//=- llvm/CodeGen/MachineDominators.h - Machine Dom Calculation --*- C++ -*-==// // // The LLVM Compiler Infrastructure // // This file is distributed under the University of Illinois Open Source // License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// // // This file defines classes mirroring those in llvm/Analysis/Dominators.h, // but for target-specific code rather than target-independent IR. // //===----------------------------------------------------------------------===// #ifndef LLVM_CODEGEN_MACHINEDOMINATORS_H #define LLVM_CODEGEN_MACHINEDOMINATORS_H #include "llvm/ADT/SmallSet.h" #include "llvm/CodeGen/MachineBasicBlock.h" #include "llvm/CodeGen/MachineFunction.h" #include "llvm/CodeGen/MachineFunctionPass.h" #include "llvm/Support/GenericDomTree.h" #include "llvm/Support/GenericDomTreeConstruction.h" namespace llvm { template<> inline void DominatorTreeBase::addRoot(MachineBasicBlock* MBB) { this->Roots.push_back(MBB); } EXTERN_TEMPLATE_INSTANTIATION(class DomTreeNodeBase); EXTERN_TEMPLATE_INSTANTIATION(class DominatorTreeBase); typedef DomTreeNodeBase MachineDomTreeNode; //===------------------------------------- /// DominatorTree Class - Concrete subclass of DominatorTreeBase that is used to /// compute a normal dominator tree. /// class MachineDominatorTree : public MachineFunctionPass { /// \brief Helper structure used to hold all the basic blocks /// involved in the split of a critical edge. struct CriticalEdge { MachineBasicBlock *FromBB; MachineBasicBlock *ToBB; MachineBasicBlock *NewBB; CriticalEdge(MachineBasicBlock *FromBB, MachineBasicBlock *ToBB, MachineBasicBlock *NewBB) : FromBB(FromBB), ToBB(ToBB), NewBB(NewBB) {} }; /// \brief Pile up all the critical edges to be split. /// The splitting of a critical edge is local and thus, it is possible /// to apply several of those changes at the same time. mutable SmallVector CriticalEdgesToSplit; /// \brief Remember all the basic blocks that are inserted during /// edge splitting. /// Invariant: NewBBs == all the basic blocks contained in the NewBB /// field of all the elements of CriticalEdgesToSplit. /// I.e., forall elt in CriticalEdgesToSplit, it exists BB in NewBBs /// such as BB == elt.NewBB. mutable SmallSet NewBBs; /// \brief Apply all the recorded critical edges to the DT. /// This updates the underlying DT information in a way that uses /// the fast query path of DT as much as possible. /// /// \post CriticalEdgesToSplit.empty(). void applySplitCriticalEdges() const { // Bail out early if there is nothing to do. if (CriticalEdgesToSplit.empty()) return; // For each element in CriticalEdgesToSplit, remember whether or // not element is the new immediate domminator of its successor. // The mapping is done by index, i.e., the information for the ith // element of CriticalEdgesToSplit is the ith element of IsNewIDom. SmallVector IsNewIDom; IsNewIDom.resize(CriticalEdgesToSplit.size()); size_t Idx = 0; // Collect all the dominance properties info, before invalidating // the underlying DT. for (CriticalEdge &Edge : CriticalEdgesToSplit) { // Update dominator information. MachineBasicBlock *Succ = Edge.ToBB; MachineDomTreeNode *SucccDTNode = DT->getNode(Succ); IsNewIDom[Idx] = true; for (MachineBasicBlock *PredBB : Succ->predecessors()) { if (PredBB == Edge.NewBB) continue; // If we are in this situation: // FromBB1 FromBB2 // + + // + + + + // + + + + // ... Split1 Split2 ... // + + // + + // + // Succ // Instead of checking the domiance property with Split2, we // check it with FromBB2 since Split2 is still unknown of the // underlying DT structure. if (NewBBs.count(PredBB)) { assert(PredBB->pred_size() == 1 && "A basic block resulting from a " "critical edge split has more " "than one predecessor!"); PredBB = *PredBB->pred_begin(); } if (!DT->dominates(SucccDTNode, DT->getNode(PredBB))) { IsNewIDom[Idx] = false; break; } } ++Idx; } // Now, update DT with the collected dominance properties info. Idx = 0; for (CriticalEdge &Edge : CriticalEdgesToSplit) { // We know FromBB dominates NewBB. MachineDomTreeNode *NewDTNode = DT->addNewBlock(Edge.NewBB, Edge.FromBB); MachineDomTreeNode *SucccDTNode = DT->getNode(Edge.ToBB); // If all the other predecessors of "Succ" are dominated by "Succ" itself // then the new block is the new immediate dominator of "Succ". Otherwise, // the new block doesn't dominate anything. if (IsNewIDom[Idx]) DT->changeImmediateDominator(SucccDTNode, NewDTNode); ++Idx; } NewBBs.clear(); CriticalEdgesToSplit.clear(); } public: static char ID; // Pass ID, replacement for typeid DominatorTreeBase* DT; MachineDominatorTree(); ~MachineDominatorTree(); DominatorTreeBase &getBase() { applySplitCriticalEdges(); return *DT; } void getAnalysisUsage(AnalysisUsage &AU) const override; /// getRoots - Return the root blocks of the current CFG. This may include /// multiple blocks if we are computing post dominators. For forward /// dominators, this will always be a single block (the entry node). /// inline const std::vector &getRoots() const { applySplitCriticalEdges(); return DT->getRoots(); } inline MachineBasicBlock *getRoot() const { applySplitCriticalEdges(); return DT->getRoot(); } inline MachineDomTreeNode *getRootNode() const { applySplitCriticalEdges(); return DT->getRootNode(); } bool runOnMachineFunction(MachineFunction &F) override; inline bool dominates(const MachineDomTreeNode* A, const MachineDomTreeNode* B) const { applySplitCriticalEdges(); return DT->dominates(A, B); } inline bool dominates(const MachineBasicBlock* A, const MachineBasicBlock* B) const { applySplitCriticalEdges(); return DT->dominates(A, B); } // dominates - Return true if A dominates B. This performs the // special checks necessary if A and B are in the same basic block. bool dominates(const MachineInstr *A, const MachineInstr *B) const { applySplitCriticalEdges(); const MachineBasicBlock *BBA = A->getParent(), *BBB = B->getParent(); if (BBA != BBB) return DT->dominates(BBA, BBB); // Loop through the basic block until we find A or B. MachineBasicBlock::const_iterator I = BBA->begin(); for (; &*I != A && &*I != B; ++I) /*empty*/ ; //if(!DT.IsPostDominators) { // A dominates B if it is found first in the basic block. return &*I == A; //} else { // // A post-dominates B if B is found first in the basic block. // return &*I == B; //} } inline bool properlyDominates(const MachineDomTreeNode* A, const MachineDomTreeNode* B) const { applySplitCriticalEdges(); return DT->properlyDominates(A, B); } inline bool properlyDominates(const MachineBasicBlock* A, const MachineBasicBlock* B) const { applySplitCriticalEdges(); return DT->properlyDominates(A, B); } /// findNearestCommonDominator - Find nearest common dominator basic block /// for basic block A and B. If there is no such block then return NULL. inline MachineBasicBlock *findNearestCommonDominator(MachineBasicBlock *A, MachineBasicBlock *B) { applySplitCriticalEdges(); return DT->findNearestCommonDominator(A, B); } inline MachineDomTreeNode *operator[](MachineBasicBlock *BB) const { applySplitCriticalEdges(); return DT->getNode(BB); } /// getNode - return the (Post)DominatorTree node for the specified basic /// block. This is the same as using operator[] on this class. /// inline MachineDomTreeNode *getNode(MachineBasicBlock *BB) const { applySplitCriticalEdges(); return DT->getNode(BB); } /// addNewBlock - Add a new node to the dominator tree information. This /// creates a new node as a child of DomBB dominator node,linking it into /// the children list of the immediate dominator. inline MachineDomTreeNode *addNewBlock(MachineBasicBlock *BB, MachineBasicBlock *DomBB) { applySplitCriticalEdges(); return DT->addNewBlock(BB, DomBB); } /// changeImmediateDominator - This method is used to update the dominator /// tree information when a node's immediate dominator changes. /// inline void changeImmediateDominator(MachineBasicBlock *N, MachineBasicBlock* NewIDom) { applySplitCriticalEdges(); DT->changeImmediateDominator(N, NewIDom); } inline void changeImmediateDominator(MachineDomTreeNode *N, MachineDomTreeNode* NewIDom) { applySplitCriticalEdges(); DT->changeImmediateDominator(N, NewIDom); } /// eraseNode - Removes a node from the dominator tree. Block must not /// dominate any other blocks. Removes node from its immediate dominator's /// children list. Deletes dominator node associated with basic block BB. inline void eraseNode(MachineBasicBlock *BB) { applySplitCriticalEdges(); DT->eraseNode(BB); } /// splitBlock - BB is split and now it has one successor. Update dominator /// tree to reflect this change. inline void splitBlock(MachineBasicBlock* NewBB) { applySplitCriticalEdges(); DT->splitBlock(NewBB); } /// isReachableFromEntry - Return true if A is dominated by the entry /// block of the function containing it. bool isReachableFromEntry(const MachineBasicBlock *A) { applySplitCriticalEdges(); return DT->isReachableFromEntry(A); } void releaseMemory() override; void print(raw_ostream &OS, const Module*) const override; /// \brief Record that the critical edge (FromBB, ToBB) has been /// split with NewBB. /// This is best to use this method instead of directly update the /// underlying information, because this helps mitigating the /// number of time the DT information is invalidated. /// /// \note Do not use this method with regular edges. /// /// \note To benefit from the compile time improvement incurred by this /// method, the users of this method have to limit the queries to the DT /// interface between two edges splitting. In other words, they have to /// pack the splitting of critical edges as much as possible. void recordSplitCriticalEdge(MachineBasicBlock *FromBB, MachineBasicBlock *ToBB, MachineBasicBlock *NewBB) { bool Inserted = NewBBs.insert(NewBB); (void)Inserted; assert(Inserted && "A basic block inserted via edge splitting cannot appear twice"); CriticalEdgesToSplit.push_back(CriticalEdge(FromBB, ToBB, NewBB)); } }; //===------------------------------------- /// DominatorTree GraphTraits specialization so the DominatorTree can be /// iterable by generic graph iterators. /// template struct GraphTraits; template <> struct GraphTraits { typedef MachineDomTreeNode NodeType; typedef NodeType::iterator ChildIteratorType; static NodeType *getEntryNode(NodeType *N) { return N; } static inline ChildIteratorType child_begin(NodeType* N) { return N->begin(); } static inline ChildIteratorType child_end(NodeType* N) { return N->end(); } }; template <> struct GraphTraits : public GraphTraits { static NodeType *getEntryNode(MachineDominatorTree *DT) { return DT->getRootNode(); } }; } #endif