//===-- Execution.cpp - Implement code to simulate the program ------------===// // // This file contains the actual instruction interpreter. // //===----------------------------------------------------------------------===// #include "Interpreter.h" #include "ExecutionAnnotations.h" #include "llvm/iOther.h" #include "llvm/iTerminators.h" #include "llvm/iMemory.h" #include "llvm/Type.h" #include "llvm/ConstPoolVals.h" #include "llvm/Assembly/Writer.h" #include "llvm/Support/DataTypes.h" #include "llvm/Target/TargetData.h" #include "llvm/GlobalVariable.h" #include // For fmod #include #include // Create a TargetData structure to handle memory addressing and size/alignment // computations // static TargetData TD("lli Interpreter"); CachedWriter CW; // Object to accelerate printing of LLVM #ifdef PROFILE_STRUCTURE_FIELDS #include "llvm/Support/CommandLine.h" static cl::Flag ProfileStructureFields("profilestructfields", "Profile Structure Field Accesses"); #include static map > FieldAccessCounts; #endif sigjmp_buf SignalRecoverBuffer; static bool InInstruction = false; extern "C" { static void SigHandler(int Signal) { if (InInstruction) siglongjmp(SignalRecoverBuffer, Signal); } } static void initializeSignalHandlers() { struct sigaction Action; Action.sa_handler = SigHandler; Action.sa_flags = SA_SIGINFO; sigemptyset(&Action.sa_mask); sigaction(SIGSEGV, &Action, 0); sigaction(SIGBUS, &Action, 0); sigaction(SIGINT, &Action, 0); sigaction(SIGFPE, &Action, 0); } //===----------------------------------------------------------------------===// // Value Manipulation code //===----------------------------------------------------------------------===// static unsigned getOperandSlot(Value *V) { SlotNumber *SN = (SlotNumber*)V->getAnnotation(SlotNumberAID); assert(SN && "Operand does not have a slot number annotation!"); return SN->SlotNum; } #define GET_CONST_VAL(TY, CLASS) \ case Type::TY##TyID: Result.TY##Val = cast(CPV)->getValue(); break static GenericValue getOperandValue(Value *V, ExecutionContext &SF) { if (ConstPoolVal *CPV = dyn_cast(V)) { GenericValue Result; switch (CPV->getType()->getPrimitiveID()) { GET_CONST_VAL(Bool , ConstPoolBool); GET_CONST_VAL(UByte , ConstPoolUInt); GET_CONST_VAL(SByte , ConstPoolSInt); GET_CONST_VAL(UShort , ConstPoolUInt); GET_CONST_VAL(Short , ConstPoolSInt); GET_CONST_VAL(UInt , ConstPoolUInt); GET_CONST_VAL(Int , ConstPoolSInt); GET_CONST_VAL(ULong , ConstPoolUInt); GET_CONST_VAL(Long , ConstPoolSInt); GET_CONST_VAL(Float , ConstPoolFP); GET_CONST_VAL(Double , ConstPoolFP); case Type::PointerTyID: if (isa(CPV)) { Result.PointerVal = 0; } else if (ConstPoolPointerRef *CPR =dyn_cast(CPV)) { assert(0 && "Not implemented!"); } else { assert(0 && "Unknown constant pointer type!"); } break; default: cout << "ERROR: Constant unimp for type: " << CPV->getType() << endl; } return Result; } else if (GlobalValue *GV = dyn_cast(V)) { GlobalAddress *Address = (GlobalAddress*)GV->getOrCreateAnnotation(GlobalAddressAID); GenericValue Result; Result.PointerVal = (PointerTy)(GenericValue*)Address->Ptr; return Result; } else { unsigned TyP = V->getType()->getUniqueID(); // TypePlane for value unsigned OpSlot = getOperandSlot(V); assert(TyP < SF.Values.size() && OpSlot < SF.Values[TyP].size() && "Value out of range!"); return SF.Values[TyP][getOperandSlot(V)]; } } static void printOperandInfo(Value *V, ExecutionContext &SF) { if (isa(V)) { cout << "Constant Pool Value\n"; } else if (isa(V)) { cout << "Global Value\n"; } else { unsigned TyP = V->getType()->getUniqueID(); // TypePlane for value unsigned Slot = getOperandSlot(V); cout << "Value=" << (void*)V << " TypeID=" << TyP << " Slot=" << Slot << " Addr=" << &SF.Values[TyP][Slot] << " SF=" << &SF << " Contents=0x"; const unsigned char *Buf = (const unsigned char*)&SF.Values[TyP][Slot]; for (unsigned i = 0; i < sizeof(GenericValue); ++i) { unsigned char Cur = Buf[i]; cout << ( Cur >= 160? char((Cur>>4)+'A'-10) : char((Cur>>4) + '0')) << ((Cur&15) >= 10? char((Cur&15)+'A'-10) : char((Cur&15) + '0')); } cout << endl; } } static void SetValue(Value *V, GenericValue Val, ExecutionContext &SF) { unsigned TyP = V->getType()->getUniqueID(); // TypePlane for value //cout << "Setting value: " << &SF.Values[TyP][getOperandSlot(V)] << endl; SF.Values[TyP][getOperandSlot(V)] = Val; } //===----------------------------------------------------------------------===// // Annotation Wrangling code //===----------------------------------------------------------------------===// void Interpreter::initializeExecutionEngine() { AnnotationManager::registerAnnotationFactory(MethodInfoAID, &MethodInfo::Create); AnnotationManager::registerAnnotationFactory(GlobalAddressAID, &GlobalAddress::Create); initializeSignalHandlers(); } // InitializeMemory - Recursive function to apply a ConstPool value into the // specified memory location... // static void InitializeMemory(ConstPoolVal *Init, char *Addr) { #define INITIALIZE_MEMORY(TYID, CLASS, TY) \ case Type::TYID##TyID: { \ TY Tmp = cast(Init)->getValue(); \ memcpy(Addr, &Tmp, sizeof(TY)); \ } return switch (Init->getType()->getPrimitiveID()) { INITIALIZE_MEMORY(Bool , ConstPoolBool, bool); INITIALIZE_MEMORY(UByte , ConstPoolUInt, unsigned char); INITIALIZE_MEMORY(SByte , ConstPoolSInt, signed char); INITIALIZE_MEMORY(UShort , ConstPoolUInt, unsigned short); INITIALIZE_MEMORY(Short , ConstPoolSInt, signed short); INITIALIZE_MEMORY(UInt , ConstPoolUInt, unsigned int); INITIALIZE_MEMORY(Int , ConstPoolSInt, signed int); INITIALIZE_MEMORY(ULong , ConstPoolUInt, uint64_t); INITIALIZE_MEMORY(Long , ConstPoolSInt, int64_t); INITIALIZE_MEMORY(Float , ConstPoolFP , float); INITIALIZE_MEMORY(Double , ConstPoolFP , double); #undef INITIALIZE_MEMORY case Type::ArrayTyID: { ConstPoolArray *CPA = cast(Init); const vector &Val = CPA->getValues(); unsigned ElementSize = TD.getTypeSize(cast(CPA->getType())->getElementType()); for (unsigned i = 0; i < Val.size(); ++i) InitializeMemory(cast(Val[i].get()), Addr+i*ElementSize); return; } case Type::StructTyID: { ConstPoolStruct *CPS = cast(Init); const StructLayout *SL=TD.getStructLayout(cast(CPS->getType())); const vector &Val = CPS->getValues(); for (unsigned i = 0; i < Val.size(); ++i) InitializeMemory(cast(Val[i].get()), Addr+SL->MemberOffsets[i]); return; } case Type::PointerTyID: if (isa(Init)) { *(void**)Addr = 0; } else if (ConstPoolPointerRef *CPR = dyn_cast(Init)) { GlobalAddress *Address = (GlobalAddress*)CPR->getValue()->getOrCreateAnnotation(GlobalAddressAID); *(void**)Addr = (GenericValue*)Address->Ptr; } else { assert(0 && "Unknown Constant pointer type!"); } return; default: CW << "Bad Type: " << Init->getType() << endl; assert(0 && "Unknown constant type to initialize memory with!"); } } Annotation *GlobalAddress::Create(AnnotationID AID, const Annotable *O, void *){ assert(AID == GlobalAddressAID); // This annotation will only be created on GlobalValue objects... GlobalValue *GVal = cast((Value*)O); if (isa(GVal)) { // The GlobalAddress object for a method is just a pointer to method itself. // Don't delete it when the annotation is gone though! return new GlobalAddress(GVal, false); } // Handle the case of a global variable... assert(isa(GVal) && "Global value found that isn't a method or global variable!"); GlobalVariable *GV = cast(GVal); // First off, we must allocate space for the global variable to point at... const Type *Ty = GV->getType()->getValueType(); // Type to be allocated unsigned NumElements = 1; if (isa(Ty) && cast(Ty)->isUnsized()) { assert(GV->hasInitializer() && "Const val must have an initializer!"); // Allocating a unsized array type? Ty = cast(Ty)->getElementType(); // Get the actual type... // Get the number of elements being allocated by the array... NumElements =cast(GV->getInitializer())->getValues().size(); } // Allocate enough memory to hold the type... void *Addr = calloc(NumElements, TD.getTypeSize(Ty)); assert(Addr != 0 && "Null pointer returned by malloc!"); // Initialize the memory if there is an initializer... if (GV->hasInitializer()) InitializeMemory(GV->getInitializer(), (char*)Addr); return new GlobalAddress(Addr, true); // Simply invoke the ctor } //===----------------------------------------------------------------------===// // Binary Instruction Implementations //===----------------------------------------------------------------------===// #define IMPLEMENT_BINARY_OPERATOR(OP, TY) \ case Type::TY##TyID: Dest.TY##Val = Src1.TY##Val OP Src2.TY##Val; break static GenericValue executeAddInst(GenericValue Src1, GenericValue Src2, const Type *Ty, ExecutionContext &SF) { GenericValue Dest; switch (Ty->getPrimitiveID()) { IMPLEMENT_BINARY_OPERATOR(+, UByte); IMPLEMENT_BINARY_OPERATOR(+, SByte); IMPLEMENT_BINARY_OPERATOR(+, UShort); IMPLEMENT_BINARY_OPERATOR(+, Short); IMPLEMENT_BINARY_OPERATOR(+, UInt); IMPLEMENT_BINARY_OPERATOR(+, Int); IMPLEMENT_BINARY_OPERATOR(+, ULong); IMPLEMENT_BINARY_OPERATOR(+, Long); IMPLEMENT_BINARY_OPERATOR(+, Float); IMPLEMENT_BINARY_OPERATOR(+, Double); IMPLEMENT_BINARY_OPERATOR(+, Pointer); default: cout << "Unhandled type for Add instruction: " << Ty << endl; } return Dest; } static GenericValue executeSubInst(GenericValue Src1, GenericValue Src2, const Type *Ty, ExecutionContext &SF) { GenericValue Dest; switch (Ty->getPrimitiveID()) { IMPLEMENT_BINARY_OPERATOR(-, UByte); IMPLEMENT_BINARY_OPERATOR(-, SByte); IMPLEMENT_BINARY_OPERATOR(-, UShort); IMPLEMENT_BINARY_OPERATOR(-, Short); IMPLEMENT_BINARY_OPERATOR(-, UInt); IMPLEMENT_BINARY_OPERATOR(-, Int); IMPLEMENT_BINARY_OPERATOR(-, ULong); IMPLEMENT_BINARY_OPERATOR(-, Long); IMPLEMENT_BINARY_OPERATOR(-, Float); IMPLEMENT_BINARY_OPERATOR(-, Double); IMPLEMENT_BINARY_OPERATOR(-, Pointer); default: cout << "Unhandled type for Sub instruction: " << Ty << endl; } return Dest; } static GenericValue executeMulInst(GenericValue Src1, GenericValue Src2, const Type *Ty, ExecutionContext &SF) { GenericValue Dest; switch (Ty->getPrimitiveID()) { IMPLEMENT_BINARY_OPERATOR(*, UByte); IMPLEMENT_BINARY_OPERATOR(*, SByte); IMPLEMENT_BINARY_OPERATOR(*, UShort); IMPLEMENT_BINARY_OPERATOR(*, Short); IMPLEMENT_BINARY_OPERATOR(*, UInt); IMPLEMENT_BINARY_OPERATOR(*, Int); IMPLEMENT_BINARY_OPERATOR(*, ULong); IMPLEMENT_BINARY_OPERATOR(*, Long); IMPLEMENT_BINARY_OPERATOR(*, Float); IMPLEMENT_BINARY_OPERATOR(*, Double); IMPLEMENT_BINARY_OPERATOR(*, Pointer); default: cout << "Unhandled type for Mul instruction: " << Ty << endl; } return Dest; } static GenericValue executeDivInst(GenericValue Src1, GenericValue Src2, const Type *Ty, ExecutionContext &SF) { GenericValue Dest; switch (Ty->getPrimitiveID()) { IMPLEMENT_BINARY_OPERATOR(/, UByte); IMPLEMENT_BINARY_OPERATOR(/, SByte); IMPLEMENT_BINARY_OPERATOR(/, UShort); IMPLEMENT_BINARY_OPERATOR(/, Short); IMPLEMENT_BINARY_OPERATOR(/, UInt); IMPLEMENT_BINARY_OPERATOR(/, Int); IMPLEMENT_BINARY_OPERATOR(/, ULong); IMPLEMENT_BINARY_OPERATOR(/, Long); IMPLEMENT_BINARY_OPERATOR(/, Float); IMPLEMENT_BINARY_OPERATOR(/, Double); IMPLEMENT_BINARY_OPERATOR(/, Pointer); default: cout << "Unhandled type for Div instruction: " << Ty << endl; } return Dest; } static GenericValue executeRemInst(GenericValue Src1, GenericValue Src2, const Type *Ty, ExecutionContext &SF) { GenericValue Dest; switch (Ty->getPrimitiveID()) { IMPLEMENT_BINARY_OPERATOR(%, UByte); IMPLEMENT_BINARY_OPERATOR(%, SByte); IMPLEMENT_BINARY_OPERATOR(%, UShort); IMPLEMENT_BINARY_OPERATOR(%, Short); IMPLEMENT_BINARY_OPERATOR(%, UInt); IMPLEMENT_BINARY_OPERATOR(%, Int); IMPLEMENT_BINARY_OPERATOR(%, ULong); IMPLEMENT_BINARY_OPERATOR(%, Long); IMPLEMENT_BINARY_OPERATOR(%, Pointer); case Type::FloatTyID: Dest.FloatVal = fmod(Src1.FloatVal, Src2.FloatVal); break; case Type::DoubleTyID: Dest.DoubleVal = fmod(Src1.DoubleVal, Src2.DoubleVal); break; default: cout << "Unhandled type for Rem instruction: " << Ty << endl; } return Dest; } static GenericValue executeAndInst(GenericValue Src1, GenericValue Src2, const Type *Ty, ExecutionContext &SF) { GenericValue Dest; switch (Ty->getPrimitiveID()) { IMPLEMENT_BINARY_OPERATOR(&, UByte); IMPLEMENT_BINARY_OPERATOR(&, SByte); IMPLEMENT_BINARY_OPERATOR(&, UShort); IMPLEMENT_BINARY_OPERATOR(&, Short); IMPLEMENT_BINARY_OPERATOR(&, UInt); IMPLEMENT_BINARY_OPERATOR(&, Int); IMPLEMENT_BINARY_OPERATOR(&, ULong); IMPLEMENT_BINARY_OPERATOR(&, Long); IMPLEMENT_BINARY_OPERATOR(&, Pointer); default: cout << "Unhandled type for And instruction: " << Ty << endl; } return Dest; } static GenericValue executeOrInst(GenericValue Src1, GenericValue Src2, const Type *Ty, ExecutionContext &SF) { GenericValue Dest; switch (Ty->getPrimitiveID()) { IMPLEMENT_BINARY_OPERATOR(|, UByte); IMPLEMENT_BINARY_OPERATOR(|, SByte); IMPLEMENT_BINARY_OPERATOR(|, UShort); IMPLEMENT_BINARY_OPERATOR(|, Short); IMPLEMENT_BINARY_OPERATOR(|, UInt); IMPLEMENT_BINARY_OPERATOR(|, Int); IMPLEMENT_BINARY_OPERATOR(|, ULong); IMPLEMENT_BINARY_OPERATOR(|, Long); IMPLEMENT_BINARY_OPERATOR(|, Pointer); default: cout << "Unhandled type for Or instruction: " << Ty << endl; } return Dest; } static GenericValue executeXorInst(GenericValue Src1, GenericValue Src2, const Type *Ty, ExecutionContext &SF) { GenericValue Dest; switch (Ty->getPrimitiveID()) { IMPLEMENT_BINARY_OPERATOR(^, UByte); IMPLEMENT_BINARY_OPERATOR(^, SByte); IMPLEMENT_BINARY_OPERATOR(^, UShort); IMPLEMENT_BINARY_OPERATOR(^, Short); IMPLEMENT_BINARY_OPERATOR(^, UInt); IMPLEMENT_BINARY_OPERATOR(^, Int); IMPLEMENT_BINARY_OPERATOR(^, ULong); IMPLEMENT_BINARY_OPERATOR(^, Long); IMPLEMENT_BINARY_OPERATOR(^, Pointer); default: cout << "Unhandled type for Xor instruction: " << Ty << endl; } return Dest; } #define IMPLEMENT_SETCC(OP, TY) \ case Type::TY##TyID: Dest.BoolVal = Src1.TY##Val OP Src2.TY##Val; break static GenericValue executeSetEQInst(GenericValue Src1, GenericValue Src2, const Type *Ty, ExecutionContext &SF) { GenericValue Dest; switch (Ty->getPrimitiveID()) { IMPLEMENT_SETCC(==, UByte); IMPLEMENT_SETCC(==, SByte); IMPLEMENT_SETCC(==, UShort); IMPLEMENT_SETCC(==, Short); IMPLEMENT_SETCC(==, UInt); IMPLEMENT_SETCC(==, Int); IMPLEMENT_SETCC(==, ULong); IMPLEMENT_SETCC(==, Long); IMPLEMENT_SETCC(==, Float); IMPLEMENT_SETCC(==, Double); IMPLEMENT_SETCC(==, Pointer); default: cout << "Unhandled type for SetEQ instruction: " << Ty << endl; } return Dest; } static GenericValue executeSetNEInst(GenericValue Src1, GenericValue Src2, const Type *Ty, ExecutionContext &SF) { GenericValue Dest; switch (Ty->getPrimitiveID()) { IMPLEMENT_SETCC(!=, UByte); IMPLEMENT_SETCC(!=, SByte); IMPLEMENT_SETCC(!=, UShort); IMPLEMENT_SETCC(!=, Short); IMPLEMENT_SETCC(!=, UInt); IMPLEMENT_SETCC(!=, Int); IMPLEMENT_SETCC(!=, ULong); IMPLEMENT_SETCC(!=, Long); IMPLEMENT_SETCC(!=, Float); IMPLEMENT_SETCC(!=, Double); IMPLEMENT_SETCC(!=, Pointer); default: cout << "Unhandled type for SetNE instruction: " << Ty << endl; } return Dest; } static GenericValue executeSetLEInst(GenericValue Src1, GenericValue Src2, const Type *Ty, ExecutionContext &SF) { GenericValue Dest; switch (Ty->getPrimitiveID()) { IMPLEMENT_SETCC(<=, UByte); IMPLEMENT_SETCC(<=, SByte); IMPLEMENT_SETCC(<=, UShort); IMPLEMENT_SETCC(<=, Short); IMPLEMENT_SETCC(<=, UInt); IMPLEMENT_SETCC(<=, Int); IMPLEMENT_SETCC(<=, ULong); IMPLEMENT_SETCC(<=, Long); IMPLEMENT_SETCC(<=, Float); IMPLEMENT_SETCC(<=, Double); IMPLEMENT_SETCC(<=, Pointer); default: cout << "Unhandled type for SetLE instruction: " << Ty << endl; } return Dest; } static GenericValue executeSetGEInst(GenericValue Src1, GenericValue Src2, const Type *Ty, ExecutionContext &SF) { GenericValue Dest; switch (Ty->getPrimitiveID()) { IMPLEMENT_SETCC(>=, UByte); IMPLEMENT_SETCC(>=, SByte); IMPLEMENT_SETCC(>=, UShort); IMPLEMENT_SETCC(>=, Short); IMPLEMENT_SETCC(>=, UInt); IMPLEMENT_SETCC(>=, Int); IMPLEMENT_SETCC(>=, ULong); IMPLEMENT_SETCC(>=, Long); IMPLEMENT_SETCC(>=, Float); IMPLEMENT_SETCC(>=, Double); IMPLEMENT_SETCC(>=, Pointer); default: cout << "Unhandled type for SetGE instruction: " << Ty << endl; } return Dest; } static GenericValue executeSetLTInst(GenericValue Src1, GenericValue Src2, const Type *Ty, ExecutionContext &SF) { GenericValue Dest; switch (Ty->getPrimitiveID()) { IMPLEMENT_SETCC(<, UByte); IMPLEMENT_SETCC(<, SByte); IMPLEMENT_SETCC(<, UShort); IMPLEMENT_SETCC(<, Short); IMPLEMENT_SETCC(<, UInt); IMPLEMENT_SETCC(<, Int); IMPLEMENT_SETCC(<, ULong); IMPLEMENT_SETCC(<, Long); IMPLEMENT_SETCC(<, Float); IMPLEMENT_SETCC(<, Double); IMPLEMENT_SETCC(<, Pointer); default: cout << "Unhandled type for SetLT instruction: " << Ty << endl; } return Dest; } static GenericValue executeSetGTInst(GenericValue Src1, GenericValue Src2, const Type *Ty, ExecutionContext &SF) { GenericValue Dest; switch (Ty->getPrimitiveID()) { IMPLEMENT_SETCC(>, UByte); IMPLEMENT_SETCC(>, SByte); IMPLEMENT_SETCC(>, UShort); IMPLEMENT_SETCC(>, Short); IMPLEMENT_SETCC(>, UInt); IMPLEMENT_SETCC(>, Int); IMPLEMENT_SETCC(>, ULong); IMPLEMENT_SETCC(>, Long); IMPLEMENT_SETCC(>, Float); IMPLEMENT_SETCC(>, Double); IMPLEMENT_SETCC(>, Pointer); default: cout << "Unhandled type for SetGT instruction: " << Ty << endl; } return Dest; } static void executeBinaryInst(BinaryOperator *I, ExecutionContext &SF) { const Type *Ty = I->getOperand(0)->getType(); GenericValue Src1 = getOperandValue(I->getOperand(0), SF); GenericValue Src2 = getOperandValue(I->getOperand(1), SF); GenericValue R; // Result switch (I->getOpcode()) { case Instruction::Add: R = executeAddInst (Src1, Src2, Ty, SF); break; case Instruction::Sub: R = executeSubInst (Src1, Src2, Ty, SF); break; case Instruction::Mul: R = executeMulInst (Src1, Src2, Ty, SF); break; case Instruction::Div: R = executeDivInst (Src1, Src2, Ty, SF); break; case Instruction::Rem: R = executeRemInst (Src1, Src2, Ty, SF); break; case Instruction::And: R = executeAndInst (Src1, Src2, Ty, SF); break; case Instruction::Or: R = executeOrInst (Src1, Src2, Ty, SF); break; case Instruction::Xor: R = executeXorInst (Src1, Src2, Ty, SF); break; case Instruction::SetEQ: R = executeSetEQInst(Src1, Src2, Ty, SF); break; case Instruction::SetNE: R = executeSetNEInst(Src1, Src2, Ty, SF); break; case Instruction::SetLE: R = executeSetLEInst(Src1, Src2, Ty, SF); break; case Instruction::SetGE: R = executeSetGEInst(Src1, Src2, Ty, SF); break; case Instruction::SetLT: R = executeSetLTInst(Src1, Src2, Ty, SF); break; case Instruction::SetGT: R = executeSetGTInst(Src1, Src2, Ty, SF); break; default: cout << "Don't know how to handle this binary operator!\n-->" << I; R = Src1; } SetValue(I, R, SF); } //===----------------------------------------------------------------------===// // Terminator Instruction Implementations //===----------------------------------------------------------------------===// static void PerformExitStuff() { #ifdef PROFILE_STRUCTURE_FIELDS // Print out structure field accounting information... if (!FieldAccessCounts.empty()) { CW << "Profile Field Access Counts:\n"; map >::iterator I = FieldAccessCounts.begin(), E = FieldAccessCounts.end(); for (; I != E; ++I) { vector &OfC = I->second; CW << " '" << (Value*)I->first << "'\t- Sum="; unsigned Sum = 0; for (unsigned i = 0; i < OfC.size(); ++i) Sum += OfC[i]; CW << Sum << " - "; for (unsigned i = 0; i < OfC.size(); ++i) { if (i) CW << ", "; CW << OfC[i]; } CW << endl; } CW << endl; CW << "Profile Field Access Percentages:\n"; cout.precision(3); for (I = FieldAccessCounts.begin(); I != E; ++I) { vector &OfC = I->second; unsigned Sum = 0; for (unsigned i = 0; i < OfC.size(); ++i) Sum += OfC[i]; CW << " '" << (Value*)I->first << "'\t- "; for (unsigned i = 0; i < OfC.size(); ++i) { if (i) CW << ", "; CW << double(OfC[i])/Sum; } CW << endl; } CW << endl; FieldAccessCounts.clear(); } #endif } void Interpreter::exitCalled(GenericValue GV) { cout << "Program returned "; print(Type::IntTy, GV); cout << " via 'void exit(int)'\n"; ExitCode = GV.SByteVal; ECStack.clear(); PerformExitStuff(); } void Interpreter::executeRetInst(ReturnInst *I, ExecutionContext &SF) { const Type *RetTy = 0; GenericValue Result; // Save away the return value... (if we are not 'ret void') if (I->getNumOperands()) { RetTy = I->getReturnValue()->getType(); Result = getOperandValue(I->getReturnValue(), SF); } // Save previously executing meth const Method *M = ECStack.back().CurMethod; // Pop the current stack frame... this invalidates SF ECStack.pop_back(); if (ECStack.empty()) { // Finished main. Put result into exit code... if (RetTy) { // Nonvoid return type? CW << "Method " << M->getType() << " \"" << M->getName() << "\" returned "; print(RetTy, Result); cout << endl; if (RetTy->isIntegral()) ExitCode = Result.SByteVal; // Capture the exit code of the program } else { ExitCode = 0; } PerformExitStuff(); return; } // If we have a previous stack frame, and we have a previous call, fill in // the return value... // ExecutionContext &NewSF = ECStack.back(); if (NewSF.Caller) { if (NewSF.Caller->getType() != Type::VoidTy) // Save result... SetValue(NewSF.Caller, Result, NewSF); NewSF.Caller = 0; // We returned from the call... } else { // This must be a function that is executing because of a user 'call' // instruction. CW << "Method " << M->getType() << " \"" << M->getName() << "\" returned "; print(RetTy, Result); cout << endl; } } void Interpreter::executeBrInst(BranchInst *I, ExecutionContext &SF) { SF.PrevBB = SF.CurBB; // Update PrevBB so that PHI nodes work... BasicBlock *Dest; Dest = I->getSuccessor(0); // Uncond branches have a fixed dest... if (!I->isUnconditional()) { Value *Cond = I->getCondition(); GenericValue CondVal = getOperandValue(Cond, SF); if (CondVal.BoolVal == 0) // If false cond... Dest = I->getSuccessor(1); } SF.CurBB = Dest; // Update CurBB to branch destination SF.CurInst = SF.CurBB->begin(); // Update new instruction ptr... } //===----------------------------------------------------------------------===// // Memory Instruction Implementations //===----------------------------------------------------------------------===// void Interpreter::executeAllocInst(AllocationInst *I, ExecutionContext &SF) { const Type *Ty = I->getType()->getValueType(); // Type to be allocated unsigned NumElements = 1; if (I->getNumOperands()) { // Allocating a unsized array type? assert(isa(Ty) && cast(Ty)->isUnsized() && "Allocation inst with size operand for !unsized array type???"); Ty = cast(Ty)->getElementType(); // Get the actual type... // Get the number of elements being allocated by the array... GenericValue NumEl = getOperandValue(I->getOperand(0), SF); NumElements = NumEl.UIntVal; } // Allocate enough memory to hold the type... GenericValue Result; // FIXME: Don't use CALLOC, use a tainted malloc. Result.PointerVal = (PointerTy)calloc(NumElements, TD.getTypeSize(Ty)); assert(Result.PointerVal != 0 && "Null pointer returned by malloc!"); SetValue(I, Result, SF); if (I->getOpcode() == Instruction::Alloca) { // TODO: FIXME: alloca should keep track of memory to free it later... } } static void executeFreeInst(FreeInst *I, ExecutionContext &SF) { assert(I->getOperand(0)->getType()->isPointerType() && "Freeing nonptr?"); GenericValue Value = getOperandValue(I->getOperand(0), SF); // TODO: Check to make sure memory is allocated free((void*)Value.PointerVal); // Free memory } // getElementOffset - The workhorse for getelementptr, load and store. This // function returns the offset that arguments ArgOff+1 -> NumArgs specify for // the pointer type specified by argument Arg. // static PointerTy getElementOffset(MemAccessInst *I, ExecutionContext &SF) { assert(isa(I->getPointerOperand()->getType()) && "Cannot getElementOffset of a nonpointer type!"); PointerTy Total = 0; const Type *Ty = cast(I->getPointerOperand()->getType())->getValueType(); unsigned ArgOff = I->getFirstIndexOperandNumber(); while (ArgOff < I->getNumOperands()) { if (const StructType *STy = dyn_cast(Ty)) { const StructLayout *SLO = TD.getStructLayout(STy); // Indicies must be ubyte constants... const ConstPoolUInt *CPU = cast(I->getOperand(ArgOff++)); assert(CPU->getType() == Type::UByteTy); unsigned Index = CPU->getValue(); #ifdef PROFILE_STRUCTURE_FIELDS if (ProfileStructureFields) { // Do accounting for this field... vector &OfC = FieldAccessCounts[STy]; if (OfC.size() == 0) OfC.resize(STy->getElementTypes().size()); OfC[Index]++; } #endif Total += SLO->MemberOffsets[Index]; Ty = STy->getElementTypes()[Index]; } else { const ArrayType *AT = cast(Ty); // Get the index number for the array... which must be uint type... assert(I->getOperand(ArgOff)->getType() == Type::UIntTy); unsigned Idx = getOperandValue(I->getOperand(ArgOff++), SF).UIntVal; if (AT->isSized() && Idx >= (unsigned)AT->getNumElements()) { cerr << "Out of range memory access to element #" << Idx << " of a " << AT->getNumElements() << " element array." << " Subscript #" << (ArgOff-I->getFirstIndexOperandNumber()) << "\n"; // Get outta here!!! siglongjmp(SignalRecoverBuffer, -1); } Ty = AT->getElementType(); unsigned Size = TD.getTypeSize(Ty); Total += Size*Idx; } } return Total; } static void executeGEPInst(GetElementPtrInst *I, ExecutionContext &SF) { GenericValue SRC = getOperandValue(I->getPointerOperand(), SF); PointerTy SrcPtr = SRC.PointerVal; GenericValue Result; Result.PointerVal = SrcPtr + getElementOffset(I, SF); SetValue(I, Result, SF); } static void executeLoadInst(LoadInst *I, ExecutionContext &SF) { GenericValue SRC = getOperandValue(I->getPointerOperand(), SF); PointerTy SrcPtr = SRC.PointerVal; PointerTy Offset = getElementOffset(I, SF); // Handle any structure indices SrcPtr += Offset; GenericValue *Ptr = (GenericValue*)SrcPtr; GenericValue Result; switch (I->getType()->getPrimitiveID()) { case Type::BoolTyID: case Type::UByteTyID: case Type::SByteTyID: Result.SByteVal = Ptr->SByteVal; break; case Type::UShortTyID: case Type::ShortTyID: Result.ShortVal = Ptr->ShortVal; break; case Type::UIntTyID: case Type::IntTyID: Result.IntVal = Ptr->IntVal; break; case Type::ULongTyID: case Type::LongTyID: Result.ULongVal = Ptr->ULongVal; break; case Type::PointerTyID: Result.PointerVal = Ptr->PointerVal; break; case Type::FloatTyID: Result.FloatVal = Ptr->FloatVal; break; case Type::DoubleTyID: Result.DoubleVal = Ptr->DoubleVal; break; default: cout << "Cannot load value of type " << I->getType() << "!\n"; } SetValue(I, Result, SF); } static void executeStoreInst(StoreInst *I, ExecutionContext &SF) { GenericValue SRC = getOperandValue(I->getPointerOperand(), SF); PointerTy SrcPtr = SRC.PointerVal; SrcPtr += getElementOffset(I, SF); // Handle any structure indices GenericValue *Ptr = (GenericValue *)SrcPtr; GenericValue Val = getOperandValue(I->getOperand(0), SF); switch (I->getOperand(0)->getType()->getPrimitiveID()) { case Type::BoolTyID: case Type::UByteTyID: case Type::SByteTyID: Ptr->SByteVal = Val.SByteVal; break; case Type::UShortTyID: case Type::ShortTyID: Ptr->ShortVal = Val.ShortVal; break; case Type::UIntTyID: case Type::IntTyID: Ptr->IntVal = Val.IntVal; break; case Type::ULongTyID: case Type::LongTyID: Ptr->LongVal = Val.LongVal; break; case Type::PointerTyID: Ptr->PointerVal = Val.PointerVal; break; case Type::FloatTyID: Ptr->FloatVal = Val.FloatVal; break; case Type::DoubleTyID: Ptr->DoubleVal = Val.DoubleVal; break; default: cout << "Cannot store value of type " << I->getType() << "!\n"; } } //===----------------------------------------------------------------------===// // Miscellaneous Instruction Implementations //===----------------------------------------------------------------------===// void Interpreter::executeCallInst(CallInst *I, ExecutionContext &SF) { ECStack.back().Caller = I; vector ArgVals; ArgVals.reserve(I->getNumOperands()-1); for (unsigned i = 1; i < I->getNumOperands(); ++i) ArgVals.push_back(getOperandValue(I->getOperand(i), SF)); // To handle indirect calls, we must get the pointer value from the argument // and treat it as a method pointer. GenericValue SRC = getOperandValue(I->getCalledValue(), SF); callMethod((Method*)SRC.PointerVal, ArgVals); } static void executePHINode(PHINode *I, ExecutionContext &SF) { BasicBlock *PrevBB = SF.PrevBB; Value *IncomingValue = 0; // Search for the value corresponding to this previous bb... for (unsigned i = I->getNumIncomingValues(); i > 0;) { if (I->getIncomingBlock(--i) == PrevBB) { IncomingValue = I->getIncomingValue(i); break; } } assert(IncomingValue && "No PHI node predecessor for current PrevBB!"); // Found the value, set as the result... SetValue(I, getOperandValue(IncomingValue, SF), SF); } #define IMPLEMENT_SHIFT(OP, TY) \ case Type::TY##TyID: Dest.TY##Val = Src1.TY##Val OP Src2.UByteVal; break static void executeShlInst(ShiftInst *I, ExecutionContext &SF) { const Type *Ty = I->getOperand(0)->getType(); GenericValue Src1 = getOperandValue(I->getOperand(0), SF); GenericValue Src2 = getOperandValue(I->getOperand(1), SF); GenericValue Dest; switch (Ty->getPrimitiveID()) { IMPLEMENT_SHIFT(<<, UByte); IMPLEMENT_SHIFT(<<, SByte); IMPLEMENT_SHIFT(<<, UShort); IMPLEMENT_SHIFT(<<, Short); IMPLEMENT_SHIFT(<<, UInt); IMPLEMENT_SHIFT(<<, Int); IMPLEMENT_SHIFT(<<, ULong); IMPLEMENT_SHIFT(<<, Long); default: cout << "Unhandled type for Shl instruction: " << Ty << endl; } SetValue(I, Dest, SF); } static void executeShrInst(ShiftInst *I, ExecutionContext &SF) { const Type *Ty = I->getOperand(0)->getType(); GenericValue Src1 = getOperandValue(I->getOperand(0), SF); GenericValue Src2 = getOperandValue(I->getOperand(1), SF); GenericValue Dest; switch (Ty->getPrimitiveID()) { IMPLEMENT_SHIFT(>>, UByte); IMPLEMENT_SHIFT(>>, SByte); IMPLEMENT_SHIFT(>>, UShort); IMPLEMENT_SHIFT(>>, Short); IMPLEMENT_SHIFT(>>, UInt); IMPLEMENT_SHIFT(>>, Int); IMPLEMENT_SHIFT(>>, ULong); IMPLEMENT_SHIFT(>>, Long); default: cout << "Unhandled type for Shr instruction: " << Ty << endl; } SetValue(I, Dest, SF); } #define IMPLEMENT_CAST(DTY, DCTY, STY) \ case Type::STY##TyID: Dest.DTY##Val = DCTY Src.STY##Val; break; #define IMPLEMENT_CAST_CASE_START(DESTTY, DESTCTY) \ case Type::DESTTY##TyID: \ switch (SrcTy->getPrimitiveID()) { \ IMPLEMENT_CAST(DESTTY, DESTCTY, UByte); \ IMPLEMENT_CAST(DESTTY, DESTCTY, SByte); \ IMPLEMENT_CAST(DESTTY, DESTCTY, UShort); \ IMPLEMENT_CAST(DESTTY, DESTCTY, Short); \ IMPLEMENT_CAST(DESTTY, DESTCTY, UInt); \ IMPLEMENT_CAST(DESTTY, DESTCTY, Int); \ IMPLEMENT_CAST(DESTTY, DESTCTY, ULong); \ IMPLEMENT_CAST(DESTTY, DESTCTY, Long); \ IMPLEMENT_CAST(DESTTY, DESTCTY, Pointer); #define IMPLEMENT_CAST_CASE_FP_IMP(DESTTY, DESTCTY) \ IMPLEMENT_CAST(DESTTY, DESTCTY, Float); \ IMPLEMENT_CAST(DESTTY, DESTCTY, Double) #define IMPLEMENT_CAST_CASE_END() \ default: cout << "Unhandled cast: " << SrcTy << " to " << Ty << endl; \ break; \ } \ break #define IMPLEMENT_CAST_CASE(DESTTY, DESTCTY) \ IMPLEMENT_CAST_CASE_START(DESTTY, DESTCTY); \ IMPLEMENT_CAST_CASE_FP_IMP(DESTTY, DESTCTY); \ IMPLEMENT_CAST_CASE_END() static void executeCastInst(CastInst *I, ExecutionContext &SF) { const Type *Ty = I->getType(); const Type *SrcTy = I->getOperand(0)->getType(); GenericValue Src = getOperandValue(I->getOperand(0), SF); GenericValue Dest; switch (Ty->getPrimitiveID()) { IMPLEMENT_CAST_CASE(UByte , (unsigned char)); IMPLEMENT_CAST_CASE(SByte , ( signed char)); IMPLEMENT_CAST_CASE(UShort , (unsigned short)); IMPLEMENT_CAST_CASE(Short , ( signed char)); IMPLEMENT_CAST_CASE(UInt , (unsigned int )); IMPLEMENT_CAST_CASE(Int , ( signed int )); IMPLEMENT_CAST_CASE(ULong , (uint64_t)); IMPLEMENT_CAST_CASE(Long , ( int64_t)); IMPLEMENT_CAST_CASE(Pointer, (PointerTy)(uint32_t)); IMPLEMENT_CAST_CASE(Float , (float)); IMPLEMENT_CAST_CASE(Double , (double)); default: cout << "Unhandled dest type for cast instruction: " << Ty << endl; } SetValue(I, Dest, SF); } //===----------------------------------------------------------------------===// // Dispatch and Execution Code //===----------------------------------------------------------------------===// MethodInfo::MethodInfo(Method *M) : Annotation(MethodInfoAID) { // Assign slot numbers to the method arguments... const Method::ArgumentListType &ArgList = M->getArgumentList(); for (Method::ArgumentListType::const_iterator AI = ArgList.begin(), AE = ArgList.end(); AI != AE; ++AI) { MethodArgument *MA = *AI; MA->addAnnotation(new SlotNumber(getValueSlot(MA))); } // Iterate over all of the instructions... unsigned InstNum = 0; for (Method::inst_iterator MI = M->inst_begin(), ME = M->inst_end(); MI != ME; ++MI) { Instruction *I = *MI; // For each instruction... I->addAnnotation(new InstNumber(++InstNum, getValueSlot(I))); // Add Annote } } unsigned MethodInfo::getValueSlot(const Value *V) { unsigned Plane = V->getType()->getUniqueID(); if (Plane >= NumPlaneElements.size()) NumPlaneElements.resize(Plane+1, 0); return NumPlaneElements[Plane]++; } //===----------------------------------------------------------------------===// // callMethod - Execute the specified method... // void Interpreter::callMethod(Method *M, const vector &ArgVals) { assert((ECStack.empty() || ECStack.back().Caller == 0 || ECStack.back().Caller->getNumOperands()-1 == ArgVals.size()) && "Incorrect number of arguments passed into function call!"); if (M->isExternal()) { GenericValue Result = callExternalMethod(M, ArgVals); const Type *RetTy = M->getReturnType(); // Copy the result back into the result variable if we are not returning // void. if (RetTy != Type::VoidTy) { if (!ECStack.empty() && ECStack.back().Caller) { ExecutionContext &SF = ECStack.back(); CallInst *Caller = SF.Caller; SetValue(SF.Caller, Result, SF); SF.Caller = 0; // We returned from the call... } else { // print it. CW << "Method " << M->getType() << " \"" << M->getName() << "\" returned "; print(RetTy, Result); cout << endl; if (RetTy->isIntegral()) ExitCode = Result.SByteVal; // Capture the exit code of the program } } return; } // Process the method, assigning instruction numbers to the instructions in // the method. Also calculate the number of values for each type slot active. // MethodInfo *MethInfo = (MethodInfo*)M->getOrCreateAnnotation(MethodInfoAID); ECStack.push_back(ExecutionContext()); // Make a new stack frame... ExecutionContext &StackFrame = ECStack.back(); // Fill it in... StackFrame.CurMethod = M; StackFrame.CurBB = M->front(); StackFrame.CurInst = StackFrame.CurBB->begin(); StackFrame.MethInfo = MethInfo; // Initialize the values to nothing... StackFrame.Values.resize(MethInfo->NumPlaneElements.size()); for (unsigned i = 0; i < MethInfo->NumPlaneElements.size(); ++i) { StackFrame.Values[i].resize(MethInfo->NumPlaneElements[i]); // Taint the initial values of stuff memset(&StackFrame.Values[i][0], 42, MethInfo->NumPlaneElements[i]*sizeof(GenericValue)); } StackFrame.PrevBB = 0; // No previous BB for PHI nodes... // Run through the method arguments and initialize their values... assert(ArgVals.size() == M->getArgumentList().size() && "Invalid number of values passed to method invocation!"); unsigned i = 0; for (Method::ArgumentListType::iterator MI = M->getArgumentList().begin(), ME = M->getArgumentList().end(); MI != ME; ++MI, ++i) { SetValue(*MI, ArgVals[i], StackFrame); } } // executeInstruction - Interpret a single instruction, increment the "PC", and // return true if the next instruction is a breakpoint... // bool Interpreter::executeInstruction() { assert(!ECStack.empty() && "No program running, cannot execute inst!"); ExecutionContext &SF = ECStack.back(); // Current stack frame Instruction *I = *SF.CurInst++; // Increment before execute if (Trace) CW << "Run:" << I; // Set a sigsetjmp buffer so that we can recover if an error happens during // instruction execution... // if (int SigNo = sigsetjmp(SignalRecoverBuffer, 1)) { --SF.CurInst; // Back up to erroring instruction if (SigNo != SIGINT && SigNo != -1) { cout << "EXCEPTION OCCURRED [" << _sys_siglistp[SigNo] << "]:\n"; printStackTrace(); } else if (SigNo == SIGINT) { cout << "CTRL-C Detected, execution halted.\n"; } InInstruction = false; return true; } InInstruction = true; if (I->isBinaryOp()) { executeBinaryInst(cast(I), SF); } else { switch (I->getOpcode()) { // Terminators case Instruction::Ret: executeRetInst (cast(I), SF); break; case Instruction::Br: executeBrInst (cast(I), SF); break; // Memory Instructions case Instruction::Alloca: case Instruction::Malloc: executeAllocInst((AllocationInst*)I, SF); break; case Instruction::Free: executeFreeInst (cast (I), SF); break; case Instruction::Load: executeLoadInst (cast (I), SF); break; case Instruction::Store: executeStoreInst(cast(I), SF); break; case Instruction::GetElementPtr: executeGEPInst(cast(I), SF); break; // Miscellaneous Instructions case Instruction::Call: executeCallInst (cast (I), SF); break; case Instruction::PHINode: executePHINode (cast (I), SF); break; case Instruction::Shl: executeShlInst (cast(I), SF); break; case Instruction::Shr: executeShrInst (cast(I), SF); break; case Instruction::Cast: executeCastInst (cast (I), SF); break; default: cout << "Don't know how to execute this instruction!\n-->" << I; } } InInstruction = false; // Reset the current frame location to the top of stack CurFrame = ECStack.size()-1; if (CurFrame == -1) return false; // No breakpoint if no code // Return true if there is a breakpoint annotation on the instruction... return (*ECStack[CurFrame].CurInst)->getAnnotation(BreakpointAID) != 0; } void Interpreter::stepInstruction() { // Do the 'step' command if (ECStack.empty()) { cout << "Error: no program running, cannot step!\n"; return; } // Run an instruction... executeInstruction(); // Print the next instruction to execute... printCurrentInstruction(); } // --- UI Stuff... void Interpreter::nextInstruction() { // Do the 'next' command if (ECStack.empty()) { cout << "Error: no program running, cannot 'next'!\n"; return; } // If this is a call instruction, step over the call instruction... // TODO: ICALL, CALL WITH, ... if ((*ECStack.back().CurInst)->getOpcode() == Instruction::Call) { unsigned StackSize = ECStack.size(); // Step into the function... if (executeInstruction()) { // Hit a breakpoint, print current instruction, then return to user... cout << "Breakpoint hit!\n"; printCurrentInstruction(); return; } // If we we able to step into the function, finish it now. We might not be // able the step into a function, if it's external for example. if (ECStack.size() != StackSize) finish(); // Finish executing the function... else printCurrentInstruction(); } else { // Normal instruction, just step... stepInstruction(); } } void Interpreter::run() { if (ECStack.empty()) { cout << "Error: no program running, cannot run!\n"; return; } bool HitBreakpoint = false; while (!ECStack.empty() && !HitBreakpoint) { // Run an instruction... HitBreakpoint = executeInstruction(); } if (HitBreakpoint) { cout << "Breakpoint hit!\n"; } // Print the next instruction to execute... printCurrentInstruction(); } void Interpreter::finish() { if (ECStack.empty()) { cout << "Error: no program running, cannot run!\n"; return; } unsigned StackSize = ECStack.size(); bool HitBreakpoint = false; while (ECStack.size() >= StackSize && !HitBreakpoint) { // Run an instruction... HitBreakpoint = executeInstruction(); } if (HitBreakpoint) { cout << "Breakpoint hit!\n"; } // Print the next instruction to execute... printCurrentInstruction(); } // printCurrentInstruction - Print out the instruction that the virtual PC is // at, or fail silently if no program is running. // void Interpreter::printCurrentInstruction() { if (!ECStack.empty()) { if (ECStack.back().CurBB->begin() == ECStack.back().CurInst) // print label WriteAsOperand(cout, ECStack.back().CurBB) << ":\n"; Instruction *I = *ECStack.back().CurInst; InstNumber *IN = (InstNumber*)I->getAnnotation(SlotNumberAID); assert(IN && "Instruction has no numbering annotation!"); cout << "#" << IN->InstNum << I; } } void Interpreter::printValue(const Type *Ty, GenericValue V) { switch (Ty->getPrimitiveID()) { case Type::BoolTyID: cout << (V.BoolVal?"true":"false"); break; case Type::SByteTyID: cout << V.SByteVal; break; case Type::UByteTyID: cout << V.UByteVal; break; case Type::ShortTyID: cout << V.ShortVal; break; case Type::UShortTyID: cout << V.UShortVal; break; case Type::IntTyID: cout << V.IntVal; break; case Type::UIntTyID: cout << V.UIntVal; break; case Type::LongTyID: cout << V.LongVal; break; case Type::ULongTyID: cout << V.ULongVal; break; case Type::FloatTyID: cout << V.FloatVal; break; case Type::DoubleTyID: cout << V.DoubleVal; break; case Type::PointerTyID:cout << (void*)V.PointerVal; break; default: cout << "- Don't know how to print value of this type!"; break; } } void Interpreter::print(const Type *Ty, GenericValue V) { CW << Ty << " "; printValue(Ty, V); } void Interpreter::print(const string &Name) { Value *PickedVal = ChooseOneOption(Name, LookupMatchingNames(Name)); if (!PickedVal) return; if (const Method *M = dyn_cast(PickedVal)) { CW << M; // Print the method } else if (const Type *Ty = dyn_cast(PickedVal)) { CW << "type %" << Name << " = " << Ty->getDescription() << endl; } else if (const BasicBlock *BB = dyn_cast(PickedVal)) { CW << BB; // Print the basic block } else { // Otherwise there should be an annotation for the slot# print(PickedVal->getType(), getOperandValue(PickedVal, ECStack[CurFrame])); cout << endl; } } void Interpreter::infoValue(const string &Name) { Value *PickedVal = ChooseOneOption(Name, LookupMatchingNames(Name)); if (!PickedVal) return; cout << "Value: "; print(PickedVal->getType(), getOperandValue(PickedVal, ECStack[CurFrame])); cout << endl; printOperandInfo(PickedVal, ECStack[CurFrame]); } // printStackFrame - Print information about the specified stack frame, or -1 // for the default one. // void Interpreter::printStackFrame(int FrameNo = -1) { if (FrameNo == -1) FrameNo = CurFrame; Method *Meth = ECStack[FrameNo].CurMethod; const Type *RetTy = Meth->getReturnType(); CW << ((FrameNo == CurFrame) ? '>' : '-') << "#" << FrameNo << ". " << (Value*)RetTy << " \"" << Meth->getName() << "\"("; Method::ArgumentListType &Args = Meth->getArgumentList(); for (unsigned i = 0; i < Args.size(); ++i) { if (i != 0) cout << ", "; CW << (Value*)Args[i] << "="; printValue(Args[i]->getType(), getOperandValue(Args[i], ECStack[FrameNo])); } cout << ")" << endl; CW << *(ECStack[FrameNo].CurInst-(FrameNo != int(ECStack.size()-1))); }