//===- llvm/unittest/ADT/HashingTest.cpp ----------------------------------===// // // The LLVM Compiler Infrastructure // // This file is distributed under the University of Illinois Open Source // License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// // // Hashing.h unit tests. // //===----------------------------------------------------------------------===// #include "gtest/gtest.h" #include "llvm/ADT/Hashing.h" #include "llvm/Support/DataTypes.h" #include #include #include #include namespace llvm { // Helper for test code to print hash codes. void PrintTo(const hash_code &code, std::ostream *os) { *os << static_cast(code); } // Fake an object that is recognized as hashable data to test super large // objects. struct LargeTestInteger { uint64_t arr[8]; }; struct NonPOD { uint64_t x, y; NonPOD(uint64_t x, uint64_t y) : x(x), y(y) {} ~NonPOD() {} friend hash_code hash_value(const NonPOD &obj) { return hash_combine(obj.x, obj.y); } }; namespace hashing { namespace detail { template <> struct is_hashable_data : true_type {}; } // namespace detail } // namespace hashing } // namespace llvm using namespace llvm; namespace { TEST(HashingTest, HashValueBasicTest) { int x = 42, y = 43, c = 'x'; void *p = 0; uint64_t i = 71; const unsigned ci = 71; volatile int vi = 71; const volatile int cvi = 71; uintptr_t addr = reinterpret_cast(&y); EXPECT_EQ(hash_value(42), hash_value(x)); EXPECT_NE(hash_value(42), hash_value(y)); EXPECT_NE(hash_value(42), hash_value(p)); EXPECT_EQ(hash_value(71), hash_value(i)); EXPECT_EQ(hash_value(71), hash_value(ci)); EXPECT_EQ(hash_value(71), hash_value(vi)); EXPECT_EQ(hash_value(71), hash_value(cvi)); EXPECT_EQ(hash_value(c), hash_value('x')); EXPECT_EQ(hash_value('4'), hash_value('0' + 4)); EXPECT_EQ(hash_value(addr), hash_value(&y)); EXPECT_EQ(hash_combine(42, 43), hash_value(std::make_pair(42, 43))); EXPECT_NE(hash_combine(43, 42), hash_value(std::make_pair(42, 43))); EXPECT_NE(hash_combine(42, 43), hash_value(std::make_pair(42ull, 43ull))); EXPECT_NE(hash_combine(42, 43), hash_value(std::make_pair(42, 43ull))); EXPECT_NE(hash_combine(42, 43), hash_value(std::make_pair(42ull, 43))); // Note that pairs are implicitly flattened to a direct sequence of data and // hashed efficiently as a consequence. EXPECT_EQ(hash_combine(42, 43, 44), hash_value(std::make_pair(42, std::make_pair(43, 44)))); EXPECT_EQ(hash_value(std::make_pair(42, std::make_pair(43, 44))), hash_value(std::make_pair(std::make_pair(42, 43), 44))); // Ensure that pairs which have padding bytes *inside* them don't get treated // this way. EXPECT_EQ(hash_combine('0', hash_combine(1ull, '2')), hash_value(std::make_pair('0', std::make_pair(1ull, '2')))); // Ensure that non-POD pairs don't explode the traits used. NonPOD obj1(1, 2), obj2(3, 4), obj3(5, 6); EXPECT_EQ(hash_combine(obj1, hash_combine(obj2, obj3)), hash_value(std::make_pair(obj1, std::make_pair(obj2, obj3)))); } template T *begin(T (&arr)[N]) { return arr; } template T *end(T (&arr)[N]) { return arr + N; } // Provide a dummy, hashable type designed for easy verification: its hash is // the same as its value. struct HashableDummy { size_t value; }; hash_code hash_value(HashableDummy dummy) { return dummy.value; } TEST(HashingTest, HashCombineRangeBasicTest) { // Leave this uninitialized in the hope that valgrind will catch bad reads. int dummy; hash_code dummy_hash = hash_combine_range(&dummy, &dummy); EXPECT_NE(hash_code(0), dummy_hash); const int arr1[] = { 1, 2, 3 }; hash_code arr1_hash = hash_combine_range(begin(arr1), end(arr1)); EXPECT_NE(dummy_hash, arr1_hash); EXPECT_EQ(arr1_hash, hash_combine_range(begin(arr1), end(arr1))); const std::vector vec(begin(arr1), end(arr1)); EXPECT_EQ(arr1_hash, hash_combine_range(vec.begin(), vec.end())); const std::list list(begin(arr1), end(arr1)); EXPECT_EQ(arr1_hash, hash_combine_range(list.begin(), list.end())); const std::deque deque(begin(arr1), end(arr1)); EXPECT_EQ(arr1_hash, hash_combine_range(deque.begin(), deque.end())); const int arr2[] = { 3, 2, 1 }; hash_code arr2_hash = hash_combine_range(begin(arr2), end(arr2)); EXPECT_NE(dummy_hash, arr2_hash); EXPECT_NE(arr1_hash, arr2_hash); const int arr3[] = { 1, 1, 2, 3 }; hash_code arr3_hash = hash_combine_range(begin(arr3), end(arr3)); EXPECT_NE(dummy_hash, arr3_hash); EXPECT_NE(arr1_hash, arr3_hash); const int arr4[] = { 1, 2, 3, 3 }; hash_code arr4_hash = hash_combine_range(begin(arr4), end(arr4)); EXPECT_NE(dummy_hash, arr4_hash); EXPECT_NE(arr1_hash, arr4_hash); const size_t arr5[] = { 1, 2, 3 }; const HashableDummy d_arr5[] = { {1}, {2}, {3} }; hash_code arr5_hash = hash_combine_range(begin(arr5), end(arr5)); hash_code d_arr5_hash = hash_combine_range(begin(d_arr5), end(d_arr5)); EXPECT_EQ(arr5_hash, d_arr5_hash); } TEST(HashingTest, HashCombineRangeLengthDiff) { // Test that as only the length varies, we compute different hash codes for // sequences. std::map code_to_size; std::vector all_one_c(256, '\xff'); for (unsigned Idx = 1, Size = all_one_c.size(); Idx < Size; ++Idx) { hash_code code = hash_combine_range(&all_one_c[0], &all_one_c[0] + Idx); std::map::iterator I = code_to_size.insert(std::make_pair(code, Idx)).first; EXPECT_EQ(Idx, I->second); } code_to_size.clear(); std::vector all_zero_c(256, '\0'); for (unsigned Idx = 1, Size = all_zero_c.size(); Idx < Size; ++Idx) { hash_code code = hash_combine_range(&all_zero_c[0], &all_zero_c[0] + Idx); std::map::iterator I = code_to_size.insert(std::make_pair(code, Idx)).first; EXPECT_EQ(Idx, I->second); } code_to_size.clear(); std::vector all_one_int(512, -1); for (unsigned Idx = 1, Size = all_one_int.size(); Idx < Size; ++Idx) { hash_code code = hash_combine_range(&all_one_int[0], &all_one_int[0] + Idx); std::map::iterator I = code_to_size.insert(std::make_pair(code, Idx)).first; EXPECT_EQ(Idx, I->second); } code_to_size.clear(); std::vector all_zero_int(512, 0); for (unsigned Idx = 1, Size = all_zero_int.size(); Idx < Size; ++Idx) { hash_code code = hash_combine_range(&all_zero_int[0], &all_zero_int[0] + Idx); std::map::iterator I = code_to_size.insert(std::make_pair(code, Idx)).first; EXPECT_EQ(Idx, I->second); } } TEST(HashingTest, HashCombineRangeGoldenTest) { struct { const char *s; uint64_t hash; } golden_data[] = { #if SIZE_MAX == UINT64_MAX { "a", 0xaeb6f9d5517c61f8ULL }, { "ab", 0x7ab1edb96be496b4ULL }, { "abc", 0xe38e60bf19c71a3fULL }, { "abcde", 0xd24461a66de97f6eULL }, { "abcdefgh", 0x4ef872ec411dec9dULL }, { "abcdefghijklm", 0xe8a865539f4eadfeULL }, { "abcdefghijklmnopqrstu", 0x261cdf85faaf4e79ULL }, { "abcdefghijklmnopqrstuvwxyzabcdef", 0x43ba70e4198e3b2aULL }, { "abcdefghijklmnopqrstuvwxyzabcdef" "abcdefghijklmnopqrstuvwxyzghijkl" "abcdefghijklmnopqrstuvwxyzmnopqr" "abcdefghijklmnopqrstuvwxyzstuvwx" "abcdefghijklmnopqrstuvwxyzyzabcd", 0xdcd57fb2afdf72beULL }, { "a", 0xaeb6f9d5517c61f8ULL }, { "aa", 0xf2b3b69a9736a1ebULL }, { "aaa", 0xf752eb6f07b1cafeULL }, { "aaaaa", 0x812bd21e1236954cULL }, { "aaaaaaaa", 0xff07a2cff08ac587ULL }, { "aaaaaaaaaaaaa", 0x84ac949d54d704ecULL }, { "aaaaaaaaaaaaaaaaaaaaa", 0xcb2c8fb6be8f5648ULL }, { "aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa", 0xcc40ab7f164091b6ULL }, { "aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa" "aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa" "aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa" "aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa" "aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa", 0xc58e174c1e78ffe9ULL }, { "z", 0x1ba160d7e8f8785cULL }, { "zz", 0x2c5c03172f1285d7ULL }, { "zzz", 0x9d2c4f4b507a2ac3ULL }, { "zzzzz", 0x0f03b9031735693aULL }, { "zzzzzzzz", 0xe674147c8582c08eULL }, { "zzzzzzzzzzzzz", 0x3162d9fa6938db83ULL }, { "zzzzzzzzzzzzzzzzzzzzz", 0x37b9a549e013620cULL }, { "zzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzz", 0x8921470aff885016ULL }, { "zzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzz" "zzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzz" "zzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzz" "zzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzz" "zzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzz", 0xf60fdcd9beb08441ULL }, { "a", 0xaeb6f9d5517c61f8ULL }, { "ab", 0x7ab1edb96be496b4ULL }, { "aba", 0x3edb049950884d0aULL }, { "ababa", 0x8f2de9e73a97714bULL }, { "abababab", 0xee14a29ddf0ce54cULL }, { "ababababababa", 0x38b3ddaada2d52b4ULL }, { "ababababababababababa", 0xd3665364219f2b85ULL }, { "abababababababababababababababab", 0xa75cd6afbf1bc972ULL }, { "abababababababababababababababab" "abababababababababababababababab" "abababababababababababababababab" "abababababababababababababababab" "abababababababababababababababab", 0x840192d129f7a22bULL } #elif SIZE_MAX == UINT32_MAX { "a", 0x000000004605f745ULL }, { "ab", 0x00000000d5f06301ULL }, { "abc", 0x00000000559fe1eeULL }, { "abcde", 0x00000000424028d7ULL }, { "abcdefgh", 0x000000007bb119f8ULL }, { "abcdefghijklm", 0x00000000edbca513ULL }, { "abcdefghijklmnopqrstu", 0x000000007c15712eULL }, { "abcdefghijklmnopqrstuvwxyzabcdef", 0x000000000b3aad66ULL }, { "abcdefghijklmnopqrstuvwxyzabcdef" "abcdefghijklmnopqrstuvwxyzghijkl" "abcdefghijklmnopqrstuvwxyzmnopqr" "abcdefghijklmnopqrstuvwxyzstuvwx" "abcdefghijklmnopqrstuvwxyzyzabcd", 0x000000008c758c8bULL }, { "a", 0x000000004605f745ULL }, { "aa", 0x00000000dc0a52daULL }, { "aaa", 0x00000000b309274fULL }, { "aaaaa", 0x00000000203b5ef6ULL }, { "aaaaaaaa", 0x00000000a429e18fULL }, { "aaaaaaaaaaaaa", 0x000000008662070bULL }, { "aaaaaaaaaaaaaaaaaaaaa", 0x000000003f11151cULL }, { "aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa", 0x000000008600fe20ULL }, { "aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa" "aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa" "aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa" "aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa" "aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa", 0x000000004e0e0804ULL }, { "z", 0x00000000c5e405e9ULL }, { "zz", 0x00000000a8d8a2c6ULL }, { "zzz", 0x00000000fc2af672ULL }, { "zzzzz", 0x0000000047d9efe6ULL }, { "zzzzzzzz", 0x0000000080d77794ULL }, { "zzzzzzzzzzzzz", 0x00000000405f93adULL }, { "zzzzzzzzzzzzzzzzzzzzz", 0x00000000fc72838dULL }, { "zzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzz", 0x000000007ce160f1ULL }, { "zzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzz" "zzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzz" "zzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzz" "zzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzz" "zzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzz", 0x00000000aed9ed1bULL }, { "a", 0x000000004605f745ULL }, { "ab", 0x00000000d5f06301ULL }, { "aba", 0x00000000a85cd91bULL }, { "ababa", 0x000000009e3bb52eULL }, { "abababab", 0x000000002709b3b9ULL }, { "ababababababa", 0x000000003a234174ULL }, { "ababababababababababa", 0x000000005c63e5ceULL }, { "abababababababababababababababab", 0x0000000013f74334ULL }, { "abababababababababababababababab" "abababababababababababababababab" "abababababababababababababababab" "abababababababababababababababab" "abababababababababababababababab", 0x00000000c1a6f135ULL }, #else #error This test only supports 64-bit and 32-bit systems. #endif }; for (unsigned i = 0; i < sizeof(golden_data)/sizeof(*golden_data); ++i) { StringRef str = golden_data[i].s; hash_code hash = hash_combine_range(str.begin(), str.end()); #if 0 // Enable this to generate paste-able text for the above structure. std::string member_str = "\"" + str.str() + "\","; fprintf(stderr, " { %-35s 0x%016llxULL },\n", member_str.c_str(), static_cast(hash)); #endif EXPECT_EQ(static_cast(golden_data[i].hash), static_cast(hash)); } } TEST(HashingTest, HashCombineBasicTest) { // Hashing a sequence of homogenous types matches range hashing. const int i1 = 42, i2 = 43, i3 = 123, i4 = 999, i5 = 0, i6 = 79; const int arr1[] = { i1, i2, i3, i4, i5, i6 }; EXPECT_EQ(hash_combine_range(arr1, arr1 + 1), hash_combine(i1)); EXPECT_EQ(hash_combine_range(arr1, arr1 + 2), hash_combine(i1, i2)); EXPECT_EQ(hash_combine_range(arr1, arr1 + 3), hash_combine(i1, i2, i3)); EXPECT_EQ(hash_combine_range(arr1, arr1 + 4), hash_combine(i1, i2, i3, i4)); EXPECT_EQ(hash_combine_range(arr1, arr1 + 5), hash_combine(i1, i2, i3, i4, i5)); EXPECT_EQ(hash_combine_range(arr1, arr1 + 6), hash_combine(i1, i2, i3, i4, i5, i6)); // Hashing a sequence of heterogenous types which *happen* to all produce the // same data for hashing produces the same as a range-based hash of the // fundamental values. const size_t s1 = 1024, s2 = 8888, s3 = 9000000; const HashableDummy d1 = { 1024 }, d2 = { 8888 }, d3 = { 9000000 }; const size_t arr2[] = { s1, s2, s3 }; EXPECT_EQ(hash_combine_range(begin(arr2), end(arr2)), hash_combine(s1, s2, s3)); EXPECT_EQ(hash_combine(s1, s2, s3), hash_combine(s1, s2, d3)); EXPECT_EQ(hash_combine(s1, s2, s3), hash_combine(s1, d2, s3)); EXPECT_EQ(hash_combine(s1, s2, s3), hash_combine(d1, s2, s3)); EXPECT_EQ(hash_combine(s1, s2, s3), hash_combine(d1, d2, s3)); EXPECT_EQ(hash_combine(s1, s2, s3), hash_combine(d1, d2, d3)); // Permuting values causes hashes to change. EXPECT_NE(hash_combine(i1, i1, i1), hash_combine(i1, i1, i2)); EXPECT_NE(hash_combine(i1, i1, i1), hash_combine(i1, i2, i1)); EXPECT_NE(hash_combine(i1, i1, i1), hash_combine(i2, i1, i1)); EXPECT_NE(hash_combine(i1, i1, i1), hash_combine(i2, i2, i1)); EXPECT_NE(hash_combine(i1, i1, i1), hash_combine(i2, i2, i2)); EXPECT_NE(hash_combine(i2, i1, i1), hash_combine(i1, i1, i2)); EXPECT_NE(hash_combine(i1, i1, i2), hash_combine(i1, i2, i1)); EXPECT_NE(hash_combine(i1, i2, i1), hash_combine(i2, i1, i1)); // Changing type w/o changing value causes hashes to change. EXPECT_NE(hash_combine(i1, i2, i3), hash_combine((char)i1, i2, i3)); EXPECT_NE(hash_combine(i1, i2, i3), hash_combine(i1, (char)i2, i3)); EXPECT_NE(hash_combine(i1, i2, i3), hash_combine(i1, i2, (char)i3)); // This is array of uint64, but it should have the exact same byte pattern as // an array of LargeTestIntegers. const uint64_t bigarr[] = { 0xaaaaaaaaababababULL, 0xacacacacbcbcbcbcULL, 0xccddeeffeeddccbbULL, 0xdeadbeafdeadbeefULL, 0xfefefefededededeULL, 0xafafafafededededULL, 0xffffeeeeddddccccULL, 0xaaaacbcbffffababULL, 0xaaaaaaaaababababULL, 0xacacacacbcbcbcbcULL, 0xccddeeffeeddccbbULL, 0xdeadbeafdeadbeefULL, 0xfefefefededededeULL, 0xafafafafededededULL, 0xffffeeeeddddccccULL, 0xaaaacbcbffffababULL, 0xaaaaaaaaababababULL, 0xacacacacbcbcbcbcULL, 0xccddeeffeeddccbbULL, 0xdeadbeafdeadbeefULL, 0xfefefefededededeULL, 0xafafafafededededULL, 0xffffeeeeddddccccULL, 0xaaaacbcbffffababULL }; // Hash a preposterously large integer, both aligned with the buffer and // misaligned. const LargeTestInteger li = { { 0xaaaaaaaaababababULL, 0xacacacacbcbcbcbcULL, 0xccddeeffeeddccbbULL, 0xdeadbeafdeadbeefULL, 0xfefefefededededeULL, 0xafafafafededededULL, 0xffffeeeeddddccccULL, 0xaaaacbcbffffababULL } }; // Rotate the storage from 'li'. const LargeTestInteger l2 = { { 0xacacacacbcbcbcbcULL, 0xccddeeffeeddccbbULL, 0xdeadbeafdeadbeefULL, 0xfefefefededededeULL, 0xafafafafededededULL, 0xffffeeeeddddccccULL, 0xaaaacbcbffffababULL, 0xaaaaaaaaababababULL } }; const LargeTestInteger l3 = { { 0xccddeeffeeddccbbULL, 0xdeadbeafdeadbeefULL, 0xfefefefededededeULL, 0xafafafafededededULL, 0xffffeeeeddddccccULL, 0xaaaacbcbffffababULL, 0xaaaaaaaaababababULL, 0xacacacacbcbcbcbcULL } }; EXPECT_EQ(hash_combine_range(begin(bigarr), end(bigarr)), hash_combine(li, li, li)); EXPECT_EQ(hash_combine_range(bigarr, bigarr + 9), hash_combine(bigarr[0], l2)); EXPECT_EQ(hash_combine_range(bigarr, bigarr + 10), hash_combine(bigarr[0], bigarr[1], l3)); EXPECT_EQ(hash_combine_range(bigarr, bigarr + 17), hash_combine(li, bigarr[0], l2)); EXPECT_EQ(hash_combine_range(bigarr, bigarr + 18), hash_combine(li, bigarr[0], bigarr[1], l3)); EXPECT_EQ(hash_combine_range(bigarr, bigarr + 18), hash_combine(bigarr[0], l2, bigarr[9], l3)); EXPECT_EQ(hash_combine_range(bigarr, bigarr + 20), hash_combine(bigarr[0], l2, bigarr[9], l3, bigarr[18], bigarr[19])); } }