//===- InductionVariable.cpp - Induction variable classification ----------===// // // The LLVM Compiler Infrastructure // // This file was developed by the LLVM research group and is distributed under // the University of Illinois Open Source License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// // // This file implements identification and classification of induction // variables. Induction variables must contain a PHI node that exists in a // loop header. Because of this, they are identified an managed by this PHI // node. // // Induction variables are classified into a type. Knowing that an induction // variable is of a specific type can constrain the values of the start and // step. For example, a SimpleLinear induction variable must have a start and // step values that are constants. // // Induction variables can be created with or without loop information. If no // loop information is available, induction variables cannot be recognized to be // more than SimpleLinear variables. // //===----------------------------------------------------------------------===// #include "llvm/Analysis/InductionVariable.h" #include "llvm/Analysis/LoopInfo.h" #include "llvm/Analysis/Expressions.h" #include "llvm/BasicBlock.h" #include "llvm/Instructions.h" #include "llvm/Type.h" #include "llvm/Constants.h" #include "llvm/Support/CFG.h" #include "llvm/Assembly/Writer.h" #include "Support/Debug.h" using namespace llvm; static bool isLoopInvariant(const Value *V, const Loop *L) { if (const Instruction *I = dyn_cast(V)) return !L->contains(I->getParent()); // non-instructions all dominate instructions/blocks return true; } enum InductionVariable::iType InductionVariable::Classify(const Value *Start, const Value *Step, const Loop *L) { // Check for canonical and simple linear expressions now... if (const ConstantInt *CStart = dyn_cast(Start)) if (const ConstantInt *CStep = dyn_cast(Step)) { if (CStart->isNullValue() && CStep->equalsInt(1)) return Canonical; else return SimpleLinear; } // Without loop information, we cannot do any better, so bail now... if (L == 0) return Unknown; if (isLoopInvariant(Start, L) && isLoopInvariant(Step, L)) return Linear; return Unknown; } // Create an induction variable for the specified value. If it is a PHI, and // if it's recognizable, classify it and fill in instance variables. // InductionVariable::InductionVariable(PHINode *P, LoopInfo *LoopInfo): End(0) { InductionType = Unknown; // Assume the worst Phi = P; // If the PHI node has more than two predecessors, we don't know how to // handle it. // if (Phi->getNumIncomingValues() != 2) return; // FIXME: Handle FP induction variables. if (Phi->getType() == Type::FloatTy || Phi->getType() == Type::DoubleTy) return; // If we have loop information, make sure that this PHI node is in the header // of a loop... // const Loop *L = LoopInfo ? LoopInfo->getLoopFor(Phi->getParent()) : 0; if (L && L->getHeader() != Phi->getParent()) return; Value *V1 = Phi->getIncomingValue(0); Value *V2 = Phi->getIncomingValue(1); if (L == 0) { // No loop information? Base everything on expression analysis ExprType E1 = ClassifyExpr(V1); ExprType E2 = ClassifyExpr(V2); if (E1.ExprTy > E2.ExprTy) // Make E1 be the simpler expression std::swap(E1, E2); // E1 must be a constant incoming value, and E2 must be a linear expression // with respect to the PHI node. // if (E1.ExprTy > ExprType::Constant || E2.ExprTy != ExprType::Linear || E2.Var != Phi) return; // Okay, we have found an induction variable. Save the start and step values const Type *ETy = Phi->getType(); if (isa(ETy)) ETy = Type::ULongTy; Start = (Value*)(E1.Offset ? E1.Offset : ConstantInt::get(ETy, 0)); Step = (Value*)(E2.Offset ? E2.Offset : ConstantInt::get(ETy, 0)); } else { // Okay, at this point, we know that we have loop information... // Make sure that V1 is the incoming value, and V2 is from the backedge of // the loop. if (L->contains(Phi->getIncomingBlock(0))) // Wrong order. Swap now. std::swap(V1, V2); Start = V1; // We know that Start has to be loop invariant... Step = 0; if (V2 == Phi) { // referencing the PHI directly? Must have zero step Step = Constant::getNullValue(Phi->getType()); } else if (BinaryOperator *I = dyn_cast(V2)) { if (I->getOpcode() == Instruction::Add) { if (I->getOperand(0) == Phi) Step = I->getOperand(1); else if (I->getOperand(1) == Phi) Step = I->getOperand(0); } else if (I->getOpcode() == Instruction::Sub && I->getOperand(0) == Phi) { // If the incoming value is a constant, just form a constant negative // step. Otherwise, negate the step outside of the loop and use it. Value *V = I->getOperand(1); Constant *Zero = Constant::getNullValue(V->getType()); if (Constant *CV = dyn_cast(V)) Step = ConstantExpr::get(Instruction::Sub, Zero, CV); else if (Instruction *I = dyn_cast(V)) { BasicBlock::iterator InsertPt = I; for (++InsertPt; isa(InsertPt); ++InsertPt) /*empty*/; Step = BinaryOperator::create(Instruction::Sub, Zero, V, V->getName()+".neg", InsertPt); } else { // Must be loop invariant Step = BinaryOperator::create(Instruction::Sub, Zero, V, V->getName()+".neg", Phi->getParent()->getParent()->begin()->begin()); } } } else if (GetElementPtrInst *GEP = dyn_cast(V2)) { if (GEP->getNumOperands() == 2 && GEP->getOperand(0) == Phi) Step = GEP->getOperand(1); } if (Step == 0) { // Unrecognized step value... ExprType StepE = ClassifyExpr(V2); if (StepE.ExprTy != ExprType::Linear || StepE.Var != Phi) return; const Type *ETy = Phi->getType(); if (isa(ETy)) ETy = Type::ULongTy; Step = (Value*)(StepE.Offset ? StepE.Offset : ConstantInt::get(ETy, 0)); } else { // We were able to get a step value, simplify with expr analysis ExprType StepE = ClassifyExpr(Step); if (StepE.ExprTy == ExprType::Linear && StepE.Offset == 0) { // No offset from variable? Grab the variable Step = StepE.Var; } else if (StepE.ExprTy == ExprType::Constant) { if (StepE.Offset) Step = (Value*)StepE.Offset; else Step = Constant::getNullValue(Step->getType()); const Type *ETy = Phi->getType(); if (isa(ETy)) ETy = Type::ULongTy; Step = (Value*)(StepE.Offset ? StepE.Offset : ConstantInt::get(ETy,0)); } } } // Classify the induction variable type now... InductionType = InductionVariable::Classify(Start, Step, L); } Value *InductionVariable::getExecutionCount(LoopInfo *LoopInfo) { if (InductionType != Canonical) return 0; DEBUG(std::cerr << "entering getExecutionCount\n"); // Don't recompute if already available if (End) { DEBUG(std::cerr << "returning cached End value.\n"); return End; } const Loop *L = LoopInfo ? LoopInfo->getLoopFor(Phi->getParent()) : 0; if (!L) { DEBUG(std::cerr << "null loop. oops\n"); return 0; } // >1 backedge => cannot predict number of iterations if (Phi->getNumIncomingValues() != 2) { DEBUG(std::cerr << ">2 incoming values. oops\n"); return 0; } // Find final node: predecessor of the loop header that's also an exit BasicBlock *terminator = 0; for (pred_iterator PI = pred_begin(L->getHeader()), PE = pred_end(L->getHeader()); PI != PE; ++PI) if (L->isLoopExit(*PI)) { terminator = *PI; break; } // Break in the loop => cannot predict number of iterations // break: any block which is an exit node whose successor is not in loop, // and this block is not marked as the terminator // const std::vector &blocks = L->getBlocks(); for (std::vector::const_iterator I = blocks.begin(), e = blocks.end(); I != e; ++I) if (L->isLoopExit(*I) && *I != terminator) for (succ_iterator SI = succ_begin(*I), SE = succ_end(*I); SI != SE; ++SI) if (!L->contains(*SI)) { DEBUG(std::cerr << "break found in loop"); return 0; } BranchInst *B = dyn_cast(terminator->getTerminator()); if (!B) { DEBUG(std::cerr << "Terminator is not a cond branch!"); return 0; } SetCondInst *SCI = dyn_cast(B->getCondition()); if (!SCI) { DEBUG(std::cerr << "Not a cond branch on setcc!\n"); return 0; } DEBUG(std::cerr << "sci:" << *SCI); Value *condVal0 = SCI->getOperand(0); Value *condVal1 = SCI->getOperand(1); // The induction variable is the one coming from the backedge Value *indVar = Phi->getIncomingValue(L->contains(Phi->getIncomingBlock(1))); // Check to see if indVar is one of the parameters in SCI and if the other is // loop-invariant, it is the UB if (indVar == condVal0) { if (isLoopInvariant(condVal1, L)) End = condVal1; else { DEBUG(std::cerr << "not loop invariant 1\n"); return 0; } } else if (indVar == condVal1) { if (isLoopInvariant(condVal0, L)) End = condVal0; else { DEBUG(std::cerr << "not loop invariant 0\n"); return 0; } } else { DEBUG(std::cerr << "Loop condition doesn't directly uses indvar\n"); return 0; } switch (SCI->getOpcode()) { case Instruction::SetLT: case Instruction::SetNE: return End; // already done case Instruction::SetLE: // if compared to a constant int N, then predict N+1 iterations if (ConstantSInt *ubSigned = dyn_cast(End)) { DEBUG(std::cerr << "signed int constant\n"); return ConstantSInt::get(ubSigned->getType(), ubSigned->getValue()+1); } else if (ConstantUInt *ubUnsigned = dyn_cast(End)) { DEBUG(std::cerr << "unsigned int constant\n"); return ConstantUInt::get(ubUnsigned->getType(), ubUnsigned->getValue()+1); } else { DEBUG(std::cerr << "symbolic bound\n"); // new expression N+1, insert right before the SCI. FIXME: If End is loop // invariant, then so is this expression. We should insert it in the loop // preheader if it exists. return BinaryOperator::create(Instruction::Add, End, ConstantInt::get(End->getType(), 1), "tripcount", SCI); } default: return 0; // cannot predict } } void InductionVariable::print(std::ostream &o) const { switch (InductionType) { case InductionVariable::Canonical: o << "Canonical "; break; case InductionVariable::SimpleLinear: o << "SimpleLinear "; break; case InductionVariable::Linear: o << "Linear "; break; case InductionVariable::Unknown: o << "Unrecognized "; break; } o << "Induction Variable: "; if (Phi) { WriteAsOperand(o, Phi); o << ":\n" << Phi; } else { o << "\n"; } if (InductionType == InductionVariable::Unknown) return; o << " Start = "; WriteAsOperand(o, Start); o << " Step = " ; WriteAsOperand(o, Step); if (End) { o << " End = " ; WriteAsOperand(o, End); } o << "\n"; }