//===- llvm/ADT/SmallBitVector.h - 'Normally small' bit vectors -*- C++ -*-===// // // The LLVM Compiler Infrastructure // // This file is distributed under the University of Illinois Open Source // License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// // // This file implements the SmallBitVector class. // //===----------------------------------------------------------------------===// #ifndef LLVM_ADT_SMALLBITVECTOR_H #define LLVM_ADT_SMALLBITVECTOR_H #include "llvm/ADT/BitVector.h" #include "llvm/Support/Compiler.h" #include "llvm/Support/MathExtras.h" #include namespace llvm { /// SmallBitVector - This is a 'bitvector' (really, a variable-sized bit array), /// optimized for the case when the array is small. It contains one /// pointer-sized field, which is directly used as a plain collection of bits /// when possible, or as a pointer to a larger heap-allocated array when /// necessary. This allows normal "small" cases to be fast without losing /// generality for large inputs. /// class SmallBitVector { // TODO: In "large" mode, a pointer to a BitVector is used, leading to an // unnecessary level of indirection. It would be more efficient to use a // pointer to memory containing size, allocation size, and the array of bits. uintptr_t X; enum { // The number of bits in this class. NumBaseBits = sizeof(uintptr_t) * CHAR_BIT, // One bit is used to discriminate between small and large mode. The // remaining bits are used for the small-mode representation. SmallNumRawBits = NumBaseBits - 1, // A few more bits are used to store the size of the bit set in small mode. // Theoretically this is a ceil-log2. These bits are encoded in the most // significant bits of the raw bits. SmallNumSizeBits = (NumBaseBits == 32 ? 5 : NumBaseBits == 64 ? 6 : SmallNumRawBits), // The remaining bits are used to store the actual set in small mode. SmallNumDataBits = SmallNumRawBits - SmallNumSizeBits }; public: // Encapsulation of a single bit. class reference { SmallBitVector &TheVector; unsigned BitPos; public: reference(SmallBitVector &b, unsigned Idx) : TheVector(b), BitPos(Idx) {} reference& operator=(reference t) { *this = bool(t); return *this; } reference& operator=(bool t) { if (t) TheVector.set(BitPos); else TheVector.reset(BitPos); return *this; } operator bool() const { return const_cast(TheVector).operator[](BitPos); } }; private: bool isSmall() const { return X & uintptr_t(1); } BitVector *getPointer() const { assert(!isSmall()); return reinterpret_cast(X); } void switchToSmall(uintptr_t NewSmallBits, size_t NewSize) { X = 1; setSmallSize(NewSize); setSmallBits(NewSmallBits); } void switchToLarge(BitVector *BV) { X = reinterpret_cast(BV); assert(!isSmall() && "Tried to use an unaligned pointer"); } // Return all the bits used for the "small" representation; this includes // bits for the size as well as the element bits. uintptr_t getSmallRawBits() const { assert(isSmall()); return X >> 1; } void setSmallRawBits(uintptr_t NewRawBits) { assert(isSmall()); X = (NewRawBits << 1) | uintptr_t(1); } // Return the size. size_t getSmallSize() const { return getSmallRawBits() >> SmallNumDataBits; } void setSmallSize(size_t Size) { setSmallRawBits(getSmallBits() | (Size << SmallNumDataBits)); } // Return the element bits. uintptr_t getSmallBits() const { return getSmallRawBits() & ~(~uintptr_t(0) << getSmallSize()); } void setSmallBits(uintptr_t NewBits) { setSmallRawBits((NewBits & ~(~uintptr_t(0) << getSmallSize())) | (getSmallSize() << SmallNumDataBits)); } public: /// SmallBitVector default ctor - Creates an empty bitvector. SmallBitVector() : X(1) {} /// SmallBitVector ctor - Creates a bitvector of specified number of bits. All /// bits are initialized to the specified value. explicit SmallBitVector(unsigned s, bool t = false) { if (s <= SmallNumDataBits) switchToSmall(t ? ~uintptr_t(0) : 0, s); else switchToLarge(new BitVector(s, t)); } /// SmallBitVector copy ctor. SmallBitVector(const SmallBitVector &RHS) { if (RHS.isSmall()) X = RHS.X; else switchToLarge(new BitVector(*RHS.getPointer())); } #if LLVM_HAS_RVALUE_REFERENCES SmallBitVector(SmallBitVector &&RHS) : X(RHS.X) { RHS.X = 1; } #endif ~SmallBitVector() { if (!isSmall()) delete getPointer(); } /// empty - Tests whether there are no bits in this bitvector. bool empty() const { return isSmall() ? getSmallSize() == 0 : getPointer()->empty(); } /// size - Returns the number of bits in this bitvector. size_t size() const { return isSmall() ? getSmallSize() : getPointer()->size(); } /// count - Returns the number of bits which are set. unsigned count() const { if (isSmall()) { uintptr_t Bits = getSmallBits(); if (sizeof(uintptr_t) * CHAR_BIT == 32) return CountPopulation_32(Bits); if (sizeof(uintptr_t) * CHAR_BIT == 64) return CountPopulation_64(Bits); llvm_unreachable("Unsupported!"); } return getPointer()->count(); } /// any - Returns true if any bit is set. bool any() const { if (isSmall()) return getSmallBits() != 0; return getPointer()->any(); } /// all - Returns true if all bits are set. bool all() const { if (isSmall()) return getSmallBits() == (uintptr_t(1) << getSmallSize()) - 1; return getPointer()->all(); } /// none - Returns true if none of the bits are set. bool none() const { if (isSmall()) return getSmallBits() == 0; return getPointer()->none(); } /// find_first - Returns the index of the first set bit, -1 if none /// of the bits are set. int find_first() const { if (isSmall()) { uintptr_t Bits = getSmallBits(); if (Bits == 0) return -1; if (sizeof(uintptr_t) * CHAR_BIT == 32) return CountTrailingZeros_32(Bits); if (sizeof(uintptr_t) * CHAR_BIT == 64) return CountTrailingZeros_64(Bits); llvm_unreachable("Unsupported!"); } return getPointer()->find_first(); } /// find_next - Returns the index of the next set bit following the /// "Prev" bit. Returns -1 if the next set bit is not found. int find_next(unsigned Prev) const { if (isSmall()) { uintptr_t Bits = getSmallBits(); // Mask off previous bits. Bits &= ~uintptr_t(0) << (Prev + 1); if (Bits == 0 || Prev + 1 >= getSmallSize()) return -1; if (sizeof(uintptr_t) * CHAR_BIT == 32) return CountTrailingZeros_32(Bits); if (sizeof(uintptr_t) * CHAR_BIT == 64) return CountTrailingZeros_64(Bits); llvm_unreachable("Unsupported!"); } return getPointer()->find_next(Prev); } /// clear - Clear all bits. void clear() { if (!isSmall()) delete getPointer(); switchToSmall(0, 0); } /// resize - Grow or shrink the bitvector. void resize(unsigned N, bool t = false) { if (!isSmall()) { getPointer()->resize(N, t); } else if (SmallNumDataBits >= N) { uintptr_t NewBits = t ? ~uintptr_t(0) << getSmallSize() : 0; setSmallSize(N); setSmallBits(NewBits | getSmallBits()); } else { BitVector *BV = new BitVector(N, t); uintptr_t OldBits = getSmallBits(); for (size_t i = 0, e = getSmallSize(); i != e; ++i) (*BV)[i] = (OldBits >> i) & 1; switchToLarge(BV); } } void reserve(unsigned N) { if (isSmall()) { if (N > SmallNumDataBits) { uintptr_t OldBits = getSmallRawBits(); size_t SmallSize = getSmallSize(); BitVector *BV = new BitVector(SmallSize); for (size_t i = 0; i < SmallSize; ++i) if ((OldBits >> i) & 1) BV->set(i); BV->reserve(N); switchToLarge(BV); } } else { getPointer()->reserve(N); } } // Set, reset, flip SmallBitVector &set() { if (isSmall()) setSmallBits(~uintptr_t(0)); else getPointer()->set(); return *this; } SmallBitVector &set(unsigned Idx) { if (isSmall()) setSmallBits(getSmallBits() | (uintptr_t(1) << Idx)); else getPointer()->set(Idx); return *this; } /// set - Efficiently set a range of bits in [I, E) SmallBitVector &set(unsigned I, unsigned E) { assert(I <= E && "Attempted to set backwards range!"); assert(E <= size() && "Attempted to set out-of-bounds range!"); if (I == E) return *this; if (isSmall()) { uintptr_t EMask = ((uintptr_t)1) << E; uintptr_t IMask = ((uintptr_t)1) << I; uintptr_t Mask = EMask - IMask; setSmallBits(getSmallBits() | Mask); } else getPointer()->set(I, E); return *this; } SmallBitVector &reset() { if (isSmall()) setSmallBits(0); else getPointer()->reset(); return *this; } SmallBitVector &reset(unsigned Idx) { if (isSmall()) setSmallBits(getSmallBits() & ~(uintptr_t(1) << Idx)); else getPointer()->reset(Idx); return *this; } /// reset - Efficiently reset a range of bits in [I, E) SmallBitVector &reset(unsigned I, unsigned E) { assert(I <= E && "Attempted to reset backwards range!"); assert(E <= size() && "Attempted to reset out-of-bounds range!"); if (I == E) return *this; if (isSmall()) { uintptr_t EMask = ((uintptr_t)1) << E; uintptr_t IMask = ((uintptr_t)1) << I; uintptr_t Mask = EMask - IMask; setSmallBits(getSmallBits() & ~Mask); } else getPointer()->reset(I, E); return *this; } SmallBitVector &flip() { if (isSmall()) setSmallBits(~getSmallBits()); else getPointer()->flip(); return *this; } SmallBitVector &flip(unsigned Idx) { if (isSmall()) setSmallBits(getSmallBits() ^ (uintptr_t(1) << Idx)); else getPointer()->flip(Idx); return *this; } // No argument flip. SmallBitVector operator~() const { return SmallBitVector(*this).flip(); } // Indexing. reference operator[](unsigned Idx) { assert(Idx < size() && "Out-of-bounds Bit access."); return reference(*this, Idx); } bool operator[](unsigned Idx) const { assert(Idx < size() && "Out-of-bounds Bit access."); if (isSmall()) return ((getSmallBits() >> Idx) & 1) != 0; return getPointer()->operator[](Idx); } bool test(unsigned Idx) const { return (*this)[Idx]; } /// Test if any common bits are set. bool anyCommon(const SmallBitVector &RHS) const { if (isSmall() && RHS.isSmall()) return (getSmallBits() & RHS.getSmallBits()) != 0; if (!isSmall() && !RHS.isSmall()) return getPointer()->anyCommon(*RHS.getPointer()); for (unsigned i = 0, e = std::min(size(), RHS.size()); i != e; ++i) if (test(i) && RHS.test(i)) return true; return false; } // Comparison operators. bool operator==(const SmallBitVector &RHS) const { if (size() != RHS.size()) return false; if (isSmall()) return getSmallBits() == RHS.getSmallBits(); else return *getPointer() == *RHS.getPointer(); } bool operator!=(const SmallBitVector &RHS) const { return !(*this == RHS); } // Intersection, union, disjoint union. SmallBitVector &operator&=(const SmallBitVector &RHS) { resize(std::max(size(), RHS.size())); if (isSmall()) setSmallBits(getSmallBits() & RHS.getSmallBits()); else if (!RHS.isSmall()) getPointer()->operator&=(*RHS.getPointer()); else { SmallBitVector Copy = RHS; Copy.resize(size()); getPointer()->operator&=(*Copy.getPointer()); } return *this; } SmallBitVector &operator|=(const SmallBitVector &RHS) { resize(std::max(size(), RHS.size())); if (isSmall()) setSmallBits(getSmallBits() | RHS.getSmallBits()); else if (!RHS.isSmall()) getPointer()->operator|=(*RHS.getPointer()); else { SmallBitVector Copy = RHS; Copy.resize(size()); getPointer()->operator|=(*Copy.getPointer()); } return *this; } SmallBitVector &operator^=(const SmallBitVector &RHS) { resize(std::max(size(), RHS.size())); if (isSmall()) setSmallBits(getSmallBits() ^ RHS.getSmallBits()); else if (!RHS.isSmall()) getPointer()->operator^=(*RHS.getPointer()); else { SmallBitVector Copy = RHS; Copy.resize(size()); getPointer()->operator^=(*Copy.getPointer()); } return *this; } // Assignment operator. const SmallBitVector &operator=(const SmallBitVector &RHS) { if (isSmall()) { if (RHS.isSmall()) X = RHS.X; else switchToLarge(new BitVector(*RHS.getPointer())); } else { if (!RHS.isSmall()) *getPointer() = *RHS.getPointer(); else { delete getPointer(); X = RHS.X; } } return *this; } #if LLVM_HAS_RVALUE_REFERENCES const SmallBitVector &operator=(SmallBitVector &&RHS) { if (this != &RHS) { clear(); swap(RHS); } return *this; } #endif void swap(SmallBitVector &RHS) { std::swap(X, RHS.X); } /// setBitsInMask - Add '1' bits from Mask to this vector. Don't resize. /// This computes "*this |= Mask". void setBitsInMask(const uint32_t *Mask, unsigned MaskWords = ~0u) { if (isSmall()) applyMask(Mask, MaskWords); else getPointer()->setBitsInMask(Mask, MaskWords); } /// clearBitsInMask - Clear any bits in this vector that are set in Mask. /// Don't resize. This computes "*this &= ~Mask". void clearBitsInMask(const uint32_t *Mask, unsigned MaskWords = ~0u) { if (isSmall()) applyMask(Mask, MaskWords); else getPointer()->clearBitsInMask(Mask, MaskWords); } /// setBitsNotInMask - Add a bit to this vector for every '0' bit in Mask. /// Don't resize. This computes "*this |= ~Mask". void setBitsNotInMask(const uint32_t *Mask, unsigned MaskWords = ~0u) { if (isSmall()) applyMask(Mask, MaskWords); else getPointer()->setBitsNotInMask(Mask, MaskWords); } /// clearBitsNotInMask - Clear a bit in this vector for every '0' bit in Mask. /// Don't resize. This computes "*this &= Mask". void clearBitsNotInMask(const uint32_t *Mask, unsigned MaskWords = ~0u) { if (isSmall()) applyMask(Mask, MaskWords); else getPointer()->clearBitsNotInMask(Mask, MaskWords); } private: template void applyMask(const uint32_t *Mask, unsigned MaskWords) { assert((NumBaseBits == 64 || NumBaseBits == 32) && "Unsupported word size"); if (NumBaseBits == 64 && MaskWords >= 2) { uint64_t M = Mask[0] | (uint64_t(Mask[1]) << 32); if (InvertMask) M = ~M; if (AddBits) setSmallBits(getSmallBits() | M); else setSmallBits(getSmallBits() & ~M); } else { uint32_t M = Mask[0]; if (InvertMask) M = ~M; if (AddBits) setSmallBits(getSmallBits() | M); else setSmallBits(getSmallBits() & ~M); } } }; inline SmallBitVector operator&(const SmallBitVector &LHS, const SmallBitVector &RHS) { SmallBitVector Result(LHS); Result &= RHS; return Result; } inline SmallBitVector operator|(const SmallBitVector &LHS, const SmallBitVector &RHS) { SmallBitVector Result(LHS); Result |= RHS; return Result; } inline SmallBitVector operator^(const SmallBitVector &LHS, const SmallBitVector &RHS) { SmallBitVector Result(LHS); Result ^= RHS; return Result; } } // End llvm namespace namespace std { /// Implement std::swap in terms of BitVector swap. inline void swap(llvm::SmallBitVector &LHS, llvm::SmallBitVector &RHS) { LHS.swap(RHS); } } #endif