//===- LoopPreheaders.cpp - Loop Preheader Insertion Pass -----------------===// // // Insert Loop pre-headers and exit blocks into the CFG for each function in the // module. This pass updates loop information and dominator information. // // Loop pre-header insertion guarantees that there is a single, non-critical // entry edge from outside of the loop to the loop header. This simplifies a // number of analyses and transformations, such as LICM. // // Loop exit-block insertion guarantees that all exit blocks from the loop // (blocks which are outside of the loop that have predecessors inside of the // loop) are dominated by the loop header. This simplifies transformations such // as store-sinking that are built into LICM. // // Note that the simplifycfg pass will clean up blocks which are split out but // end up being unnecessary, so usage of this pass does not necessarily // pessimize generated code. // //===----------------------------------------------------------------------===// #include "llvm/Transforms/Scalar.h" #include "llvm/Analysis/Dominators.h" #include "llvm/Analysis/LoopInfo.h" #include "llvm/Function.h" #include "llvm/iTerminators.h" #include "llvm/iPHINode.h" #include "llvm/Constant.h" #include "llvm/Support/CFG.h" #include "Support/SetOperations.h" #include "Support/Statistic.h" #include "Support/DepthFirstIterator.h" namespace { Statistic<> NumInserted("preheaders", "Number of pre-header nodes inserted"); struct Preheaders : public FunctionPass { virtual bool runOnFunction(Function &F); virtual void getAnalysisUsage(AnalysisUsage &AU) const { // We need loop information to identify the loops... AU.addRequired(); AU.addRequired(); AU.addPreserved(); AU.addPreserved(); AU.addPreserved(); AU.addPreserved(); AU.addPreserved(); AU.addPreservedID(BreakCriticalEdgesID); // No crit edges added.... } private: bool ProcessLoop(Loop *L); BasicBlock *SplitBlockPredecessors(BasicBlock *BB, const char *Suffix, const std::vector &Preds); void RewriteLoopExitBlock(Loop *L, BasicBlock *Exit); void InsertPreheaderForLoop(Loop *L); }; RegisterOpt X("preheaders", "Natural loop pre-header insertion"); } // Publically exposed interface to pass... const PassInfo *LoopPreheadersID = X.getPassInfo(); Pass *createLoopPreheaderInsertionPass() { return new Preheaders(); } /// runOnFunction - Run down all loops in the CFG (recursively, but we could do /// it in any convenient order) inserting preheaders... /// bool Preheaders::runOnFunction(Function &F) { bool Changed = false; LoopInfo &LI = getAnalysis(); for (unsigned i = 0, e = LI.getTopLevelLoops().size(); i != e; ++i) Changed |= ProcessLoop(LI.getTopLevelLoops()[i]); return Changed; } /// ProcessLoop - Walk the loop structure in depth first order, ensuring that /// all loops have preheaders. /// bool Preheaders::ProcessLoop(Loop *L) { bool Changed = false; // Does the loop already have a preheader? If so, don't modify the loop... if (L->getLoopPreheader() == 0) { InsertPreheaderForLoop(L); NumInserted++; Changed = true; } // Regardless of whether or not we added a preheader to the loop we must // guarantee that the preheader dominates all exit nodes. If there are any // exit nodes not dominated, split them now. DominatorSet &DS = getAnalysis(); BasicBlock *Header = L->getHeader(); for (unsigned i = 0, e = L->getExitBlocks().size(); i != e; ++i) if (!DS.dominates(Header, L->getExitBlocks()[i])) { RewriteLoopExitBlock(L, L->getExitBlocks()[i]); assert(DS.dominates(Header, L->getExitBlocks()[i]) && "RewriteLoopExitBlock failed?"); NumInserted++; Changed = true; } const std::vector &SubLoops = L->getSubLoops(); for (unsigned i = 0, e = SubLoops.size(); i != e; ++i) Changed |= ProcessLoop(SubLoops[i]); return Changed; } /// SplitBlockPredecessors - Split the specified block into two blocks. We want /// to move the predecessors specified in the Preds list to point to the new /// block, leaving the remaining predecessors pointing to BB. This method /// updates the SSA PHINode's, but no other analyses. /// BasicBlock *Preheaders::SplitBlockPredecessors(BasicBlock *BB, const char *Suffix, const std::vector &Preds) { // Create new basic block, insert right before the original block... BasicBlock *NewBB = new BasicBlock(BB->getName()+Suffix, BB); // The preheader first gets an unconditional branch to the loop header... BranchInst *BI = new BranchInst(BB); NewBB->getInstList().push_back(BI); // For every PHI node in the block, insert a PHI node into NewBB where the // incoming values from the out of loop edges are moved to NewBB. We have two // possible cases here. If the loop is dead, we just insert dummy entries // into the PHI nodes for the new edge. If the loop is not dead, we move the // incoming edges in BB into new PHI nodes in NewBB. // if (!Preds.empty()) { // Is the loop not obviously dead? for (BasicBlock::iterator I = BB->begin(); PHINode *PN = dyn_cast(I); ++I) { // Create the new PHI node, insert it into NewBB at the end of the block PHINode *NewPHI = new PHINode(PN->getType(), PN->getName()+".ph", BI); // Move all of the edges from blocks outside the loop to the new PHI for (unsigned i = 0, e = Preds.size(); i != e; ++i) { Value *V = PN->removeIncomingValue(Preds[i]); NewPHI->addIncoming(V, Preds[i]); } // Add an incoming value to the PHI node in the loop for the preheader // edge PN->addIncoming(NewPHI, NewBB); } // Now that the PHI nodes are updated, actually move the edges from // Preds to point to NewBB instead of BB. // for (unsigned i = 0, e = Preds.size(); i != e; ++i) { TerminatorInst *TI = Preds[i]->getTerminator(); for (unsigned s = 0, e = TI->getNumSuccessors(); s != e; ++s) if (TI->getSuccessor(s) == BB) TI->setSuccessor(s, NewBB); } } else { // Otherwise the loop is dead... for (BasicBlock::iterator I = BB->begin(); PHINode *PN = dyn_cast(I); ++I) // Insert dummy values as the incoming value... PN->addIncoming(Constant::getNullValue(PN->getType()), NewBB); } return NewBB; } // ChangeExitBlock - This recursive function is used to change any exit blocks // that use OldExit to use NewExit instead. This is recursive because children // may need to be processed as well. // static void ChangeExitBlock(Loop *L, BasicBlock *OldExit, BasicBlock *NewExit) { if (L->hasExitBlock(OldExit)) { L->changeExitBlock(OldExit, NewExit); const std::vector &SubLoops = L->getSubLoops(); for (unsigned i = 0, e = SubLoops.size(); i != e; ++i) ChangeExitBlock(SubLoops[i], OldExit, NewExit); } } /// InsertPreheaderForLoop - Once we discover that a loop doesn't have a /// preheader, this method is called to insert one. This method has two phases: /// preheader insertion and analysis updating. /// void Preheaders::InsertPreheaderForLoop(Loop *L) { BasicBlock *Header = L->getHeader(); // Compute the set of predecessors of the loop that are not in the loop. std::vector OutsideBlocks; for (pred_iterator PI = pred_begin(Header), PE = pred_end(Header); PI != PE; ++PI) if (!L->contains(*PI)) // Coming in from outside the loop? OutsideBlocks.push_back(*PI); // Keep track of it... // Split out the loop pre-header BasicBlock *NewBB = SplitBlockPredecessors(Header, ".preheader", OutsideBlocks); //===--------------------------------------------------------------------===// // Update analysis results now that we have performed the transformation // // We know that we have loop information to update... update it now. if (Loop *Parent = L->getParentLoop()) Parent->addBasicBlockToLoop(NewBB, getAnalysis()); // If the header for the loop used to be an exit node for another loop, then // we need to update this to know that the loop-preheader is now the exit // node. Note that the only loop that could have our header as an exit node // is a sibling loop, ie, one with the same parent loop, or one if it's // children. // const std::vector *ParentSubLoops; if (Loop *Parent = L->getParentLoop()) ParentSubLoops = &Parent->getSubLoops(); else // Must check top-level loops... ParentSubLoops = &getAnalysis().getTopLevelLoops(); // Loop over all sibling loops, performing the substitution (recursively to // include child loops)... for (unsigned i = 0, e = ParentSubLoops->size(); i != e; ++i) ChangeExitBlock((*ParentSubLoops)[i], Header, NewBB); DominatorSet &DS = getAnalysis(); // Update dominator info { // The blocks that dominate NewBB are the blocks that dominate Header, // minus Header, plus NewBB. DominatorSet::DomSetType DomSet = DS.getDominators(Header); DomSet.insert(NewBB); // We dominate ourself DomSet.erase(Header); // Header does not dominate us... DS.addBasicBlock(NewBB, DomSet); // The newly created basic block dominates all nodes dominated by Header. for (Function::iterator I = Header->getParent()->begin(), E = Header->getParent()->end(); I != E; ++I) if (DS.dominates(Header, I)) DS.addDominator(I, NewBB); } // Update immediate dominator information if we have it... if (ImmediateDominators *ID = getAnalysisToUpdate()) { // Whatever i-dominated the header node now immediately dominates NewBB ID->addNewBlock(NewBB, ID->get(Header)); // The preheader now is the immediate dominator for the header node... ID->setImmediateDominator(Header, NewBB); } // Update DominatorTree information if it is active. if (DominatorTree *DT = getAnalysisToUpdate()) { // The immediate dominator of the preheader is the immediate dominator of // the old header. // DominatorTree::Node *HeaderNode = DT->getNode(Header); DominatorTree::Node *PHNode = DT->createNewNode(NewBB, HeaderNode->getIDom()); // Change the header node so that PNHode is the new immediate dominator DT->changeImmediateDominator(HeaderNode, PHNode); } // Update dominance frontier information... if (DominanceFrontier *DF = getAnalysisToUpdate()) { // The DF(NewBB) is just (DF(Header)-Header), because NewBB dominates // everything that Header does, and it strictly dominates Header in // addition. assert(DF->find(Header) != DF->end() && "Header node doesn't have DF set?"); DominanceFrontier::DomSetType NewDFSet = DF->find(Header)->second; NewDFSet.erase(Header); DF->addBasicBlock(NewBB, NewDFSet); // Now we must loop over all of the dominance frontiers in the function, // replacing occurrences of Header with NewBB in some cases. If a block // dominates a (now) predecessor of NewBB, but did not strictly dominate // Header, it will have Header in it's DF set, but should now have NewBB in // its set. for (unsigned i = 0, e = OutsideBlocks.size(); i != e; ++i) { // Get all of the dominators of the predecessor... const DominatorSet::DomSetType &PredDoms = DS.getDominators(OutsideBlocks[i]); for (DominatorSet::DomSetType::const_iterator PDI = PredDoms.begin(), PDE = PredDoms.end(); PDI != PDE; ++PDI) { BasicBlock *PredDom = *PDI; // If the loop header is in DF(PredDom), then PredDom didn't dominate // the header but did dominate a predecessor outside of the loop. Now // we change this entry to include the preheader in the DF instead of // the header. DominanceFrontier::iterator DFI = DF->find(PredDom); assert(DFI != DF->end() && "No dominance frontier for node?"); if (DFI->second.count(Header)) { DF->removeFromFrontier(DFI, Header); DF->addToFrontier(DFI, NewBB); } } } } } void Preheaders::RewriteLoopExitBlock(Loop *L, BasicBlock *Exit) { DominatorSet &DS = getAnalysis(); assert(!DS.dominates(L->getHeader(), Exit) && "Loop already dominates exit block??"); assert(std::find(L->getExitBlocks().begin(), L->getExitBlocks().end(), Exit) != L->getExitBlocks().end() && "Not a current exit block!"); std::vector LoopBlocks; for (pred_iterator I = pred_begin(Exit), E = pred_end(Exit); I != E; ++I) if (L->contains(*I)) LoopBlocks.push_back(*I); assert(!LoopBlocks.empty() && "No edges coming in from outside the loop?"); BasicBlock *NewBB = SplitBlockPredecessors(Exit, ".loopexit", LoopBlocks); // Update Loop Information - we know that the new block will be in the parent // loop of L. if (Loop *Parent = L->getParentLoop()) Parent->addBasicBlockToLoop(NewBB, getAnalysis()); // Replace any instances of Exit with NewBB in this and any nested loops... for (df_iterator I = df_begin(L), E = df_end(L); I != E; ++I) if (I->hasExitBlock(Exit)) I->changeExitBlock(Exit, NewBB); // Update exit block information // Update dominator information... The blocks that dominate NewBB are the // intersection of the dominators of predecessors, plus the block itself. // The newly created basic block does not dominate anything except itself. // DominatorSet::DomSetType NewBBDomSet = DS.getDominators(LoopBlocks[0]); for (unsigned i = 1, e = LoopBlocks.size(); i != e; ++i) set_intersect(NewBBDomSet, DS.getDominators(LoopBlocks[i])); NewBBDomSet.insert(NewBB); // All blocks dominate themselves... DS.addBasicBlock(NewBB, NewBBDomSet); // Update immediate dominator information if we have it... BasicBlock *NewBBIDom = 0; if (ImmediateDominators *ID = getAnalysisToUpdate()) { // This block does not strictly dominate anything, so it is not an immediate // dominator. To find the immediate dominator of the new exit node, we // trace up the immediate dominators of a predecessor until we find a basic // block that dominates the exit block. // BasicBlock *Dom = LoopBlocks[0]; // Some random predecessor... while (!NewBBDomSet.count(Dom)) { // Loop until we find a dominator... assert(Dom != 0 && "No shared dominator found???"); Dom = ID->get(Dom); } // Set the immediate dominator now... ID->addNewBlock(NewBB, Dom); NewBBIDom = Dom; // Reuse this if calculating DominatorTree info... } // Update DominatorTree information if it is active. if (DominatorTree *DT = getAnalysisToUpdate()) { // NewBB doesn't dominate anything, so just create a node and link it into // its immediate dominator. If we don't have ImmediateDominator info // around, calculate the idom as above. DominatorTree::Node *NewBBIDomNode; if (NewBBIDom) { NewBBIDomNode = DT->getNode(NewBBIDom); } else { NewBBIDomNode = DT->getNode(LoopBlocks[0]); // Random pred while (!NewBBDomSet.count(NewBBIDomNode->getBlock())) { NewBBIDomNode = NewBBIDomNode->getIDom(); assert(NewBBIDomNode && "No shared dominator found??"); } } // Create the new dominator tree node... DT->createNewNode(NewBB, NewBBIDomNode); } // Update dominance frontier information... if (DominanceFrontier *DF = getAnalysisToUpdate()) { // DF(NewBB) is {Exit} because NewBB does not strictly dominate Exit, but it // does dominate itself (and there is an edge (NewBB -> Exit)). DominanceFrontier::DomSetType NewDFSet; NewDFSet.insert(Exit); DF->addBasicBlock(NewBB, NewDFSet); // Now we must loop over all of the dominance frontiers in the function, // replacing occurrences of Exit with NewBB in some cases. If a block // dominates a (now) predecessor of NewBB, but did not strictly dominate // Exit, it will have Exit in it's DF set, but should now have NewBB in its // set. for (unsigned i = 0, e = LoopBlocks.size(); i != e; ++i) { // Get all of the dominators of the predecessor... const DominatorSet::DomSetType &PredDoms =DS.getDominators(LoopBlocks[i]); for (DominatorSet::DomSetType::const_iterator PDI = PredDoms.begin(), PDE = PredDoms.end(); PDI != PDE; ++PDI) { BasicBlock *PredDom = *PDI; // Make sure to only rewrite blocks that are part of the loop... if (L->contains(PredDom)) { // If the exit node is in DF(PredDom), then PredDom didn't dominate // Exit but did dominate a predecessor inside of the loop. Now we // change this entry to include NewBB in the DF instead of Exit. DominanceFrontier::iterator DFI = DF->find(PredDom); assert(DFI != DF->end() && "No dominance frontier for node?"); if (DFI->second.count(Exit)) { DF->removeFromFrontier(DFI, Exit); DF->addToFrontier(DFI, NewBB); } } } } } }