//===-- llvm/Instruction.h - Instruction class definition -------*- C++ -*-===// // // The LLVM Compiler Infrastructure // // This file is distributed under the University of Illinois Open Source // License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// // // This file contains the declaration of the Instruction class, which is the // base class for all of the LLVM instructions. // //===----------------------------------------------------------------------===// #ifndef LLVM_INSTRUCTION_H #define LLVM_INSTRUCTION_H #include "llvm/User.h" #include "llvm/ADT/ilist_node.h" namespace llvm { class LLVMContext; class MDNode; class MetadataContextImpl; template class SymbolTableListTraits; class Instruction : public User, public ilist_node { void operator=(const Instruction &); // Do not implement Instruction(const Instruction &); // Do not implement BasicBlock *Parent; enum { /// HasMetadataBit - This is a bit stored in the SubClassData field which /// indicates whether this instruction has metadata attached to it or not. HasMetadataBit = 1 << 15 }; public: // Out of line virtual method, so the vtable, etc has a home. ~Instruction(); /// use_back - Specialize the methods defined in Value, as we know that an /// instruction can only be used by other instructions. Instruction *use_back() { return cast(*use_begin());} const Instruction *use_back() const { return cast(*use_begin());} inline const BasicBlock *getParent() const { return Parent; } inline BasicBlock *getParent() { return Parent; } /// removeFromParent - This method unlinks 'this' from the containing basic /// block, but does not delete it. /// void removeFromParent(); /// eraseFromParent - This method unlinks 'this' from the containing basic /// block and deletes it. /// void eraseFromParent(); /// insertBefore - Insert an unlinked instructions into a basic block /// immediately before the specified instruction. void insertBefore(Instruction *InsertPos); /// insertAfter - Insert an unlinked instructions into a basic block /// immediately after the specified instruction. void insertAfter(Instruction *InsertPos); /// moveBefore - Unlink this instruction from its current basic block and /// insert it into the basic block that MovePos lives in, right before /// MovePos. void moveBefore(Instruction *MovePos); //===--------------------------------------------------------------------===// // Subclass classification. //===--------------------------------------------------------------------===// /// getOpcode() returns a member of one of the enums like Instruction::Add. unsigned getOpcode() const { return getValueID() - InstructionVal; } const char *getOpcodeName() const { return getOpcodeName(getOpcode()); } bool isTerminator() const { return isTerminator(getOpcode()); } bool isBinaryOp() const { return isBinaryOp(getOpcode()); } bool isShift() { return isShift(getOpcode()); } bool isCast() const { return isCast(getOpcode()); } static const char* getOpcodeName(unsigned OpCode); static inline bool isTerminator(unsigned OpCode) { return OpCode >= TermOpsBegin && OpCode < TermOpsEnd; } static inline bool isBinaryOp(unsigned Opcode) { return Opcode >= BinaryOpsBegin && Opcode < BinaryOpsEnd; } /// @brief Determine if the Opcode is one of the shift instructions. static inline bool isShift(unsigned Opcode) { return Opcode >= Shl && Opcode <= AShr; } /// isLogicalShift - Return true if this is a logical shift left or a logical /// shift right. inline bool isLogicalShift() const { return getOpcode() == Shl || getOpcode() == LShr; } /// isArithmeticShift - Return true if this is an arithmetic shift right. inline bool isArithmeticShift() const { return getOpcode() == AShr; } /// @brief Determine if the OpCode is one of the CastInst instructions. static inline bool isCast(unsigned OpCode) { return OpCode >= CastOpsBegin && OpCode < CastOpsEnd; } //===--------------------------------------------------------------------===// // Metadata manipulation. //===--------------------------------------------------------------------===// /// hasMetadata() - Return true if this instruction has any metadata attached /// to it. bool hasMetadata() const { return (getSubclassDataFromValue() & HasMetadataBit) != 0; } /// getMetadata - Get the metadata of given kind attached to this Instruction. /// If the metadata is not found then return null. MDNode *getMetadata(unsigned KindID) const { if (!hasMetadata()) return 0; return getMetadataImpl(KindID); } /// getMetadata - Get the metadata of given kind attached to this Instruction. /// If the metadata is not found then return null. MDNode *getMetadata(const char *Kind) const { if (!hasMetadata()) return 0; return getMetadataImpl(Kind); } /// getAllMetadata - Get all metadata attached to this Instruction. The first /// element of each pair returned is the KindID, the second element is the /// metadata value. This list is returned sorted by the KindID. void getAllMetadata(SmallVectorImpl > &MDs)const{ if (hasMetadata()) getAllMetadataImpl(MDs); } /// setMetadata - Set the metadata of of the specified kind to the specified /// node. This updates/replaces metadata if already present, or removes it if /// Node is null. void setMetadata(unsigned KindID, MDNode *Node); void setMetadata(const char *Kind, MDNode *Node); private: // These are all implemented in Metadata.cpp. MDNode *getMetadataImpl(unsigned KindID) const; MDNode *getMetadataImpl(const char *Kind) const; void getAllMetadataImpl(SmallVectorImpl > &)const; public: //===--------------------------------------------------------------------===// // Predicates and helper methods. //===--------------------------------------------------------------------===// /// isAssociative - Return true if the instruction is associative: /// /// Associative operators satisfy: x op (y op z) === (x op y) op z /// /// In LLVM, the Add, Mul, And, Or, and Xor operators are associative, when /// not applied to floating point types. /// bool isAssociative() const { return isAssociative(getOpcode(), getType()); } static bool isAssociative(unsigned op, const Type *Ty); /// isCommutative - Return true if the instruction is commutative: /// /// Commutative operators satisfy: (x op y) === (y op x) /// /// In LLVM, these are the associative operators, plus SetEQ and SetNE, when /// applied to any type. /// bool isCommutative() const { return isCommutative(getOpcode()); } static bool isCommutative(unsigned op); /// mayWriteToMemory - Return true if this instruction may modify memory. /// bool mayWriteToMemory() const; /// mayReadFromMemory - Return true if this instruction may read memory. /// bool mayReadFromMemory() const; /// mayThrow - Return true if this instruction may throw an exception. /// bool mayThrow() const; /// mayHaveSideEffects - Return true if the instruction may have side effects. /// /// Note that this does not consider malloc and alloca to have side /// effects because the newly allocated memory is completely invisible to /// instructions which don't used the returned value. For cases where this /// matters, isSafeToSpeculativelyExecute may be more appropriate. bool mayHaveSideEffects() const { return mayWriteToMemory() || mayThrow(); } /// isSafeToSpeculativelyExecute - Return true if the instruction does not /// have any effects besides calculating the result and does not have /// undefined behavior. /// /// This method never returns true for an instruction that returns true for /// mayHaveSideEffects; however, this method also does some other checks in /// addition. It checks for undefined behavior, like dividing by zero or /// loading from an invalid pointer (but not for undefined results, like a /// shift with a shift amount larger than the width of the result). It checks /// for malloc and alloca because speculatively executing them might cause a /// memory leak. It also returns false for instructions related to control /// flow, specifically terminators and PHI nodes. /// /// This method only looks at the instruction itself and its operands, so if /// this method returns true, it is safe to move the instruction as long as /// the correct dominance relationships for the operands and users hold. /// However, this method can return true for instructions that read memory; /// for such instructions, moving them may change the resulting value. bool isSafeToSpeculativelyExecute() const; /// clone() - Create a copy of 'this' instruction that is identical in all /// ways except the following: /// * The instruction has no parent /// * The instruction has no name /// Instruction *clone() const; /// isIdenticalTo - Return true if the specified instruction is exactly /// identical to the current one. This means that all operands match and any /// extra information (e.g. load is volatile) agree. bool isIdenticalTo(const Instruction *I) const; /// isIdenticalToWhenDefined - This is like isIdenticalTo, except that it /// ignores the SubclassOptionalData flags, which specify conditions /// under which the instruction's result is undefined. bool isIdenticalToWhenDefined(const Instruction *I) const; /// This function determines if the specified instruction executes the same /// operation as the current one. This means that the opcodes, type, operand /// types and any other factors affecting the operation must be the same. This /// is similar to isIdenticalTo except the operands themselves don't have to /// be identical. /// @returns true if the specified instruction is the same operation as /// the current one. /// @brief Determine if one instruction is the same operation as another. bool isSameOperationAs(const Instruction *I) const; /// isUsedOutsideOfBlock - Return true if there are any uses of this /// instruction in blocks other than the specified block. Note that PHI nodes /// are considered to evaluate their operands in the corresponding predecessor /// block. bool isUsedOutsideOfBlock(const BasicBlock *BB) const; /// Methods for support type inquiry through isa, cast, and dyn_cast: static inline bool classof(const Instruction *) { return true; } static inline bool classof(const Value *V) { return V->getValueID() >= Value::InstructionVal; } //---------------------------------------------------------------------- // Exported enumerations. // enum TermOps { // These terminate basic blocks #define FIRST_TERM_INST(N) TermOpsBegin = N, #define HANDLE_TERM_INST(N, OPC, CLASS) OPC = N, #define LAST_TERM_INST(N) TermOpsEnd = N+1 #include "llvm/Instruction.def" }; enum BinaryOps { #define FIRST_BINARY_INST(N) BinaryOpsBegin = N, #define HANDLE_BINARY_INST(N, OPC, CLASS) OPC = N, #define LAST_BINARY_INST(N) BinaryOpsEnd = N+1 #include "llvm/Instruction.def" }; enum MemoryOps { #define FIRST_MEMORY_INST(N) MemoryOpsBegin = N, #define HANDLE_MEMORY_INST(N, OPC, CLASS) OPC = N, #define LAST_MEMORY_INST(N) MemoryOpsEnd = N+1 #include "llvm/Instruction.def" }; enum CastOps { #define FIRST_CAST_INST(N) CastOpsBegin = N, #define HANDLE_CAST_INST(N, OPC, CLASS) OPC = N, #define LAST_CAST_INST(N) CastOpsEnd = N+1 #include "llvm/Instruction.def" }; enum OtherOps { #define FIRST_OTHER_INST(N) OtherOpsBegin = N, #define HANDLE_OTHER_INST(N, OPC, CLASS) OPC = N, #define LAST_OTHER_INST(N) OtherOpsEnd = N+1 #include "llvm/Instruction.def" }; private: // Shadow Value::setValueSubclassData with a private forwarding method so that // subclasses cannot accidentally use it. void setValueSubclassData(unsigned short D) { Value::setValueSubclassData(D); } unsigned short getSubclassDataFromValue() const { return Value::getSubclassDataFromValue(); } friend class MetadataContextImpl; void setHasMetadata(bool V) { setValueSubclassData((getSubclassDataFromValue() & ~HasMetadataBit) | (V ? HasMetadataBit : 0)); } friend class SymbolTableListTraits; void setParent(BasicBlock *P); protected: // Instruction subclasses can stick up to 15 bits of stuff into the // SubclassData field of instruction with these members. // Verify that only the low 15 bits are used. void setInstructionSubclassData(unsigned short D) { assert((D & HasMetadataBit) == 0 && "Out of range value put into field"); setValueSubclassData((getSubclassDataFromValue() & HasMetadataBit) | D); } unsigned getSubclassDataFromInstruction() const { return getSubclassDataFromValue() & ~HasMetadataBit; } Instruction(const Type *Ty, unsigned iType, Use *Ops, unsigned NumOps, Instruction *InsertBefore = 0); Instruction(const Type *Ty, unsigned iType, Use *Ops, unsigned NumOps, BasicBlock *InsertAtEnd); virtual Instruction *clone_impl() const = 0; }; // Instruction* is only 4-byte aligned. template<> class PointerLikeTypeTraits { typedef Instruction* PT; public: static inline void *getAsVoidPointer(PT P) { return P; } static inline PT getFromVoidPointer(void *P) { return static_cast(P); } enum { NumLowBitsAvailable = 2 }; }; } // End llvm namespace #endif