of in // visitCallSite. if (MemIntrinsic *MI = dyn_cast(&CI)) { bool Changed = false; // memmove/cpy/set of zero bytes is a noop. if (Constant *NumBytes = dyn_cast(MI->getLength())) { if (NumBytes->isNullValue()) return EraseInstFromFunction(CI); // FIXME: Increase alignment here. if (ConstantInt *CI = dyn_cast(NumBytes)) if (CI->getRawValue() == 1) { // Replace the instruction with just byte operations. We would // transform other cases to loads/stores, but we don't know if // alignment is sufficient. } } // If we have a memmove and the source operation is a constant global, // then the source and dest pointers can't alias, so we can change this // into a call to memcpy. if (MemMoveInst *MMI = dyn_cast(MI)) if (GlobalVariable *GVSrc = dyn_cast(MMI->getSource())) if (GVSrc->isConstant()) { Module *M = CI.getParent()->getParent()->getParent(); Function *MemCpy = M->getOrInsertFunction("llvm.memcpy", CI.getCalledFunction()->getFunctionType()); CI.setOperand(0, MemCpy); Changed = true; } if (Changed) return &CI; } else if (DbgStopPointInst *SPI = dyn_cast(&CI)) { // If this stoppoint is at the same source location as the previous // stoppoint in the chain, it is not needed. if (DbgStopPointInst *PrevSPI = dyn_cast(SPI->getChain())) if (SPI->getLineNo() == PrevSPI->getLineNo() && SPI->getColNo() == PrevSPI->getColNo()) { SPI->replaceAllUsesWith(PrevSPI); return EraseInstFromFunction(CI); } } return visitCallSite(&CI); } // InvokeInst simplification // Instruction *InstCombiner::visitInvokeInst(InvokeInst &II) { return visitCallSite(&II); } // visitCallSite - Improvements for call and invoke instructions. // Instruction *InstCombiner::visitCallSite(CallSite CS) { bool Changed = false; // If the callee is a constexpr cast of a function, attempt to move the cast // to the arguments of the call/invoke. if (transformConstExprCastCall(CS)) return 0; Value *Callee = CS.getCalledValue(); if (isa(Callee) || isa(Callee)) { // This instruction is not reachable, just remove it. We insert a store to // undef so that we know that this code is not reachable, despite the fact // that we can't modify the CFG here. new StoreInst(ConstantBool::True, UndefValue::get(PointerType::get(Type::BoolTy)), CS.getInstruction()); if (!CS.getInstruction()->use_empty()) CS.getInstruction()-> replaceAllUsesWith(UndefValue::get(CS.getInstruction()->getType())); if (InvokeInst *II = dyn_cast(CS.getInstruction())) { // Don't break the CFG, insert a dummy cond branch. new BranchInst(II->getNormalDest(), II->getUnwindDest(), ConstantBool::True, II); } return EraseInstFromFunction(*CS.getInstruction()); } const PointerType *PTy = cast(Callee->getType()); const FunctionType *FTy = cast(PTy->getElementType()); if (FTy->isVarArg()) { // See if we can optimize any arguments passed through the varargs area of // the call. for (CallSite::arg_iterator I = CS.arg_begin()+FTy->getNumParams(), E = CS.arg_end(); I != E; ++I) if (CastInst *CI = dyn_cast(*I)) { // If this cast does not effect the value passed through the varargs // area, we can eliminate the use of the cast. Value *Op = CI->getOperand(0); if (CI->getType()->isLosslesslyConvertibleTo(Op->getType())) { *I = Op; Changed = true; } } } return Changed ? CS.getInstruction() : 0; } // transformConstExprCastCall - If the callee is a constexpr cast of a function, // attempt to move the cast to the arguments of the call/invoke. // bool InstCombiner::transformConstExprCastCall(CallSite CS) { if (!isa(CS.getCalledValue())) return false; ConstantExpr *CE = cast(CS.getCalledValue()); if (CE->getOpcode() != Instruction::Cast || !isa(CE->getOperand(0))) return false; Function *Callee = cast(CE->getOperand(0)); Instruction *Caller = CS.getInstruction(); // Okay, this is a cast from a function to a different type. Unless doing so // would cause a type conversion of one of our arguments, change this call to // be a direct call with arguments casted to the appropriate types. // const FunctionType *FT = Callee->getFunctionType(); const Type *OldRetTy = Caller->getType(); // Check to see if we are changing the return type... if (OldRetTy != FT->getReturnType()) { if (Callee->isExternal() && !OldRetTy->isLosslesslyConvertibleTo(FT->getReturnType()) && !Caller->use_empty()) return false; // Cannot transform this return value... // If the callsite is an invoke instruction, and the return value is used by // a PHI node in a successor, we cannot change the return type of the call // because there is no place to put the cast instruction (without breaking // the critical edge). Bail out in this case. if (!Caller->use_empty()) if (InvokeInst *II = dyn_cast(Caller)) for (Value::use_iterator UI = II->use_begin(), E = II->use_end(); UI != E; ++UI) if (PHINode *PN = dyn_cast(*UI)) if (PN->getParent() == II->getNormalDest() || PN->getParent() == II->getUnwindDest()) return false; } unsigned NumActualArgs = unsigned(CS.arg_end()-CS.arg_begin()); unsigned NumCommonArgs = std::min(FT->getNumParams(), NumActualArgs); CallSite::arg_iterator AI = CS.arg_begin(); for (unsigned i = 0, e = NumCommonArgs; i != e; ++i, ++AI) { const Type *ParamTy = FT->getParamType(i); bool isConvertible = (*AI)->getType()->isLosslesslyConvertibleTo(ParamTy); if (Callee->isExternal() && !isConvertible) return false; } if (FT->getNumParams() < NumActualArgs && !FT->isVarArg() && Callee->isExternal()) return false; // Do not delete arguments unless we have a function body... // Okay, we decided that this is a safe thing to do: go ahead and start // inserting cast instructions as necessary... std::vector Args; Args.reserve(NumActualArgs); AI = CS.arg_begin(); for (unsigned i = 0; i != NumCommonArgs; ++i, ++AI) { const Type *ParamTy = FT->getParamType(i); if ((*AI)->getType() == ParamTy) { Args.push_back(*AI); } else { Args.push_back(InsertNewInstBefore(new CastInst(*AI, ParamTy, "tmp"), *Caller)); } } // If the function takes more arguments than the call was taking, add them // now... for (unsigned i = NumCommonArgs; i != FT->getNumParams(); ++i) Args.push_back(Constant::getNullValue(FT->getParamType(i))); // If we are removing arguments to the function, emit an obnoxious warning... if (FT->getNumParams() < NumActualArgs) if (!FT->isVarArg()) { std::cerr << "WARNING: While resolving call to function '" << Callee->getName() << "' arguments were dropped!\n"; } else { // Add all of the arguments in their promoted form to the arg list... for (unsigned i = FT->getNumParams(); i != NumActualArgs; ++i, ++AI) { const Type *PTy = getPromotedType((*AI)->getType()); if (PTy != (*AI)->getType()) { // Must promote to pass through va_arg area! Instruction *Cast = new CastInst(*AI, PTy, "tmp"); InsertNewInstBefore(Cast, *Caller); Args.push_back(Cast); } else { Args.push_back(*AI); } } } if (FT->getReturnType() == Type::VoidTy) Caller->setName(""); // Void type should not have a name... Instruction *NC; if (InvokeInst *II = dyn_cast(Caller)) { NC = new InvokeInst(Callee, II->getNormalDest(), II->getUnwindDest(), Args, Caller->getName(), Caller); } else { NC = new CallInst(Callee, Args, Caller->getName(), Caller); } // Insert a cast of the return type as necessary... Value *NV = NC; if (Caller->getType() != NV->getType() && !Caller->use_empty()) { if (NV->getType() != Type::VoidTy) { NV = NC = new CastInst(NC, Caller->getType(), "tmp"); // If this is an invoke instruction, we should insert it after the first // non-phi, instruction in the normal successor block. if (InvokeInst *II = dyn_cast(Caller)) { BasicBlock::iterator I = II->getNormalDest()->begin(); while (isa(I)) ++I; InsertNewInstBefore(NC, *I); } else { // Otherwise, it's a call, just insert cast right after the call instr InsertNewInstBefore(NC, *Caller); } AddUsersToWorkList(*Caller); } else { NV = UndefValue::get(Caller->getType()); } } if (Caller->getType() != Type::VoidTy && !Caller->use_empty()) Caller->replaceAllUsesWith(NV); Caller->getParent()->getInstList().erase(Caller); removeFromWorkList(Caller); return true; } // FoldPHIArgOpIntoPHI - If all operands to a PHI node are the same "unary" // operator and they all are only used by the PHI, PHI together their // inputs, and do the operation once, to the result of the PHI. Instruction *InstCombiner::FoldPHIArgOpIntoPHI(PHINode &PN) { Instruction *FirstInst = cast(PN.getIncomingValue(0)); // Scan the instruction, looking for input operations that can be folded away. // If all input operands to the phi are the same instruction (e.g. a cast from // the same type or "+42") we can pull the operation through the PHI, reducing // code size and simplifying code. Constant *ConstantOp = 0; const Type *CastSrcTy = 0; if (isa(FirstInst)) { CastSrcTy = FirstInst->getOperand(0)->getType(); } else if (isa(FirstInst) || isa(FirstInst)) { // Can fold binop or shift if the RHS is a constant. ConstantOp = dyn_cast(FirstInst->getOperand(1)); if (ConstantOp == 0) return 0; } else { return 0; // Cannot fold this operation. } // Check to see if all arguments are the same operation. for (unsigned i = 1, e = PN.getNumIncomingValues(); i != e; ++i) { if (!isa(PN.getIncomingValue(i))) return 0; Instruction *I = cast(PN.getIncomingValue(i)); if (!I->hasOneUse() || I->getOpcode() != FirstInst->getOpcode()) return 0; if (CastSrcTy) { if (I->getOperand(0)->getType() != CastSrcTy) return 0; // Cast operation must match. } else if (I->getOperand(1) != ConstantOp) { return 0; } } // Okay, they are all the same operation. Create a new PHI node of the // correct type, and PHI together all of the LHS's of the instructions. PHINode *NewPN = new PHINode(FirstInst->getOperand(0)->getType(), PN.getName()+".in"); NewPN->op_reserve(PN.getNumOperands()); Value *InVal = FirstInst->getOperand(0); NewPN->addIncoming(InVal, PN.getIncomingBlock(0)); // Add all operands to the new PHI. for (unsigned i = 1, e = PN.getNumIncomingValues(); i != e; ++i) { Value *NewInVal = cast(PN.getIncomingValue(i))->getOperand(0); if (NewInVal != InVal) InVal = 0; NewPN->addIncoming(NewInVal, PN.getIncomingBlock(i)); } Value *PhiVal; if (InVal) { // The new PHI unions all of the same values together. This is really // common, so we handle it intelligently here for compile-time speed. PhiVal = InVal; delete NewPN; } else { InsertNewInstBefore(NewPN, PN); PhiVal = NewPN; } // Insert and return the new operation. if (isa(FirstInst)) return new CastInst(PhiVal, PN.getType()); else if (BinaryOperator *BinOp = dyn_cast(FirstInst)) return BinaryOperator::create(BinOp->getOpcode(), PhiVal, ConstantOp); else return new ShiftInst(cast(FirstInst)->getOpcode(), PhiVal, ConstantOp); } // PHINode simplification // Instruction *InstCombiner::visitPHINode(PHINode &PN) { if (Value *V = hasConstantValue(&PN)) { // If V is an instruction, we have to be certain that it dominates PN. // However, because we don't have dom info, we can't do a perfect job. if (Instruction *I = dyn_cast(V)) { // We know that the instruction dominates the PHI if there are no undef // values coming in. if (I->getParent() != &I->getParent()->getParent()->front() || isa(I)) for (unsigned i = 0, e = PN.getNumIncomingValues(); i != e; ++i) if (isa(PN.getIncomingValue(i))) { V = 0; break; } } if (V) return ReplaceInstUsesWith(PN, V); } // If the only user of this instruction is a cast instruction, and all of the // incoming values are constants, change this PHI to merge together the casted // constants. if (PN.hasOneUse()) if (CastInst *CI = dyn_cast(PN.use_back())) if (CI->getType() != PN.getType()) { // noop casts will be folded bool AllConstant = true; for (unsigned i = 0, e = PN.getNumIncomingValues(); i != e; ++i) if (!isa(PN.getIncomingValue(i))) { AllConstant = false; break; } if (AllConstant) { // Make a new PHI with all casted values. PHINode *New = new PHINode(CI->getType(), PN.getName(), &PN); for (unsigned i = 0, e = PN.getNumIncomingValues(); i != e; ++i) { Constant *OldArg = cast(PN.getIncomingValue(i)); New->addIncoming(ConstantExpr::getCast(OldArg, New->getType()), PN.getIncomingBlock(i)); } // Update the cast instruction. CI->setOperand(0, New); WorkList.push_back(CI); // revisit the cast instruction to fold. WorkList.push_back(New); // Make sure to revisit the new Phi return &PN; // PN is now dead! } } // If all PHI operands are the same operation, pull them through the PHI, // reducing code size. if (isa(PN.getIncomingValue(0)) && PN.getIncomingValue(0)->hasOneUse()) if (Instruction *Result = FoldPHIArgOpIntoPHI(PN)) return Result; return 0; } static Value *InsertSignExtendToPtrTy(Value *V, const Type *DTy, Instruction *InsertPoint, InstCombiner *IC) { unsigned PS = IC->getTargetData().getPointerSize(); const Type *VTy = V->getType(); if (!VTy->isSigned() && VTy->getPrimitiveSize() < PS) // We must insert a cast to ensure we sign-extend. V = IC->InsertNewInstBefore(new CastInst(V, VTy->getSignedVersion(), V->getName()), *InsertPoint); return IC->InsertNewInstBefore(new CastInst(V, DTy, V->getName()), *InsertPoint); } Instruction *InstCombiner::visitGetElementPtrInst(GetElementPtrInst &GEP) { Value *PtrOp = GEP.getOperand(0); // Is it 'getelementptr %P, long 0' or 'getelementptr %P' // If so, eliminate the noop. if (GEP.getNumOperands() == 1) return ReplaceInstUsesWith(GEP, PtrOp); if (isa(GEP.getOperand(0))) return ReplaceInstUsesWith(GEP, UndefValue::get(GEP.getType())); bool HasZeroPointerIndex = false; if (Constant *C = dyn_cast(GEP.getOperand(1))) HasZeroPointerIndex = C->isNullValue(); if (GEP.getNumOperands() == 2 && HasZeroPointerIndex) return ReplaceInstUsesWith(GEP, PtrOp); // Eliminate unneeded casts for indices. bool MadeChange = false; gep_type_iterator GTI = gep_type_begin(GEP); for (unsigned i = 1, e = GEP.getNumOperands(); i != e; ++i, ++GTI) if (isa(*GTI)) { if (CastInst *CI = dyn_cast(GEP.getOperand(i))) { Value *Src = CI->getOperand(0); const Type *SrcTy = Src->getType(); const Type *DestTy = CI->getType(); if (Src->getType()->isInteger()) { if (SrcTy->getPrimitiveSize() == DestTy->getPrimitiveSize()) { // We can always eliminate a cast from ulong or long to the other. // We can always eliminate a cast from uint to int or the other on // 32-bit pointer platforms. if (DestTy->getPrimitiveSize() >= TD->getPointerSize()) { MadeChange = true; GEP.setOperand(i, Src); } } else if (SrcTy->getPrimitiveSize() < DestTy->getPrimitiveSize() && SrcTy->getPrimitiveSize() == 4) { // We can always eliminate a cast from int to [u]long. We can // eliminate a cast from uint to [u]long iff the target is a 32-bit // pointer target. if (SrcTy->isSigned() || SrcTy->getPrimitiveSize() >= TD->getPointerSize()) { MadeChange = true; GEP.setOperand(i, Src); } } } } // If we are using a wider index than needed for this platform, shrink it // to what we need. If the incoming value needs a cast instruction, // insert it. This explicit cast can make subsequent optimizations more // obvious. Value *Op = GEP.getOperand(i); if (Op->getType()->getPrimitiveSize() > TD->getPointerSize()) if (Constant *C = dyn_cast(Op)) { GEP.setOperand(i, ConstantExpr::getCast(C, TD->getIntPtrType()->getSignedVersion())); MadeChange = true; } else { Op = InsertNewInstBefore(new CastInst(Op, TD->getIntPtrType(), Op->getName()), GEP); GEP.setOperand(i, Op); MadeChange = true; } // If this is a constant idx, make sure to canonicalize it to be a signed // operand, otherwise CSE and other optimizations are pessimized. if (ConstantUInt *CUI = dyn_cast(Op)) { GEP.setOperand(i, ConstantExpr::getCast(CUI, CUI->getType()->getSignedVersion())); MadeChange = true; } } if (MadeChange) return &GEP; // Combine Indices - If the source pointer to this getelementptr instruction // is a getelementptr instruction, combine the indices of the two // getelementptr instructions into a single instruction. // std::vector SrcGEPOperands; if (GetElementPtrInst *Src = dyn_cast(PtrOp)) { SrcGEPOperands.assign(Src->op_begin(), Src->op_end()); } else if (ConstantExpr *CE = dyn_cast(PtrOp)) { if (CE->getOpcode() == Instruction::GetElementPtr) SrcGEPOperands.assign(CE->op_begin(), CE->op_end()); } if (!SrcGEPOperands.empty()) { // Note that if our source is a gep chain itself that we wait for that // chain to be resolved before we perform this transformation. This // avoids us creating a TON of code in some cases. // if (isa(SrcGEPOperands[0]) && cast(SrcGEPOperands[0])->getNumOperands() == 2) return 0; // Wait until our source is folded to completion. std::vector Indices; // Find out whether the last index in the source GEP is a sequential idx. bool EndsWithSequential = false; for (gep_type_iterator I = gep_type_begin(*cast(PtrOp)), E = gep_type_end(*cast(PtrOp)); I != E; ++I) EndsWithSequential = !isa(*I); // Can we combine the two pointer arithmetics offsets? if (EndsWithSequential) { // Replace: gep (gep %P, long B), long A, ... // With: T = long A+B; gep %P, T, ... // Value *Sum, *SO1 = SrcGEPOperands.back(), *GO1 = GEP.getOperand(1); if (SO1 == Constant::getNullValue(SO1->getType())) { Sum = GO1; } else if (GO1 == Constant::getNullValue(GO1->getType())) { Sum = SO1; } else { // If they aren't the same type, convert both to an integer of the // target's pointer size. if (SO1->getType() != GO1->getType()) { if (Constant *SO1C = dyn_cast(SO1)) { SO1 = ConstantExpr::getCast(SO1C, GO1->getType()); } else if (Constant *GO1C = dyn_cast(GO1)) { GO1 = ConstantExpr::getCast(GO1C, SO1->getType()); } else { unsigned PS = TD->getPointerSize(); if (SO1->getType()->getPrimitiveSize() == PS) { // Convert GO1 to SO1's type. GO1 = InsertSignExtendToPtrTy(GO1, SO1->getType(), &GEP, this); } else if (GO1->getType()->getPrimitiveSize() == PS) { // Convert SO1 to GO1's type. SO1 = InsertSignExtendToPtrTy(SO1, GO1->getType(), &GEP, this); } else { const Type *PT = TD->getIntPtrType(); SO1 = InsertSignExtendToPtrTy(SO1, PT, &GEP, this); GO1 = InsertSignExtendToPtrTy(GO1, PT, &GEP, this); } } } if (isa(SO1) && isa(GO1)) Sum = ConstantExpr::getAdd(cast(SO1), cast(GO1)); else { Sum = BinaryOperator::createAdd(SO1, GO1, PtrOp->getName()+".sum"); InsertNewInstBefore(cast(Sum), GEP); } } // Recycle the GEP we already have if possible. if (SrcGEPOperands.size() == 2) { GEP.setOperand(0, SrcGEPOperands[0]); GEP.setOperand(1, Sum); return &GEP; } else { Indices.insert(Indices.end(), SrcGEPOperands.begin()+1, SrcGEPOperands.end()-1); Indices.push_back(Sum); Indices.insert(Indices.end(), GEP.op_begin()+2, GEP.op_end()); } } else if (isa(*GEP.idx_begin()) && cast(*GEP.idx_begin())->isNullValue() && SrcGEPOperands.size() != 1) { // Otherwise we can do the fold if the first index of the GEP is a zero Indices.insert(Indices.end(), SrcGEPOperands.begin()+1, SrcGEPOperands.end()); Indices.insert(Indices.end(), GEP.idx_begin()+1, GEP.idx_end()); } if (!Indices.empty()) return new GetElementPtrInst(SrcGEPOperands[0], Indices, GEP.getName()); } else if (GlobalValue *GV = dyn_cast(PtrOp)) { // GEP of global variable. If all of the indices for this GEP are // constants, we can promote this to a constexpr instead of an instruction. // Scan for nonconstants... std::vector Indices; User::op_iterator I = GEP.idx_begin(), E = GEP.idx_end(); for (; I != E && isa(*I); ++I) Indices.push_back(cast(*I)); if (I == E) { // If they are all constants... Constant *CE = ConstantExpr::getGetElementPtr(GV, Indices); // Replace all uses of the GEP with the new constexpr... return ReplaceInstUsesWith(GEP, CE); } } else if (ConstantExpr *CE = dyn_cast(PtrOp)) { if (CE->getOpcode() == Instruction::Cast) { if (HasZeroPointerIndex) { // transform: GEP (cast [10 x ubyte]* X to [0 x ubyte]*), long 0, ... // into : GEP [10 x ubyte]* X, long 0, ... // // This occurs when the program declares an array extern like "int X[];" // Constant *X = CE->getOperand(0); const PointerType *CPTy = cast(CE->getType()); if (const PointerType *XTy = dyn_cast(X->getType())) if (const ArrayType *XATy = dyn_cast(XTy->getElementType())) if (const ArrayType *CATy = dyn_cast(CPTy->getElementType())) if (CATy->getElementType() == XATy->getElementType()) { // At this point, we know that the cast source type is a pointer // to an array of the same type as the destination pointer // array. Because the array type is never stepped over (there // is a leading zero) we can fold the cast into this GEP. GEP.setOperand(0, X); return &GEP; } } else if (GEP.getNumOperands() == 2) { // Transform things like: // %t = getelementptr ubyte* cast ([2 x sbyte]* %str to ubyte*), uint %V // into: %t1 = getelementptr [2 x sbyte*]* %str, int 0, uint %V; cast Constant *X = CE->getOperand(0); const Type *SrcElTy = cast(X->getType())->getElementType(); const Type *ResElTy =cast(CE->getType())->getElementType(); if (isa(SrcElTy) && TD->getTypeSize(cast(SrcElTy)->getElementType()) == TD->getTypeSize(ResElTy)) { Value *V = InsertNewInstBefore( new GetElementPtrInst(X, Constant::getNullValue(Type::IntTy), GEP.getOperand(1), GEP.getName()), GEP); return new CastInst(V, GEP.getType()); } } } } return 0; } Instruction *InstCombiner::visitAllocationInst(AllocationInst &AI) { // Convert: malloc Ty, C - where C is a constant != 1 into: malloc [C x Ty], 1 if (AI.isArrayAllocation()) // Check C != 1 if (const ConstantUInt *C = dyn_cast(AI.getArraySize())) { const Type *NewTy = ArrayType::get(AI.getAllocatedType(), C->getValue()); AllocationInst *New = 0; // Create and insert the replacement instruction... if (isa(AI)) New = new MallocInst(NewTy, 0, AI.getName()); else { assert(isa(AI) && "Unknown type of allocation inst!"); New = new AllocaInst(NewTy, 0, AI.getName()); } InsertNewInstBefore(New, AI); // Scan to the end of the allocation instructions, to skip over a block of // allocas if possible... // BasicBlock::iterator It = New; while (isa(*It)) ++It; // Now that I is pointing to the first non-allocation-inst in the block, // insert our getelementptr instruction... // std::vector Idx(2, Constant::getNullValue(Type::IntTy)); Value *V = new GetElementPtrInst(New, Idx, New->getName()+".sub", It); // Now make everything use the getelementptr instead of the original // allocation. return ReplaceInstUsesWith(AI, V); } else if (isa(AI.getArraySize())) { return ReplaceInstUsesWith(AI, Constant::getNullValue(AI.getType())); } // If alloca'ing a zero byte object, replace the alloca with a null pointer. // Note that we only do this for alloca's, because malloc should allocate and // return a unique pointer, even for a zero byte allocation. if (isa(AI) && AI.getAllocatedType()->isSized() && TD->getTypeSize(AI.getAllocatedType()) == 0) return ReplaceInstUsesWith(AI, Constant::getNullValue(AI.getType())); return 0; } Instruction *InstCombiner::visitFreeInst(FreeInst &FI) { Value *Op = FI.getOperand(0); // Change free * (cast * X to *) into free * X if (CastInst *CI = dyn_cast(Op)) if (isa(CI->getOperand(0)->getType())) { FI.setOperand(0, CI->getOperand(0)); return &FI; } // free undef -> unreachable. if (isa(Op)) { // Insert a new store to null because we cannot modify the CFG here. new StoreInst(ConstantBool::True, UndefValue::get(PointerType::get(Type::BoolTy)), &FI); return EraseInstFromFunction(FI); } // If we have 'free null' delete the instruction. This can happen in stl code // when lots of inlining happens. if (isa(Op)) return EraseInstFromFunction(FI); return 0; } /// GetGEPGlobalInitializer - Given a constant, and a getelementptr /// constantexpr, return the constant value being addressed by the constant /// expression, or null if something is funny. /// static Constant *GetGEPGlobalInitializer(Constant *C, ConstantExpr *CE) { if (CE->getOperand(1) != Constant::getNullValue(CE->getOperand(1)->getType())) return 0; // Do not allow stepping over the value! // Loop over all of the operands, tracking down which value we are // addressing... gep_type_iterator I = gep_type_begin(CE), E = gep_type_end(CE); for (++I; I != E; ++I) if (const StructType *STy = dyn_cast(*I)) { ConstantUInt *CU = cast(I.getOperand()); assert(CU->getValue() < STy->getNumElements() && "Struct index out of range!"); if (ConstantStruct *CS = dyn_cast(C)) { C = CS->getOperand(CU->getValue()); } else if (isa(C)) { C = Constant::getNullValue(STy->getElementType(CU->getValue())); } else if (isa(C)) { C = UndefValue::get(STy->getElementType(CU->getValue())); } else { return 0; } } else if (ConstantInt *CI = dyn_cast(I.getOperand())) { const ArrayType *ATy = cast(*I); if ((uint64_t)CI->getRawValue() >= ATy->getNumElements()) return 0; if (ConstantArray *CA = dyn_cast(C)) C = CA->getOperand(CI->getRawValue()); else if (isa(C)) C = Constant::getNullValue(ATy->getElementType()); else if (isa(C)) C = UndefValue::get(ATy->getElementType()); else return 0; } else { return 0; } return C; } static Instruction *InstCombineLoadCast(InstCombiner &IC, LoadInst &LI) { User *CI = cast(LI.getOperand(0)); const Type *DestPTy = cast(CI->getType())->getElementType(); if (const PointerType *SrcTy = dyn_cast(CI->getOperand(0)->getType())) { const Type *SrcPTy = SrcTy->getElementType(); if (SrcPTy->isSized() && DestPTy->isSized() && IC.getTargetData().getTypeSize(SrcPTy) == IC.getTargetData().getTypeSize(DestPTy) && (SrcPTy->isInteger() || isa(SrcPTy)) && (DestPTy->isInteger() || isa(DestPTy))) { // Okay, we are casting from one integer or pointer type to another of // the same size. Instead of casting the pointer before the load, cast // the result of the loaded value. Value *NewLoad = IC.InsertNewInstBefore(new LoadInst(CI->getOperand(0), CI->getName(), LI.isVolatile()),LI); // Now cast the result of the load. return new CastInst(NewLoad, LI.getType()); } } return 0; } /// isSafeToLoadUnconditionally - Return true if we know that executing a load /// from this value cannot trap. If it is not obviously safe to load from the /// specified pointer, we do a quick local scan of the basic block containing /// ScanFrom, to determine if the address is already accessed. static bool isSafeToLoadUnconditionally(Value *V, Instruction *ScanFrom) { // If it is an alloca or global variable, it is always safe to load from. if (isa(V) || isa(V)) return true; // Otherwise, be a little bit agressive by scanning the local block where we // want to check to see if the pointer is already being loaded or stored // from/to. If so, the previous load or store would have already trapped, // so there is no harm doing an extra load (also, CSE will later eliminate // the load entirely). BasicBlock::iterator BBI = ScanFrom, E = ScanFrom->getParent()->begin(); while (BBI != E) { --BBI; if (LoadInst *LI = dyn_cast(BBI)) { if (LI->getOperand(0) == V) return true; } else if (StoreInst *SI = dyn_cast(BBI)) if (SI->getOperand(1) == V) return true; } return false; } Instruction *InstCombiner::visitLoadInst(LoadInst &LI) { Value *Op = LI.getOperand(0); if (Constant *C = dyn_cast(Op)) { if ((C->isNullValue() || isa(C)) && !LI.isVolatile()) { // load null/undef -> undef // Insert a new store to null instruction before the load to indicate that // this code is not reachable. We do this instead of inserting an // unreachable instruction directly because we cannot modify the CFG. new StoreInst(UndefValue::get(LI.getType()), C, &LI); return ReplaceInstUsesWith(LI, UndefValue::get(LI.getType())); } // Instcombine load (constant global) into the value loaded. if (GlobalVariable *GV = dyn_cast(Op)) if (GV->isConstant() && !GV->isExternal()) return ReplaceInstUsesWith(LI, GV->getInitializer()); // Instcombine load (constantexpr_GEP global, 0, ...) into the value loaded. if (ConstantExpr *CE = dyn_cast(Op)) if (CE->getOpcode() == Instruction::GetElementPtr) { if (GlobalVariable *GV = dyn_cast(CE->getOperand(0))) if (GV->isConstant() && !GV->isExternal()) if (Constant *V = GetGEPGlobalInitializer(GV->getInitializer(), CE)) return ReplaceInstUsesWith(LI, V); } else if (CE->getOpcode() == Instruction::Cast) { if (Instruction *Res = InstCombineLoadCast(*this, LI)) return Res; } } // load (cast X) --> cast (load X) iff safe if (CastInst *CI = dyn_cast(Op)) if (Instruction *Res = InstCombineLoadCast(*this, LI)) return Res; if (!LI.isVolatile() && Op->hasOneUse()) { // Change select and PHI nodes to select values instead of addresses: this // helps alias analysis out a lot, allows many others simplifications, and // exposes redundancy in the code. // // Note that we cannot do the transformation unless we know that the // introduced loads cannot trap! Something like this is valid as long as // the condition is always false: load (select bool %C, int* null, int* %G), // but it would not be valid if we transformed it to load from null // unconditionally. // if (SelectInst *SI = dyn_cast(Op)) { // load (select (Cond, &V1, &V2)) --> select(Cond, load &V1, load &V2). if (isSafeToLoadUnconditionally(SI->getOperand(1), SI) && isSafeToLoadUnconditionally(SI->getOperand(2), SI)) { Value *V1 = InsertNewInstBefore(new LoadInst(SI->getOperand(1), SI->getOperand(1)->getName()+".val"), LI); Value *V2 = InsertNewInstBefore(new LoadInst(SI->getOperand(2), SI->getOperand(2)->getName()+".val"), LI); return new SelectInst(SI->getCondition(), V1, V2); } // load (select (cond, null, P)) -> load P if (Constant *C = dyn_cast(SI->getOperand(1))) if (C->isNullValue()) { LI.setOperand(0, SI->getOperand(2)); return &LI; } // load (select (cond, P, null)) -> load P if (Constant *C = dyn_cast(SI->getOperand(2))) if (C->isNullValue()) { LI.setOperand(0, SI->getOperand(1)); return &LI; } } else if (PHINode *PN = dyn_cast(Op)) { // load (phi (&V1, &V2, &V3)) --> phi(load &V1, load &V2, load &V3) bool Safe = PN->getParent() == LI.getParent(); // Scan all of the instructions between the PHI and the load to make // sure there are no instructions that might possibly alter the value // loaded from the PHI. if (Safe) { BasicBlock::iterator I = &LI; for (--I; !isa(I); --I) if (isa(I) || isa(I)) { Safe = false; break; } } for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e && Safe; ++i) if (!isSafeToLoadUnconditionally(PN->getIncomingValue(i), PN->getIncomingBlock(i)->getTerminator())) Safe = false; if (Safe) { // Create the PHI. PHINode *NewPN = new PHINode(LI.getType(), PN->getName()); InsertNewInstBefore(NewPN, *PN); std::map LoadMap; // Don't insert duplicate loads for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) { BasicBlock *BB = PN->getIncomingBlock(i); Value *&TheLoad = LoadMap[BB]; if (TheLoad == 0) { Value *InVal = PN->getIncomingValue(i); TheLoad = InsertNewInstBefore(new LoadInst(InVal, InVal->getName()+".val"), *BB->getTerminator()); } NewPN->addIncoming(TheLoad, BB); } return ReplaceInstUsesWith(LI, NewPN); } } } return 0; } Instruction *InstCombiner::visitBranchInst(BranchInst &BI) { // Change br (not X), label True, label False to: br X, label False, True Value *X; BasicBlock *TrueDest; BasicBlock *FalseDest; if (match(&BI, m_Br(m_Not(m_Value(X)), TrueDest, FalseDest)) && !isa(X)) { // Swap Destinations and condition... BI.setCondition(X); BI.setSuccessor(0, FalseDest); BI.setSuccessor(1, TrueDest); return &BI; } // Cannonicalize setne -> seteq Instruction::BinaryOps Op; Value *Y; if (match(&BI, m_Br(m_SetCond(Op, m_Value(X), m_Value(Y)), TrueDest, FalseDest))) if ((Op == Instruction::SetNE || Op == Instruction::SetLE || Op == Instruction::SetGE) && BI.getCondition()->hasOneUse()) { SetCondInst *I = cast(BI.getCondition()); std::string Name = I->getName(); I->setName(""); Instruction::BinaryOps NewOpcode = SetCondInst::getInverseCondition(Op); Value *NewSCC = BinaryOperator::create(NewOpcode, X, Y, Name, I); // Swap Destinations and condition... BI.setCondition(NewSCC); BI.setSuccessor(0, FalseDest); BI.setSuccessor(1, TrueDest); removeFromWorkList(I); I->getParent()->getInstList().erase(I); WorkList.push_back(cast(NewSCC)); return &BI; } return 0; } Instruction *InstCombiner::visitSwitchInst(SwitchInst &SI) { Value *Cond = SI.getCondition(); if (Instruction *I = dyn_cast(Cond)) { if (I->getOpcode() == Instruction::Add) if (ConstantInt *AddRHS = dyn_cast(I->getOperand(1))) { // change 'switch (X+4) case 1:' into 'switch (X) case -3' for (unsigned i = 2, e = SI.getNumOperands(); i != e; i += 2) SI.setOperand(i,ConstantExpr::getSub(cast(SI.getOperand(i)), AddRHS)); SI.setOperand(0, I->getOperand(0)); WorkList.push_back(I); return &SI; } } return 0; } void InstCombiner::removeFromWorkList(Instruction *I) { WorkList.erase(std::remove(WorkList.begin(), WorkList.end(), I), WorkList.end()); } bool InstCombiner::runOnFunction(Function &F) { bool Changed = false; TD = &getAnalysis(); for (inst_iterator i = inst_begin(F), e = inst_end(F); i != e; ++i) WorkList.push_back(&*i); while (!WorkList.empty()) { Instruction *I = WorkList.back(); // Get an instruction from the worklist WorkList.pop_back(); // Check to see if we can DCE or ConstantPropagate the instruction... // Check to see if we can DIE the instruction... if (isInstructionTriviallyDead(I)) { // Add operands to the worklist... if (I->getNumOperands() < 4) AddUsesToWorkList(*I); ++NumDeadInst; I->getParent()->getInstList().erase(I); removeFromWorkList(I); continue; } // Instruction isn't dead, see if we can constant propagate it... if (Constant *C = ConstantFoldInstruction(I)) { if (isa(I) && cast(I->getOperand(0))->isNullValue() && !isa(C)) { // If this is a constant expr gep that is effectively computing an // "offsetof", fold it into 'cast int X to T*' instead of 'gep 0, 0, 12' bool isFoldableGEP = true; for (unsigned i = 1, e = I->getNumOperands(); i != e; ++i) if (!isa(I->getOperand(i))) isFoldableGEP = false; if (isFoldableGEP) { uint64_t Offset = TD->getIndexedOffset(I->getOperand(0)->getType(), std::vector(I->op_begin()+1, I->op_end())); C = ConstantUInt::get(Type::ULongTy, Offset); C = ConstantExpr::getCast(C, TD->getIntPtrType()); C = ConstantExpr::getCast(C, I->getType()); } } // Add operands to the worklist... AddUsesToWorkList(*I); ReplaceInstUsesWith(*I, C); ++NumConstProp; I->getParent()->getInstList().erase(I); removeFromWorkList(I); continue; } // Now that we have an instruction, try combining it to simplify it... if (Instruction *Result = visit(*I)) { ++NumCombined; // Should we replace the old instruction with a new one? if (Result != I) { DEBUG(std::cerr << "IC: Old = " << *I << " New = " << *Result); // Everything uses the new instruction now. I->replaceAllUsesWith(Result); // Push the new instruction and any users onto the worklist. WorkList.push_back(Result); AddUsersToWorkList(*Result); // Move the name to the new instruction first... std::string OldName = I->getName(); I->setName(""); Result->setName(OldName); // Insert the new instruction into the basic block... BasicBlock *InstParent = I->getParent(); BasicBlock::iterator InsertPos = I; if (!isa(Result)) // If combining a PHI, don't insert while (isa(InsertPos)) // middle of a block of PHIs. ++InsertPos; InstParent->getInstList().insert(InsertPos, Result); // Make sure that we reprocess all operands now that we reduced their // use counts. for (unsigned i = 0, e = I->getNumOperands(); i != e; ++i) if (Instruction *OpI = dyn_cast(I->getOperand(i))) WorkList.push_back(OpI); // Instructions can end up on the worklist more than once. Make sure // we do not process an instruction that has been deleted. removeFromWorkList(I); // Erase the old instruction. InstParent->getInstList().erase(I); } else { DEBUG(std::cerr << "IC: MOD = " << *I); // If the instruction was modified, it's possible that it is now dead. // if so, remove it. if (isInstructionTriviallyDead(I)) { // Make sure we process all operands now that we are reducing their // use counts. for (unsigned i = 0, e = I->getNumOperands(); i != e; ++i) if (Instruction *OpI = dyn_cast(I->getOperand(i))) WorkList.push_back(OpI); // Instructions may end up in the worklist more than once. Erase all // occurrances of this instruction. removeFromWorkList(I); I->getParent()->getInstList().erase(I); } else { WorkList.push_back(Result); AddUsersToWorkList(*Result); } } Changed = true; } } return Changed; } FunctionPass *llvm::createInstructionCombiningPass() { return new InstCombiner(); }