#include "llvm/CodeGen/LiveRangeInfo.h" LiveRangeInfo::LiveRangeInfo(const Method *const M, const TargetMachine& tm, vector &RCL) : Meth(M), LiveRangeMap(), TM(tm), RegClassList(RCL), MRI( tm.getRegInfo()), CallRetInstrList() { } // union two live ranges into one. The 2nd LR is deleted. Used for coalescing. // Note: the caller must make sure that L1 and L2 are distinct and both // LRs don't have suggested colors void LiveRangeInfo::unionAndUpdateLRs(LiveRange *const L1, LiveRange *L2) { assert( L1 != L2); L1->setUnion( L2 ); // add elements of L2 to L1 ValueSet::iterator L2It; for( L2It = L2->begin() ; L2It != L2->end(); ++L2It) { //assert(( L1->getTypeID() == L2->getTypeID()) && "Merge:Different types"); L1->add( *L2It ); // add the var in L2 to L1 LiveRangeMap[ *L2It ] = L1; // now the elements in L2 should map to L1 } // Now if LROfDef(L1) has a suggested color, it will remain. // But, if LROfUse(L2) has a suggested color, the new range // must have the same color. if(L2->hasSuggestedColor()) L1->setSuggestedColor( L2->getSuggestedColor() ); if( L2->isCallInterference() ) L1->setCallInterference(); delete ( L2 ); // delete L2 as it is no longer needed } void LiveRangeInfo::constructLiveRanges() { if( DEBUG_RA) cout << "Consturcting Live Ranges ..." << endl; // first find the live ranges for all incoming args of the method since // those LRs start from the start of the method // get the argument list const Method::ArgumentListType& ArgList = Meth->getArgumentList(); // get an iterator to arg list Method::ArgumentListType::const_iterator ArgIt = ArgList.begin(); for( ; ArgIt != ArgList.end() ; ++ArgIt) { // for each argument LiveRange * ArgRange = new LiveRange(); // creates a new LR and const Value *const Val = (const Value *) *ArgIt; assert( Val); ArgRange->add( Val ); // add the arg (def) to it LiveRangeMap[ Val ] = ArgRange; // create a temp machine op to find the register class of value //const MachineOperand Op(MachineOperand::MO_VirtualRegister); unsigned rcid = MRI.getRegClassIDOfValue( Val ); ArgRange->setRegClass(RegClassList[ rcid ] ); if( DEBUG_RA > 1) { cout << " adding LiveRange for argument "; printValue( (const Value *) *ArgIt); cout << endl; } } // Now suggest hardware registers for these method args MRI.suggestRegs4MethodArgs(Meth, *this); // Now find speical LLVM instructions (CALL, RET) and LRs in machine // instructions. Method::const_iterator BBI = Meth->begin(); // random iterator for BBs for( ; BBI != Meth->end(); ++BBI) { // go thru BBs in random order // Now find all LRs for machine the instructions. A new LR will be created // only for defs in the machine instr since, we assume that all Values are // defined before they are used. However, there can be multiple defs for // the same Value in machine instructions. // get the iterator for machine instructions const MachineCodeForBasicBlock& MIVec = (*BBI)->getMachineInstrVec(); MachineCodeForBasicBlock::const_iterator MInstIterator = MIVec.begin(); // iterate over all the machine instructions in BB for( ; MInstIterator != MIVec.end(); MInstIterator++) { const MachineInstr * MInst = *MInstIterator; // Now if the machine instruction is a call/return instruction, // add it to CallRetInstrList for processing its implicit operands if( (TM.getInstrInfo()).isReturn( MInst->getOpCode()) || (TM.getInstrInfo()).isCall( MInst->getOpCode()) ) CallRetInstrList.push_back( MInst ); // iterate over MI operands to find defs for( MachineInstr::val_op_const_iterator OpI(MInst);!OpI.done(); ++OpI) { if( DEBUG_RA) { MachineOperand::MachineOperandType OpTyp = OpI.getMachineOperand().getOperandType(); if ( OpTyp == MachineOperand::MO_CCRegister) { cout << "\n**CC reg found. Is Def=" << OpI.isDef() << " Val:"; printValue( OpI.getMachineOperand().getVRegValue() ); cout << endl; } } // create a new LR iff this operand is a def if( OpI.isDef() ) { const Value *const Def = *OpI; // Only instruction values are accepted for live ranges here if( Def->getValueType() != Value::InstructionVal ) { cout << "\n**%%Error: Def is not an instruction val. Def="; printValue( Def ); cout << endl; continue; } LiveRange *DefRange = LiveRangeMap[Def]; // see LR already there (because of multiple defs) if( !DefRange) { // if it is not in LiveRangeMap DefRange = new LiveRange(); // creates a new live range and DefRange->add( Def ); // add the instruction (def) to it LiveRangeMap[ Def ] = DefRange; // update the map if( DEBUG_RA > 1) { cout << " creating a LR for def: "; printValue(Def); cout << endl; } // set the register class of the new live range //assert( RegClassList.size() ); MachineOperand::MachineOperandType OpTy = OpI.getMachineOperand().getOperandType(); bool isCC = ( OpTy == MachineOperand::MO_CCRegister); unsigned rcid = MRI.getRegClassIDOfValue( OpI.getMachineOperand().getVRegValue(), isCC ); if(isCC && DEBUG_RA) { cout << "\a**created a LR for a CC reg:"; printValue( OpI.getMachineOperand().getVRegValue() ); } DefRange->setRegClass( RegClassList[ rcid ] ); } else { DefRange->add( Def ); // add the opearand to def range // update the map - Operand points // to the merged set LiveRangeMap[ Def ] = DefRange; if( DEBUG_RA > 1) { cout << " added to an existing LR for def: "; printValue( Def ); cout << endl; } } } // if isDef() } // for all opereands in machine instructions } // for all machine instructions in the BB } // for all BBs in method // Now we have to suggest clors for call and return arg live ranges. // Also, if there are implicit defs (e.g., retun value of a call inst) // they must be added to the live range list suggestRegs4CallRets(); if( DEBUG_RA) cout << "Initial Live Ranges constructed!" << endl; } // Suggest colors for call and return args. // Also create new LRs for implicit defs void LiveRangeInfo::suggestRegs4CallRets() { CallRetInstrListType::const_iterator It = CallRetInstrList.begin(); for( ; It != CallRetInstrList.end(); ++It ) { const MachineInstr *MInst = *It; MachineOpCode OpCode = MInst->getOpCode(); if( (TM.getInstrInfo()).isReturn(OpCode) ) MRI.suggestReg4RetValue( MInst, *this); else if( (TM.getInstrInfo()).isCall( OpCode ) ) MRI.suggestRegs4CallArgs( MInst, *this, RegClassList ); else assert( 0 && "Non call/ret instr in CallRetInstrList" ); } } void LiveRangeInfo::coalesceLRs() { /* Algorithm: for each BB in method for each machine instruction (inst) for each definition (def) in inst for each operand (op) of inst that is a use if the def and op are of the same register type if the def and op do not interfere //i.e., not simultaneously live if (degree(LR of def) + degree(LR of op)) <= # avail regs if both LRs do not have suggested colors merge2IGNodes(def, op) // i.e., merge 2 LRs */ if( DEBUG_RA) cout << endl << "Coalscing LRs ..." << endl; Method::const_iterator BBI = Meth->begin(); // random iterator for BBs for( ; BBI != Meth->end(); ++BBI) { // traverse BBs in random order // get the iterator for machine instructions const MachineCodeForBasicBlock& MIVec = (*BBI)->getMachineInstrVec(); MachineCodeForBasicBlock::const_iterator MInstIterator = MIVec.begin(); // iterate over all the machine instructions in BB for( ; MInstIterator != MIVec.end(); ++MInstIterator) { const MachineInstr * MInst = *MInstIterator; if( DEBUG_RA > 1) { cout << " *Iterating over machine instr "; MInst->dump(); cout << endl; } // iterate over MI operands to find defs for(MachineInstr::val_op_const_iterator DefI(MInst);!DefI.done();++DefI){ if( DefI.isDef() ) { // iff this operand is a def LiveRange *const LROfDef = getLiveRangeForValue( *DefI ); assert( LROfDef ); RegClass *const RCOfDef = LROfDef->getRegClass(); MachineInstr::val_op_const_iterator UseI(MInst); for( ; !UseI.done(); ++UseI){ // for all uses LiveRange *const LROfUse = getLiveRangeForValue( *UseI ); if( ! LROfUse ) { // if LR of use is not found //don't warn about labels if (!((*UseI)->getType())->isLabelType() && DEBUG_RA) { cout<<" !! Warning: No LR for use "; printValue(*UseI); cout << endl; } continue; // ignore and continue } if( LROfUse == LROfDef) // nothing to merge if they are same continue; //RegClass *const RCOfUse = LROfUse->getRegClass(); //if( RCOfDef == RCOfUse ) { // if the reg classes are the same if( MRI.getRegType(LROfDef) == MRI.getRegType(LROfUse) ) { // If the two RegTypes are the same if( ! RCOfDef->getInterference(LROfDef, LROfUse) ) { unsigned CombinedDegree = LROfDef->getUserIGNode()->getNumOfNeighbors() + LROfUse->getUserIGNode()->getNumOfNeighbors(); if( CombinedDegree <= RCOfDef->getNumOfAvailRegs() ) { // if both LRs do not have suggested colors if( ! (LROfDef->hasSuggestedColor() && LROfUse->hasSuggestedColor() ) ) { RCOfDef->mergeIGNodesOfLRs(LROfDef, LROfUse); unionAndUpdateLRs(LROfDef, LROfUse); } } // if combined degree is less than # of regs } // if def and use do not interfere }// if reg classes are the same } // for all uses } // if def } // for all defs } // for all machine instructions } // for all BBs if( DEBUG_RA) cout << endl << "Coalscing Done!" << endl; } /*--------------------------- Debug code for printing ---------------*/ void LiveRangeInfo::printLiveRanges() { LiveRangeMapType::iterator HMI = LiveRangeMap.begin(); // hash map iterator cout << endl << "Printing Live Ranges from Hash Map:" << endl; for( ; HMI != LiveRangeMap.end() ; HMI ++ ) { if( (*HMI).first && (*HMI).second ) { cout <<" "; printValue((*HMI).first); cout << "\t: "; ((*HMI).second)->printSet(); cout << endl; } } }