//===- SLPVectorizer.cpp - A bottom up SLP Vectorizer ---------------------===// // // The LLVM Compiler Infrastructure // // This file is distributed under the University of Illinois Open Source // License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// // This pass implements the Bottom Up SLP vectorizer. It detects consecutive // stores that can be put together into vector-stores. Next, it attempts to // construct vectorizable tree using the use-def chains. If a profitable tree // was found, the SLP vectorizer performs vectorization on the tree. // // The pass is inspired by the work described in the paper: // "Loop-Aware SLP in GCC" by Ira Rosen, Dorit Nuzman, Ayal Zaks. // //===----------------------------------------------------------------------===// #define SV_NAME "slp-vectorizer" #define DEBUG_TYPE "SLP" #include "llvm/Transforms/Vectorize.h" #include "llvm/ADT/MapVector.h" #include "llvm/ADT/PostOrderIterator.h" #include "llvm/ADT/SetVector.h" #include "llvm/Analysis/AliasAnalysis.h" #include "llvm/Analysis/ScalarEvolution.h" #include "llvm/Analysis/ScalarEvolutionExpressions.h" #include "llvm/Analysis/AliasAnalysis.h" #include "llvm/Analysis/TargetTransformInfo.h" #include "llvm/Analysis/Verifier.h" #include "llvm/Analysis/LoopInfo.h" #include "llvm/IR/DataLayout.h" #include "llvm/IR/Instructions.h" #include "llvm/IR/IntrinsicInst.h" #include "llvm/IR/IRBuilder.h" #include "llvm/IR/Module.h" #include "llvm/IR/Type.h" #include "llvm/IR/Value.h" #include "llvm/Pass.h" #include "llvm/Support/CommandLine.h" #include "llvm/Support/Debug.h" #include "llvm/Support/raw_ostream.h" #include #include using namespace llvm; static cl::opt SLPCostThreshold("slp-threshold", cl::init(0), cl::Hidden, cl::desc("Only vectorize if you gain more than this " "number ")); namespace { static const unsigned MinVecRegSize = 128; static const unsigned RecursionMaxDepth = 12; /// RAII pattern to save the insertion point of the IR builder. class BuilderLocGuard { public: BuilderLocGuard(IRBuilder<> &B) : Builder(B), Loc(B.GetInsertPoint()) {} ~BuilderLocGuard() { if (Loc) Builder.SetInsertPoint(Loc); } private: // Prevent copying. BuilderLocGuard(const BuilderLocGuard &); BuilderLocGuard &operator=(const BuilderLocGuard &); IRBuilder<> &Builder; AssertingVH Loc; }; /// A helper class for numbering instructions in multible blocks. /// Numbers starts at zero for each basic block. struct BlockNumbering { BlockNumbering(BasicBlock *Bb) : BB(Bb), Valid(false) {} BlockNumbering() : BB(0), Valid(false) {} void numberInstructions() { unsigned Loc = 0; InstrIdx.clear(); InstrVec.clear(); // Number the instructions in the block. for (BasicBlock::iterator it = BB->begin(), e = BB->end(); it != e; ++it) { InstrIdx[it] = Loc++; InstrVec.push_back(it); assert(InstrVec[InstrIdx[it]] == it && "Invalid allocation"); } Valid = true; } int getIndex(Instruction *I) { assert(I->getParent() == BB && "Invalid instruction"); if (!Valid) numberInstructions(); assert(InstrIdx.count(I) && "Unknown instruction"); return InstrIdx[I]; } Instruction *getInstruction(unsigned loc) { if (!Valid) numberInstructions(); assert(InstrVec.size() > loc && "Invalid Index"); return InstrVec[loc]; } void forget() { Valid = false; } private: /// The block we are numbering. BasicBlock *BB; /// Is the block numbered. bool Valid; /// Maps instructions to numbers and back. SmallDenseMap InstrIdx; /// Maps integers to Instructions. SmallVector InstrVec; }; /// \returns the parent basic block if all of the instructions in \p VL /// are in the same block or null otherwise. static BasicBlock *getSameBlock(ArrayRef VL) { Instruction *I0 = dyn_cast(VL[0]); if (!I0) return 0; BasicBlock *BB = I0->getParent(); for (int i = 1, e = VL.size(); i < e; i++) { Instruction *I = dyn_cast(VL[i]); if (!I) return 0; if (BB != I->getParent()) return 0; } return BB; } /// \returns True if all of the values in \p VL are constants. static bool allConstant(ArrayRef VL) { for (unsigned i = 0, e = VL.size(); i < e; ++i) if (!isa(VL[i])) return false; return true; } /// \returns True if all of the values in \p VL are identical. static bool isSplat(ArrayRef VL) { for (unsigned i = 1, e = VL.size(); i < e; ++i) if (VL[i] != VL[0]) return false; return true; } /// \returns The opcode if all of the Instructions in \p VL have the same /// opcode, or zero. static unsigned getSameOpcode(ArrayRef VL) { Instruction *I0 = dyn_cast(VL[0]); if (!I0) return 0; unsigned Opcode = I0->getOpcode(); for (int i = 1, e = VL.size(); i < e; i++) { Instruction *I = dyn_cast(VL[i]); if (!I || Opcode != I->getOpcode()) return 0; } return Opcode; } /// \returns The type that all of the values in \p VL have or null if there /// are different types. static Type* getSameType(ArrayRef VL) { Type *Ty = VL[0]->getType(); for (int i = 1, e = VL.size(); i < e; i++) if (VL[i]->getType() != Ty) return 0; return Ty; } /// \returns True if the ExtractElement instructions in VL can be vectorized /// to use the original vector. static bool CanReuseExtract(ArrayRef VL) { assert(Instruction::ExtractElement == getSameOpcode(VL) && "Invalid opcode"); // Check if all of the extracts come from the same vector and from the // correct offset. Value *VL0 = VL[0]; ExtractElementInst *E0 = cast(VL0); Value *Vec = E0->getOperand(0); // We have to extract from the same vector type. unsigned NElts = Vec->getType()->getVectorNumElements(); if (NElts != VL.size()) return false; // Check that all of the indices extract from the correct offset. ConstantInt *CI = dyn_cast(E0->getOperand(1)); if (!CI || CI->getZExtValue()) return false; for (unsigned i = 1, e = VL.size(); i < e; ++i) { ExtractElementInst *E = cast(VL[i]); ConstantInt *CI = dyn_cast(E->getOperand(1)); if (!CI || CI->getZExtValue() != i || E->getOperand(0) != Vec) return false; } return true; } /// Bottom Up SLP Vectorizer. class BoUpSLP { public: typedef SmallVector ValueList; typedef SmallVector InstrList; typedef SmallPtrSet ValueSet; typedef SmallVector StoreList; BoUpSLP(Function *Func, ScalarEvolution *Se, DataLayout *Dl, TargetTransformInfo *Tti, AliasAnalysis *Aa, LoopInfo *Li, DominatorTree *Dt) : F(Func), SE(Se), DL(Dl), TTI(Tti), AA(Aa), LI(Li), DT(Dt), Builder(Se->getContext()) { // Setup the block numbering utility for all of the blocks in the // function. for (Function::iterator it = F->begin(), e = F->end(); it != e; ++it) { BasicBlock *BB = it; BlocksNumbers[BB] = BlockNumbering(BB); } } /// \brief Vectorize the tree that starts with the elements in \p VL. void vectorizeTree(); /// \returns the vectorization cost of the subtree that starts at \p VL. /// A negative number means that this is profitable. int getTreeCost(); /// Construct a vectorizable tree that starts at \p Roots. void buildTree(ArrayRef Roots); /// Clear the internal data structures that are created by 'buildTree'. void deleteTree() { VectorizableTree.clear(); ScalarToTreeEntry.clear(); MustGather.clear(); ExternalUses.clear(); MemBarrierIgnoreList.clear(); } /// \returns true if the memory operations A and B are consecutive. bool isConsecutiveAccess(Value *A, Value *B); /// \brief Perform LICM and CSE on the newly generated gather sequences. void optimizeGatherSequence(); private: struct TreeEntry; /// \returns the cost of the vectorizable entry. int getEntryCost(TreeEntry *E); /// This is the recursive part of buildTree. void buildTree_rec(ArrayRef Roots, unsigned Depth); /// Vectorize a single entry in the tree. Value *vectorizeTree(TreeEntry *E); /// Vectorize a single entry in the tree, starting in \p VL. Value *vectorizeTree(ArrayRef VL); /// \returns the pointer to the vectorized value if \p VL is already /// vectorized, or NULL. They may happen in cycles. Value *alreadyVectorized(ArrayRef VL); /// \brief Take the pointer operand from the Load/Store instruction. /// \returns NULL if this is not a valid Load/Store instruction. static Value *getPointerOperand(Value *I); /// \brief Take the address space operand from the Load/Store instruction. /// \returns -1 if this is not a valid Load/Store instruction. static unsigned getAddressSpaceOperand(Value *I); /// \returns the scalarization cost for this type. Scalarization in this /// context means the creation of vectors from a group of scalars. int getGatherCost(Type *Ty); /// \returns the scalarization cost for this list of values. Assuming that /// this subtree gets vectorized, we may need to extract the values from the /// roots. This method calculates the cost of extracting the values. int getGatherCost(ArrayRef VL); /// \returns the AA location that is being access by the instruction. AliasAnalysis::Location getLocation(Instruction *I); /// \brief Checks if it is possible to sink an instruction from /// \p Src to \p Dst. /// \returns the pointer to the barrier instruction if we can't sink. Value *getSinkBarrier(Instruction *Src, Instruction *Dst); /// \returns the index of the last instrucion in the BB from \p VL. int getLastIndex(ArrayRef VL); /// \returns the Instrucion in the bundle \p VL. Instruction *getLastInstruction(ArrayRef VL); /// \returns a vector from a collection of scalars in \p VL. Value *Gather(ArrayRef VL, VectorType *Ty); struct TreeEntry { TreeEntry() : Scalars(), VectorizedValue(0), LastScalarIndex(0), NeedToGather(0) {} /// \returns true if the scalars in VL are equal to this entry. bool isSame(ArrayRef VL) { assert(VL.size() == Scalars.size() && "Invalid size"); for (int i = 0, e = VL.size(); i != e; ++i) if (VL[i] != Scalars[i]) return false; return true; } /// A vector of scalars. ValueList Scalars; /// The Scalars are vectorized into this value. It is initialized to Null. Value *VectorizedValue; /// The index in the basic block of the last scalar. int LastScalarIndex; /// Do we need to gather this sequence ? bool NeedToGather; }; /// Create a new VectorizableTree entry. TreeEntry *newTreeEntry(ArrayRef VL, bool Vectorized) { VectorizableTree.push_back(TreeEntry()); int idx = VectorizableTree.size() - 1; TreeEntry *Last = &VectorizableTree[idx]; Last->Scalars.insert(Last->Scalars.begin(), VL.begin(), VL.end()); Last->NeedToGather = !Vectorized; if (Vectorized) { Last->LastScalarIndex = getLastIndex(VL); for (int i = 0, e = VL.size(); i != e; ++i) { assert(!ScalarToTreeEntry.count(VL[i]) && "Scalar already in tree!"); ScalarToTreeEntry[VL[i]] = idx; } } else { Last->LastScalarIndex = 0; MustGather.insert(VL.begin(), VL.end()); } return Last; } /// -- Vectorization State -- /// Holds all of the tree entries. std::vector VectorizableTree; /// Maps a specific scalar to its tree entry. SmallDenseMap ScalarToTreeEntry; /// A list of scalars that we found that we need to keep as scalars. ValueSet MustGather; /// This POD struct describes one external user in the vectorized tree. struct ExternalUser { ExternalUser (Value *S, llvm::User *U, int L) : Scalar(S), User(U), Lane(L){}; // Which scalar in our function. Value *Scalar; // Which user that uses the scalar. llvm::User *User; // Which lane does the scalar belong to. int Lane; }; typedef SmallVector UserList; /// A list of values that need to extracted out of the tree. /// This list holds pairs of (Internal Scalar : External User). UserList ExternalUses; /// A list of instructions to ignore while sinking /// memory instructions. This map must be reset between runs of getCost. ValueSet MemBarrierIgnoreList; /// Holds all of the instructions that we gathered. SetVector GatherSeq; /// Numbers instructions in different blocks. DenseMap BlocksNumbers; // Analysis and block reference. Function *F; ScalarEvolution *SE; DataLayout *DL; TargetTransformInfo *TTI; AliasAnalysis *AA; LoopInfo *LI; DominatorTree *DT; /// Instruction builder to construct the vectorized tree. IRBuilder<> Builder; }; void BoUpSLP::buildTree(ArrayRef Roots) { deleteTree(); if (!getSameType(Roots)) return; buildTree_rec(Roots, 0); // Collect the values that we need to extract from the tree. for (int EIdx = 0, EE = VectorizableTree.size(); EIdx < EE; ++EIdx) { TreeEntry *Entry = &VectorizableTree[EIdx]; // For each lane: for (int Lane = 0, LE = Entry->Scalars.size(); Lane != LE; ++Lane) { Value *Scalar = Entry->Scalars[Lane]; // No need to handle users of gathered values. if (Entry->NeedToGather) continue; for (Value::use_iterator User = Scalar->use_begin(), UE = Scalar->use_end(); User != UE; ++User) { DEBUG(dbgs() << "SLP: Checking user:" << **User << ".\n"); bool Gathered = MustGather.count(*User); // Skip in-tree scalars that become vectors. if (ScalarToTreeEntry.count(*User) && !Gathered) { DEBUG(dbgs() << "SLP: \tInternal user will be removed:" << **User << ".\n"); int Idx = ScalarToTreeEntry[*User]; (void) Idx; assert(!VectorizableTree[Idx].NeedToGather && "Bad state"); continue; } if (!isa(*User)) continue; DEBUG(dbgs() << "SLP: Need to extract:" << **User << " from lane " << Lane << " from " << *Scalar << ".\n"); ExternalUses.push_back(ExternalUser(Scalar, *User, Lane)); } } } } void BoUpSLP::buildTree_rec(ArrayRef VL, unsigned Depth) { bool SameTy = getSameType(VL); (void)SameTy; assert(SameTy && "Invalid types!"); if (Depth == RecursionMaxDepth) { DEBUG(dbgs() << "SLP: Gathering due to max recursion depth.\n"); newTreeEntry(VL, false); return; } // Don't handle vectors. if (VL[0]->getType()->isVectorTy()) { DEBUG(dbgs() << "SLP: Gathering due to vector type.\n"); newTreeEntry(VL, false); return; } if (StoreInst *SI = dyn_cast(VL[0])) if (SI->getValueOperand()->getType()->isVectorTy()) { DEBUG(dbgs() << "SLP: Gathering due to store vector type.\n"); newTreeEntry(VL, false); return; } // If all of the operands are identical or constant we have a simple solution. if (allConstant(VL) || isSplat(VL) || !getSameBlock(VL) || !getSameOpcode(VL)) { DEBUG(dbgs() << "SLP: Gathering due to C,S,B,O. \n"); newTreeEntry(VL, false); return; } // We now know that this is a vector of instructions of the same type from // the same block. // Check if this is a duplicate of another entry. if (ScalarToTreeEntry.count(VL[0])) { int Idx = ScalarToTreeEntry[VL[0]]; TreeEntry *E = &VectorizableTree[Idx]; for (unsigned i = 0, e = VL.size(); i != e; ++i) { DEBUG(dbgs() << "SLP: \tChecking bundle: " << *VL[i] << ".\n"); if (E->Scalars[i] != VL[i]) { DEBUG(dbgs() << "SLP: Gathering due to partial overlap.\n"); newTreeEntry(VL, false); return; } } DEBUG(dbgs() << "SLP: Perfect diamond merge at " << *VL[0] << ".\n"); return; } // Check that none of the instructions in the bundle are already in the tree. for (unsigned i = 0, e = VL.size(); i != e; ++i) { if (ScalarToTreeEntry.count(VL[i])) { DEBUG(dbgs() << "SLP: The instruction (" << *VL[i] << ") is already in tree.\n"); newTreeEntry(VL, false); return; } } // If any of the scalars appears in the table OR it is marked as a value that // needs to stat scalar then we need to gather the scalars. for (unsigned i = 0, e = VL.size(); i != e; ++i) { if (ScalarToTreeEntry.count(VL[i]) || MustGather.count(VL[i])) { DEBUG(dbgs() << "SLP: Gathering due to gathered scalar. \n"); newTreeEntry(VL, false); return; } } // Check that all of the users of the scalars that we want to vectorize are // schedulable. Instruction *VL0 = cast(VL[0]); int MyLastIndex = getLastIndex(VL); BasicBlock *BB = cast(VL0)->getParent(); for (unsigned i = 0, e = VL.size(); i != e; ++i) { Instruction *Scalar = cast(VL[i]); DEBUG(dbgs() << "SLP: Checking users of " << *Scalar << ". \n"); for (Value::use_iterator U = Scalar->use_begin(), UE = Scalar->use_end(); U != UE; ++U) { DEBUG(dbgs() << "SLP: \tUser " << **U << ". \n"); Instruction *User = dyn_cast(*U); if (!User) { DEBUG(dbgs() << "SLP: Gathering due unknown user. \n"); newTreeEntry(VL, false); return; } // We don't care if the user is in a different basic block. BasicBlock *UserBlock = User->getParent(); if (UserBlock != BB) { DEBUG(dbgs() << "SLP: User from a different basic block " << *User << ". \n"); continue; } // If this is a PHINode within this basic block then we can place the // extract wherever we want. if (isa(*User)) { DEBUG(dbgs() << "SLP: \tWe can schedule PHIs:" << *User << ". \n"); continue; } // Check if this is a safe in-tree user. if (ScalarToTreeEntry.count(User)) { int Idx = ScalarToTreeEntry[User]; int VecLocation = VectorizableTree[Idx].LastScalarIndex; if (VecLocation <= MyLastIndex) { DEBUG(dbgs() << "SLP: Gathering due to unschedulable vector. \n"); newTreeEntry(VL, false); return; } DEBUG(dbgs() << "SLP: In-tree user (" << *User << ") at #" << VecLocation << " vector value (" << *Scalar << ") at #" << MyLastIndex << ".\n"); continue; } // Make sure that we can schedule this unknown user. BlockNumbering &BN = BlocksNumbers[BB]; int UserIndex = BN.getIndex(User); if (UserIndex < MyLastIndex) { DEBUG(dbgs() << "SLP: Can't schedule extractelement for " << *User << ". \n"); newTreeEntry(VL, false); return; } } } // Check that every instructions appears once in this bundle. for (unsigned i = 0, e = VL.size(); i < e; ++i) for (unsigned j = i+1; j < e; ++j) if (VL[i] == VL[j]) { DEBUG(dbgs() << "SLP: Scalar used twice in bundle.\n"); newTreeEntry(VL, false); return; } // Check that instructions in this bundle don't reference other instructions. // The runtime of this check is O(N * N-1 * uses(N)) and a typical N is 4. for (unsigned i = 0, e = VL.size(); i < e; ++i) { for (Value::use_iterator U = VL[i]->use_begin(), UE = VL[i]->use_end(); U != UE; ++U) { for (unsigned j = 0; j < e; ++j) { if (i != j && *U == VL[j]) { DEBUG(dbgs() << "SLP: Intra-bundle dependencies!" << **U << ". \n"); newTreeEntry(VL, false); return; } } } } DEBUG(dbgs() << "SLP: We are able to schedule this bundle.\n"); unsigned Opcode = getSameOpcode(VL); // Check if it is safe to sink the loads or the stores. if (Opcode == Instruction::Load || Opcode == Instruction::Store) { Instruction *Last = getLastInstruction(VL); for (unsigned i = 0, e = VL.size(); i < e; ++i) { if (VL[i] == Last) continue; Value *Barrier = getSinkBarrier(cast(VL[i]), Last); if (Barrier) { DEBUG(dbgs() << "SLP: Can't sink " << *VL[i] << "\n down to " << *Last << "\n because of " << *Barrier << ". Gathering.\n"); newTreeEntry(VL, false); return; } } } switch (Opcode) { case Instruction::PHI: { PHINode *PH = dyn_cast(VL0); newTreeEntry(VL, true); DEBUG(dbgs() << "SLP: added a vector of PHINodes.\n"); for (unsigned i = 0, e = PH->getNumIncomingValues(); i < e; ++i) { ValueList Operands; // Prepare the operand vector. for (unsigned j = 0; j < VL.size(); ++j) Operands.push_back(cast(VL[j])->getIncomingValue(i)); buildTree_rec(Operands, Depth + 1); } return; } case Instruction::ExtractElement: { bool Reuse = CanReuseExtract(VL); if (Reuse) { DEBUG(dbgs() << "SLP: Reusing extract sequence.\n"); } newTreeEntry(VL, Reuse); return; } case Instruction::Load: { // Check if the loads are consecutive or of we need to swizzle them. for (unsigned i = 0, e = VL.size() - 1; i < e; ++i) if (!isConsecutiveAccess(VL[i], VL[i + 1])) { newTreeEntry(VL, false); DEBUG(dbgs() << "SLP: Need to swizzle loads.\n"); return; } newTreeEntry(VL, true); DEBUG(dbgs() << "SLP: added a vector of loads.\n"); return; } case Instruction::ZExt: case Instruction::SExt: case Instruction::FPToUI: case Instruction::FPToSI: case Instruction::FPExt: case Instruction::PtrToInt: case Instruction::IntToPtr: case Instruction::SIToFP: case Instruction::UIToFP: case Instruction::Trunc: case Instruction::FPTrunc: case Instruction::BitCast: { Type *SrcTy = VL0->getOperand(0)->getType(); for (unsigned i = 0; i < VL.size(); ++i) { Type *Ty = cast(VL[i])->getOperand(0)->getType(); if (Ty != SrcTy || Ty->isAggregateType() || Ty->isVectorTy()) { newTreeEntry(VL, false); DEBUG(dbgs() << "SLP: Gathering casts with different src types.\n"); return; } } newTreeEntry(VL, true); DEBUG(dbgs() << "SLP: added a vector of casts.\n"); for (unsigned i = 0, e = VL0->getNumOperands(); i < e; ++i) { ValueList Operands; // Prepare the operand vector. for (unsigned j = 0; j < VL.size(); ++j) Operands.push_back(cast(VL[j])->getOperand(i)); buildTree_rec(Operands, Depth+1); } return; } case Instruction::ICmp: case Instruction::FCmp: { // Check that all of the compares have the same predicate. CmpInst::Predicate P0 = dyn_cast(VL0)->getPredicate(); Type *ComparedTy = cast(VL[0])->getOperand(0)->getType(); for (unsigned i = 1, e = VL.size(); i < e; ++i) { CmpInst *Cmp = cast(VL[i]); if (Cmp->getPredicate() != P0 || Cmp->getOperand(0)->getType() != ComparedTy) { newTreeEntry(VL, false); DEBUG(dbgs() << "SLP: Gathering cmp with different predicate.\n"); return; } } newTreeEntry(VL, true); DEBUG(dbgs() << "SLP: added a vector of compares.\n"); for (unsigned i = 0, e = VL0->getNumOperands(); i < e; ++i) { ValueList Operands; // Prepare the operand vector. for (unsigned j = 0; j < VL.size(); ++j) Operands.push_back(cast(VL[j])->getOperand(i)); buildTree_rec(Operands, Depth+1); } return; } case Instruction::Select: case Instruction::Add: case Instruction::FAdd: case Instruction::Sub: case Instruction::FSub: case Instruction::Mul: case Instruction::FMul: case Instruction::UDiv: case Instruction::SDiv: case Instruction::FDiv: case Instruction::URem: case Instruction::SRem: case Instruction::FRem: case Instruction::Shl: case Instruction::LShr: case Instruction::AShr: case Instruction::And: case Instruction::Or: case Instruction::Xor: { newTreeEntry(VL, true); DEBUG(dbgs() << "SLP: added a vector of bin op.\n"); for (unsigned i = 0, e = VL0->getNumOperands(); i < e; ++i) { ValueList Operands; // Prepare the operand vector. for (unsigned j = 0; j < VL.size(); ++j) Operands.push_back(cast(VL[j])->getOperand(i)); buildTree_rec(Operands, Depth+1); } return; } case Instruction::Store: { // Check if the stores are consecutive or of we need to swizzle them. for (unsigned i = 0, e = VL.size() - 1; i < e; ++i) if (!isConsecutiveAccess(VL[i], VL[i + 1])) { newTreeEntry(VL, false); DEBUG(dbgs() << "SLP: Non consecutive store.\n"); return; } newTreeEntry(VL, true); DEBUG(dbgs() << "SLP: added a vector of stores.\n"); ValueList Operands; for (unsigned j = 0; j < VL.size(); ++j) Operands.push_back(cast(VL[j])->getOperand(0)); // We can ignore these values because we are sinking them down. MemBarrierIgnoreList.insert(VL.begin(), VL.end()); buildTree_rec(Operands, Depth + 1); return; } default: newTreeEntry(VL, false); DEBUG(dbgs() << "SLP: Gathering unknown instruction.\n"); return; } } int BoUpSLP::getEntryCost(TreeEntry *E) { ArrayRef VL = E->Scalars; Type *ScalarTy = VL[0]->getType(); if (StoreInst *SI = dyn_cast(VL[0])) ScalarTy = SI->getValueOperand()->getType(); VectorType *VecTy = VectorType::get(ScalarTy, VL.size()); if (E->NeedToGather) { if (allConstant(VL)) return 0; if (isSplat(VL)) { return TTI->getShuffleCost(TargetTransformInfo::SK_Broadcast, VecTy, 0); } return getGatherCost(E->Scalars); } assert(getSameOpcode(VL) && getSameType(VL) && getSameBlock(VL) && "Invalid VL"); Instruction *VL0 = cast(VL[0]); unsigned Opcode = VL0->getOpcode(); switch (Opcode) { case Instruction::PHI: { return 0; } case Instruction::ExtractElement: { if (CanReuseExtract(VL)) return 0; return getGatherCost(VecTy); } case Instruction::ZExt: case Instruction::SExt: case Instruction::FPToUI: case Instruction::FPToSI: case Instruction::FPExt: case Instruction::PtrToInt: case Instruction::IntToPtr: case Instruction::SIToFP: case Instruction::UIToFP: case Instruction::Trunc: case Instruction::FPTrunc: case Instruction::BitCast: { Type *SrcTy = VL0->getOperand(0)->getType(); // Calculate the cost of this instruction. int ScalarCost = VL.size() * TTI->getCastInstrCost(VL0->getOpcode(), VL0->getType(), SrcTy); VectorType *SrcVecTy = VectorType::get(SrcTy, VL.size()); int VecCost = TTI->getCastInstrCost(VL0->getOpcode(), VecTy, SrcVecTy); return VecCost - ScalarCost; } case Instruction::FCmp: case Instruction::ICmp: case Instruction::Select: case Instruction::Add: case Instruction::FAdd: case Instruction::Sub: case Instruction::FSub: case Instruction::Mul: case Instruction::FMul: case Instruction::UDiv: case Instruction::SDiv: case Instruction::FDiv: case Instruction::URem: case Instruction::SRem: case Instruction::FRem: case Instruction::Shl: case Instruction::LShr: case Instruction::AShr: case Instruction::And: case Instruction::Or: case Instruction::Xor: { // Calculate the cost of this instruction. int ScalarCost = 0; int VecCost = 0; if (Opcode == Instruction::FCmp || Opcode == Instruction::ICmp || Opcode == Instruction::Select) { VectorType *MaskTy = VectorType::get(Builder.getInt1Ty(), VL.size()); ScalarCost = VecTy->getNumElements() * TTI->getCmpSelInstrCost(Opcode, ScalarTy, Builder.getInt1Ty()); VecCost = TTI->getCmpSelInstrCost(Opcode, VecTy, MaskTy); } else { ScalarCost = VecTy->getNumElements() * TTI->getArithmeticInstrCost(Opcode, ScalarTy); VecCost = TTI->getArithmeticInstrCost(Opcode, VecTy); } return VecCost - ScalarCost; } case Instruction::Load: { // Cost of wide load - cost of scalar loads. int ScalarLdCost = VecTy->getNumElements() * TTI->getMemoryOpCost(Instruction::Load, ScalarTy, 1, 0); int VecLdCost = TTI->getMemoryOpCost(Instruction::Load, ScalarTy, 1, 0); return VecLdCost - ScalarLdCost; } case Instruction::Store: { // We know that we can merge the stores. Calculate the cost. int ScalarStCost = VecTy->getNumElements() * TTI->getMemoryOpCost(Instruction::Store, ScalarTy, 1, 0); int VecStCost = TTI->getMemoryOpCost(Instruction::Store, ScalarTy, 1, 0); return VecStCost - ScalarStCost; } default: llvm_unreachable("Unknown instruction"); } } int BoUpSLP::getTreeCost() { int Cost = 0; DEBUG(dbgs() << "SLP: Calculating cost for tree of size " << VectorizableTree.size() << ".\n"); // Don't vectorize tiny trees. Small load/store chains or consecutive stores // of constants will be vectoried in SelectionDAG in MergeConsecutiveStores. if (VectorizableTree.size() < 3) { if (!VectorizableTree.size()) { assert(!ExternalUses.size() && "We should not have any external users"); } return 0; } unsigned BundleWidth = VectorizableTree[0].Scalars.size(); for (unsigned i = 0, e = VectorizableTree.size(); i != e; ++i) { int C = getEntryCost(&VectorizableTree[i]); DEBUG(dbgs() << "SLP: Adding cost " << C << " for bundle that starts with " << *VectorizableTree[i].Scalars[0] << " .\n"); Cost += C; } int ExtractCost = 0; for (UserList::iterator I = ExternalUses.begin(), E = ExternalUses.end(); I != E; ++I) { VectorType *VecTy = VectorType::get(I->Scalar->getType(), BundleWidth); ExtractCost += TTI->getVectorInstrCost(Instruction::ExtractElement, VecTy, I->Lane); } DEBUG(dbgs() << "SLP: Total Cost " << Cost + ExtractCost<< ".\n"); return Cost + ExtractCost; } int BoUpSLP::getGatherCost(Type *Ty) { int Cost = 0; for (unsigned i = 0, e = cast(Ty)->getNumElements(); i < e; ++i) Cost += TTI->getVectorInstrCost(Instruction::InsertElement, Ty, i); return Cost; } int BoUpSLP::getGatherCost(ArrayRef VL) { // Find the type of the operands in VL. Type *ScalarTy = VL[0]->getType(); if (StoreInst *SI = dyn_cast(VL[0])) ScalarTy = SI->getValueOperand()->getType(); VectorType *VecTy = VectorType::get(ScalarTy, VL.size()); // Find the cost of inserting/extracting values from the vector. return getGatherCost(VecTy); } AliasAnalysis::Location BoUpSLP::getLocation(Instruction *I) { if (StoreInst *SI = dyn_cast(I)) return AA->getLocation(SI); if (LoadInst *LI = dyn_cast(I)) return AA->getLocation(LI); return AliasAnalysis::Location(); } Value *BoUpSLP::getPointerOperand(Value *I) { if (LoadInst *LI = dyn_cast(I)) return LI->getPointerOperand(); if (StoreInst *SI = dyn_cast(I)) return SI->getPointerOperand(); return 0; } unsigned BoUpSLP::getAddressSpaceOperand(Value *I) { if (LoadInst *L = dyn_cast(I)) return L->getPointerAddressSpace(); if (StoreInst *S = dyn_cast(I)) return S->getPointerAddressSpace(); return -1; } bool BoUpSLP::isConsecutiveAccess(Value *A, Value *B) { Value *PtrA = getPointerOperand(A); Value *PtrB = getPointerOperand(B); unsigned ASA = getAddressSpaceOperand(A); unsigned ASB = getAddressSpaceOperand(B); // Check that the address spaces match and that the pointers are valid. if (!PtrA || !PtrB || (ASA != ASB)) return false; // Make sure that A and B are different pointers of the same type. if (PtrA == PtrB || PtrA->getType() != PtrB->getType()) return false; // Calculate a constant offset from the base pointer without using SCEV // in the supported cases. // TODO: Add support for the case where one of the pointers is a GEP that // uses the other pointer. GetElementPtrInst *GepA = dyn_cast(PtrA); GetElementPtrInst *GepB = dyn_cast(PtrB); unsigned BW = DL->getPointerSizeInBits(ASA); Type *Ty = cast(PtrA->getType())->getElementType(); int64_t Sz = DL->getTypeStoreSize(Ty); // Check if PtrA is the base and PtrB is a constant offset. if (GepB && GepB->getPointerOperand() == PtrA) { APInt Offset(BW, 0); if (GepB->accumulateConstantOffset(*DL, Offset)) return Offset.getSExtValue() == Sz; return false; } // Check if PtrB is the base and PtrA is a constant offset. if (GepA && GepA->getPointerOperand() == PtrB) { APInt Offset(BW, 0); if (GepA->accumulateConstantOffset(*DL, Offset)) return Offset.getSExtValue() == -Sz; return false; } // If both pointers are GEPs: if (GepA && GepB) { // Check that they have the same base pointer and number of indices. if (GepA->getPointerOperand() != GepB->getPointerOperand() || GepA->getNumIndices() != GepB->getNumIndices()) return false; // Try to strip the geps. This makes SCEV faster. // Make sure that all of the indices except for the last are identical. int LastIdx = GepA->getNumIndices(); for (int i = 0; i < LastIdx - 1; i++) { if (GepA->getOperand(i+1) != GepB->getOperand(i+1)) return false; } PtrA = GepA->getOperand(LastIdx); PtrB = GepB->getOperand(LastIdx); Sz = 1; } ConstantInt *CA = dyn_cast(PtrA); ConstantInt *CB = dyn_cast(PtrB); if (CA && CB) { return (CA->getSExtValue() + Sz == CB->getSExtValue()); } // Calculate the distance. const SCEV *PtrSCEVA = SE->getSCEV(PtrA); const SCEV *PtrSCEVB = SE->getSCEV(PtrB); const SCEV *C = SE->getConstant(PtrSCEVA->getType(), Sz); const SCEV *X = SE->getAddExpr(PtrSCEVA, C); return X == PtrSCEVB; } Value *BoUpSLP::getSinkBarrier(Instruction *Src, Instruction *Dst) { assert(Src->getParent() == Dst->getParent() && "Not the same BB"); BasicBlock::iterator I = Src, E = Dst; /// Scan all of the instruction from SRC to DST and check if /// the source may alias. for (++I; I != E; ++I) { // Ignore store instructions that are marked as 'ignore'. if (MemBarrierIgnoreList.count(I)) continue; if (Src->mayWriteToMemory()) /* Write */ { if (!I->mayReadOrWriteMemory()) continue; } else /* Read */ { if (!I->mayWriteToMemory()) continue; } AliasAnalysis::Location A = getLocation(&*I); AliasAnalysis::Location B = getLocation(Src); if (!A.Ptr || !B.Ptr || AA->alias(A, B)) return I; } return 0; } int BoUpSLP::getLastIndex(ArrayRef VL) { BasicBlock *BB = cast(VL[0])->getParent(); assert(BB == getSameBlock(VL) && BlocksNumbers.count(BB) && "Invalid block"); BlockNumbering &BN = BlocksNumbers[BB]; int MaxIdx = BN.getIndex(BB->getFirstNonPHI()); for (unsigned i = 0, e = VL.size(); i < e; ++i) MaxIdx = std::max(MaxIdx, BN.getIndex(cast(VL[i]))); return MaxIdx; } Instruction *BoUpSLP::getLastInstruction(ArrayRef VL) { BasicBlock *BB = cast(VL[0])->getParent(); assert(BB == getSameBlock(VL) && BlocksNumbers.count(BB) && "Invalid block"); BlockNumbering &BN = BlocksNumbers[BB]; int MaxIdx = BN.getIndex(cast(VL[0])); for (unsigned i = 1, e = VL.size(); i < e; ++i) MaxIdx = std::max(MaxIdx, BN.getIndex(cast(VL[i]))); Instruction *I = BN.getInstruction(MaxIdx); assert(I && "bad location"); return I; } Value *BoUpSLP::Gather(ArrayRef VL, VectorType *Ty) { Value *Vec = UndefValue::get(Ty); // Generate the 'InsertElement' instruction. for (unsigned i = 0; i < Ty->getNumElements(); ++i) { Vec = Builder.CreateInsertElement(Vec, VL[i], Builder.getInt32(i)); if (Instruction *Insrt = dyn_cast(Vec)) { GatherSeq.insert(Insrt); // Add to our 'need-to-extract' list. if (ScalarToTreeEntry.count(VL[i])) { int Idx = ScalarToTreeEntry[VL[i]]; TreeEntry *E = &VectorizableTree[Idx]; // Find which lane we need to extract. int FoundLane = -1; for (unsigned Lane = 0, LE = VL.size(); Lane != LE; ++Lane) { // Is this the lane of the scalar that we are looking for ? if (E->Scalars[Lane] == VL[i]) { FoundLane = Lane; break; } } assert(FoundLane >= 0 && "Could not find the correct lane"); ExternalUses.push_back(ExternalUser(VL[i], Insrt, FoundLane)); } } } return Vec; } Value *BoUpSLP::alreadyVectorized(ArrayRef VL) { if (ScalarToTreeEntry.count(VL[0])) { int Idx = ScalarToTreeEntry[VL[0]]; TreeEntry *En = &VectorizableTree[Idx]; if (En->isSame(VL) && En->VectorizedValue) return En->VectorizedValue; } return 0; } Value *BoUpSLP::vectorizeTree(ArrayRef VL) { if (ScalarToTreeEntry.count(VL[0])) { int Idx = ScalarToTreeEntry[VL[0]]; TreeEntry *E = &VectorizableTree[Idx]; if (E->isSame(VL)) return vectorizeTree(E); } Type *ScalarTy = VL[0]->getType(); if (StoreInst *SI = dyn_cast(VL[0])) ScalarTy = SI->getValueOperand()->getType(); VectorType *VecTy = VectorType::get(ScalarTy, VL.size()); return Gather(VL, VecTy); } Value *BoUpSLP::vectorizeTree(TreeEntry *E) { BuilderLocGuard Guard(Builder); if (E->VectorizedValue) { DEBUG(dbgs() << "SLP: Diamond merged for " << *E->Scalars[0] << ".\n"); return E->VectorizedValue; } Type *ScalarTy = E->Scalars[0]->getType(); if (StoreInst *SI = dyn_cast(E->Scalars[0])) ScalarTy = SI->getValueOperand()->getType(); VectorType *VecTy = VectorType::get(ScalarTy, E->Scalars.size()); if (E->NeedToGather) { return Gather(E->Scalars, VecTy); } Instruction *VL0 = cast(E->Scalars[0]); unsigned Opcode = VL0->getOpcode(); assert(Opcode == getSameOpcode(E->Scalars) && "Invalid opcode"); switch (Opcode) { case Instruction::PHI: { PHINode *PH = dyn_cast(VL0); Builder.SetInsertPoint(PH->getParent()->getFirstInsertionPt()); PHINode *NewPhi = Builder.CreatePHI(VecTy, PH->getNumIncomingValues()); E->VectorizedValue = NewPhi; for (unsigned i = 0, e = PH->getNumIncomingValues(); i < e; ++i) { ValueList Operands; BasicBlock *IBB = PH->getIncomingBlock(i); // Prepare the operand vector. for (unsigned j = 0; j < E->Scalars.size(); ++j) Operands.push_back(cast(E->Scalars[j])-> getIncomingValueForBlock(IBB)); Builder.SetInsertPoint(IBB->getTerminator()); Value *Vec = vectorizeTree(Operands); NewPhi->addIncoming(Vec, IBB); } assert(NewPhi->getNumIncomingValues() == PH->getNumIncomingValues() && "Invalid number of incoming values"); return NewPhi; } case Instruction::ExtractElement: { if (CanReuseExtract(E->Scalars)) { Value *V = VL0->getOperand(0); E->VectorizedValue = V; return V; } return Gather(E->Scalars, VecTy); } case Instruction::ZExt: case Instruction::SExt: case Instruction::FPToUI: case Instruction::FPToSI: case Instruction::FPExt: case Instruction::PtrToInt: case Instruction::IntToPtr: case Instruction::SIToFP: case Instruction::UIToFP: case Instruction::Trunc: case Instruction::FPTrunc: case Instruction::BitCast: { ValueList INVL; for (int i = 0, e = E->Scalars.size(); i < e; ++i) INVL.push_back(cast(E->Scalars[i])->getOperand(0)); Builder.SetInsertPoint(getLastInstruction(E->Scalars)); Value *InVec = vectorizeTree(INVL); if (Value *V = alreadyVectorized(E->Scalars)) return V; CastInst *CI = dyn_cast(VL0); Value *V = Builder.CreateCast(CI->getOpcode(), InVec, VecTy); E->VectorizedValue = V; return V; } case Instruction::FCmp: case Instruction::ICmp: { ValueList LHSV, RHSV; for (int i = 0, e = E->Scalars.size(); i < e; ++i) { LHSV.push_back(cast(E->Scalars[i])->getOperand(0)); RHSV.push_back(cast(E->Scalars[i])->getOperand(1)); } Builder.SetInsertPoint(getLastInstruction(E->Scalars)); Value *L = vectorizeTree(LHSV); Value *R = vectorizeTree(RHSV); if (Value *V = alreadyVectorized(E->Scalars)) return V; CmpInst::Predicate P0 = dyn_cast(VL0)->getPredicate(); Value *V; if (Opcode == Instruction::FCmp) V = Builder.CreateFCmp(P0, L, R); else V = Builder.CreateICmp(P0, L, R); E->VectorizedValue = V; return V; } case Instruction::Select: { ValueList TrueVec, FalseVec, CondVec; for (int i = 0, e = E->Scalars.size(); i < e; ++i) { CondVec.push_back(cast(E->Scalars[i])->getOperand(0)); TrueVec.push_back(cast(E->Scalars[i])->getOperand(1)); FalseVec.push_back(cast(E->Scalars[i])->getOperand(2)); } Builder.SetInsertPoint(getLastInstruction(E->Scalars)); Value *Cond = vectorizeTree(CondVec); Value *True = vectorizeTree(TrueVec); Value *False = vectorizeTree(FalseVec); if (Value *V = alreadyVectorized(E->Scalars)) return V; Value *V = Builder.CreateSelect(Cond, True, False); E->VectorizedValue = V; return V; } case Instruction::Add: case Instruction::FAdd: case Instruction::Sub: case Instruction::FSub: case Instruction::Mul: case Instruction::FMul: case Instruction::UDiv: case Instruction::SDiv: case Instruction::FDiv: case Instruction::URem: case Instruction::SRem: case Instruction::FRem: case Instruction::Shl: case Instruction::LShr: case Instruction::AShr: case Instruction::And: case Instruction::Or: case Instruction::Xor: { ValueList LHSVL, RHSVL; for (int i = 0, e = E->Scalars.size(); i < e; ++i) { LHSVL.push_back(cast(E->Scalars[i])->getOperand(0)); RHSVL.push_back(cast(E->Scalars[i])->getOperand(1)); } Builder.SetInsertPoint(getLastInstruction(E->Scalars)); Value *LHS = vectorizeTree(LHSVL); Value *RHS = vectorizeTree(RHSVL); if (LHS == RHS && isa(LHS)) { assert((VL0->getOperand(0) == VL0->getOperand(1)) && "Invalid order"); } if (Value *V = alreadyVectorized(E->Scalars)) return V; BinaryOperator *BinOp = cast(VL0); Value *V = Builder.CreateBinOp(BinOp->getOpcode(), LHS, RHS); E->VectorizedValue = V; return V; } case Instruction::Load: { // Loads are inserted at the head of the tree because we don't want to // sink them all the way down past store instructions. Builder.SetInsertPoint(getLastInstruction(E->Scalars)); LoadInst *LI = cast(VL0); Value *VecPtr = Builder.CreateBitCast(LI->getPointerOperand(), VecTy->getPointerTo()); unsigned Alignment = LI->getAlignment(); LI = Builder.CreateLoad(VecPtr); LI->setAlignment(Alignment); E->VectorizedValue = LI; return LI; } case Instruction::Store: { StoreInst *SI = cast(VL0); unsigned Alignment = SI->getAlignment(); ValueList ValueOp; for (int i = 0, e = E->Scalars.size(); i < e; ++i) ValueOp.push_back(cast(E->Scalars[i])->getValueOperand()); Builder.SetInsertPoint(getLastInstruction(E->Scalars)); Value *VecValue = vectorizeTree(ValueOp); Value *VecPtr = Builder.CreateBitCast(SI->getPointerOperand(), VecTy->getPointerTo()); StoreInst *S = Builder.CreateStore(VecValue, VecPtr); S->setAlignment(Alignment); E->VectorizedValue = S; return S; } default: llvm_unreachable("unknown inst"); } return 0; } void BoUpSLP::vectorizeTree() { Builder.SetInsertPoint(F->getEntryBlock().begin()); vectorizeTree(&VectorizableTree[0]); DEBUG(dbgs() << "SLP: Extracting " << ExternalUses.size() << " values .\n"); // Extract all of the elements with the external uses. for (UserList::iterator it = ExternalUses.begin(), e = ExternalUses.end(); it != e; ++it) { Value *Scalar = it->Scalar; llvm::User *User = it->User; // Skip users that we already RAUW. This happens when one instruction // has multiple uses of the same value. if (std::find(Scalar->use_begin(), Scalar->use_end(), User) == Scalar->use_end()) continue; assert(ScalarToTreeEntry.count(Scalar) && "Invalid scalar"); int Idx = ScalarToTreeEntry[Scalar]; TreeEntry *E = &VectorizableTree[Idx]; assert(!E->NeedToGather && "Extracting from a gather list"); Value *Vec = E->VectorizedValue; assert(Vec && "Can't find vectorizable value"); // Generate extracts for out-of-tree users. // Find the insertion point for the extractelement lane. Instruction *Loc = 0; if (PHINode *PN = dyn_cast(Vec)) { Loc = PN->getParent()->getFirstInsertionPt(); } else if (isa(Vec)){ if (PHINode *PH = dyn_cast(User)) { for (int i = 0, e = PH->getNumIncomingValues(); i != e; ++i) { if (PH->getIncomingValue(i) == Scalar) { Loc = PH->getIncomingBlock(i)->getTerminator(); break; } } assert(Loc && "Unable to find incoming value for the PHI"); } else { Loc = cast(User); } } else { Loc = F->getEntryBlock().begin(); } Builder.SetInsertPoint(Loc); Value *Ex = Builder.CreateExtractElement(Vec, Builder.getInt32(it->Lane)); User->replaceUsesOfWith(Scalar, Ex); DEBUG(dbgs() << "SLP: Replaced:" << *User << ".\n"); } // For each vectorized value: for (int EIdx = 0, EE = VectorizableTree.size(); EIdx < EE; ++EIdx) { TreeEntry *Entry = &VectorizableTree[EIdx]; // For each lane: for (int Lane = 0, LE = Entry->Scalars.size(); Lane != LE; ++Lane) { Value *Scalar = Entry->Scalars[Lane]; // No need to handle users of gathered values. if (Entry->NeedToGather) continue; assert(Entry->VectorizedValue && "Can't find vectorizable value"); Type *Ty = Scalar->getType(); if (!Ty->isVoidTy()) { for (Value::use_iterator User = Scalar->use_begin(), UE = Scalar->use_end(); User != UE; ++User) { DEBUG(dbgs() << "SLP: \tvalidating user:" << **User << ".\n"); assert(!MustGather.count(*User) && "Replacing gathered value with undef"); assert(ScalarToTreeEntry.count(*User) && "Replacing out-of-tree value with undef"); } Value *Undef = UndefValue::get(Ty); Scalar->replaceAllUsesWith(Undef); } DEBUG(dbgs() << "SLP: \tErasing scalar:" << *Scalar << ".\n"); cast(Scalar)->eraseFromParent(); } } for (Function::iterator it = F->begin(), e = F->end(); it != e; ++it) { BlocksNumbers[it].forget(); } Builder.ClearInsertionPoint(); } void BoUpSLP::optimizeGatherSequence() { DEBUG(dbgs() << "SLP: Optimizing " << GatherSeq.size() << " gather sequences instructions.\n"); // LICM InsertElementInst sequences. for (SetVector::iterator it = GatherSeq.begin(), e = GatherSeq.end(); it != e; ++it) { InsertElementInst *Insert = dyn_cast(*it); if (!Insert) continue; // Check if this block is inside a loop. Loop *L = LI->getLoopFor(Insert->getParent()); if (!L) continue; // Check if it has a preheader. BasicBlock *PreHeader = L->getLoopPreheader(); if (!PreHeader) continue; // If the vector or the element that we insert into it are // instructions that are defined in this basic block then we can't // hoist this instruction. Instruction *CurrVec = dyn_cast(Insert->getOperand(0)); Instruction *NewElem = dyn_cast(Insert->getOperand(1)); if (CurrVec && L->contains(CurrVec)) continue; if (NewElem && L->contains(NewElem)) continue; // We can hoist this instruction. Move it to the pre-header. Insert->moveBefore(PreHeader->getTerminator()); } // Perform O(N^2) search over the gather sequences and merge identical // instructions. TODO: We can further optimize this scan if we split the // instructions into different buckets based on the insert lane. SmallPtrSet Visited; SmallVector ToRemove; ReversePostOrderTraversal RPOT(F); for (ReversePostOrderTraversal::rpo_iterator I = RPOT.begin(), E = RPOT.end(); I != E; ++I) { BasicBlock *BB = *I; // For all instructions in the function: for (BasicBlock::iterator it = BB->begin(), e = BB->end(); it != e; ++it) { Instruction *In = it; if ((!isa(In) && !isa(In)) || !GatherSeq.count(In)) continue; // Check if we can replace this instruction with any of the // visited instructions. for (SmallPtrSet::iterator v = Visited.begin(), ve = Visited.end(); v != ve; ++v) { if (In->isIdenticalTo(*v) && DT->dominates((*v)->getParent(), In->getParent())) { In->replaceAllUsesWith(*v); ToRemove.push_back(In); In = 0; break; } } if (In) Visited.insert(In); } } // Erase all of the instructions that we RAUWed. for (SmallVectorImpl::iterator v = ToRemove.begin(), ve = ToRemove.end(); v != ve; ++v) { assert((*v)->getNumUses() == 0 && "Can't remove instructions with uses"); (*v)->eraseFromParent(); } } /// The SLPVectorizer Pass. struct SLPVectorizer : public FunctionPass { typedef SmallVector StoreList; typedef MapVector StoreListMap; /// Pass identification, replacement for typeid static char ID; explicit SLPVectorizer() : FunctionPass(ID) { initializeSLPVectorizerPass(*PassRegistry::getPassRegistry()); } ScalarEvolution *SE; DataLayout *DL; TargetTransformInfo *TTI; AliasAnalysis *AA; LoopInfo *LI; DominatorTree *DT; virtual bool runOnFunction(Function &F) { SE = &getAnalysis(); DL = getAnalysisIfAvailable(); TTI = &getAnalysis(); AA = &getAnalysis(); LI = &getAnalysis(); DT = &getAnalysis(); StoreRefs.clear(); bool Changed = false; // Must have DataLayout. We can't require it because some tests run w/o // triple. if (!DL) return false; DEBUG(dbgs() << "SLP: Analyzing blocks in " << F.getName() << ".\n"); // Use the bollom up slp vectorizer to construct chains that start with // he store instructions. BoUpSLP R(&F, SE, DL, TTI, AA, LI, DT); // Scan the blocks in the function in post order. for (po_iterator it = po_begin(&F.getEntryBlock()), e = po_end(&F.getEntryBlock()); it != e; ++it) { BasicBlock *BB = *it; // Vectorize trees that end at stores. if (unsigned count = collectStores(BB, R)) { (void)count; DEBUG(dbgs() << "SLP: Found " << count << " stores to vectorize.\n"); Changed |= vectorizeStoreChains(R); } // Vectorize trees that end at reductions. Changed |= vectorizeChainsInBlock(BB, R); } if (Changed) { R.optimizeGatherSequence(); DEBUG(dbgs() << "SLP: vectorized \"" << F.getName() << "\"\n"); DEBUG(verifyFunction(F)); } return Changed; } virtual void getAnalysisUsage(AnalysisUsage &AU) const { FunctionPass::getAnalysisUsage(AU); AU.addRequired(); AU.addRequired(); AU.addRequired(); AU.addRequired(); AU.addRequired(); AU.addPreserved(); AU.addPreserved(); AU.setPreservesCFG(); } private: /// \brief Collect memory references and sort them according to their base /// object. We sort the stores to their base objects to reduce the cost of the /// quadratic search on the stores. TODO: We can further reduce this cost /// if we flush the chain creation every time we run into a memory barrier. unsigned collectStores(BasicBlock *BB, BoUpSLP &R); /// \brief Try to vectorize a chain that starts at two arithmetic instrs. bool tryToVectorizePair(Value *A, Value *B, BoUpSLP &R); /// \brief Try to vectorize a list of operands. /// \returns true if a value was vectorized. bool tryToVectorizeList(ArrayRef VL, BoUpSLP &R); /// \brief Try to vectorize a chain that may start at the operands of \V; bool tryToVectorize(BinaryOperator *V, BoUpSLP &R); /// \brief Vectorize the stores that were collected in StoreRefs. bool vectorizeStoreChains(BoUpSLP &R); /// \brief Scan the basic block and look for patterns that are likely to start /// a vectorization chain. bool vectorizeChainsInBlock(BasicBlock *BB, BoUpSLP &R); bool vectorizeStoreChain(ArrayRef Chain, int CostThreshold, BoUpSLP &R); bool vectorizeStores(ArrayRef Stores, int costThreshold, BoUpSLP &R); private: StoreListMap StoreRefs; }; bool SLPVectorizer::vectorizeStoreChain(ArrayRef Chain, int CostThreshold, BoUpSLP &R) { unsigned ChainLen = Chain.size(); DEBUG(dbgs() << "SLP: Analyzing a store chain of length " << ChainLen << "\n"); Type *StoreTy = cast(Chain[0])->getValueOperand()->getType(); unsigned Sz = DL->getTypeSizeInBits(StoreTy); unsigned VF = MinVecRegSize / Sz; if (!isPowerOf2_32(Sz) || VF < 2) return false; bool Changed = false; // Look for profitable vectorizable trees at all offsets, starting at zero. for (unsigned i = 0, e = ChainLen; i < e; ++i) { if (i + VF > e) break; DEBUG(dbgs() << "SLP: Analyzing " << VF << " stores at offset " << i << "\n"); ArrayRef Operands = Chain.slice(i, VF); R.buildTree(Operands); int Cost = R.getTreeCost(); DEBUG(dbgs() << "SLP: Found cost=" << Cost << " for VF=" << VF << "\n"); if (Cost < CostThreshold) { DEBUG(dbgs() << "SLP: Decided to vectorize cost=" << Cost << "\n"); R.vectorizeTree(); // Move to the next bundle. i += VF - 1; Changed = true; } } return Changed; } bool SLPVectorizer::vectorizeStores(ArrayRef Stores, int costThreshold, BoUpSLP &R) { SetVector Heads, Tails; SmallDenseMap ConsecutiveChain; // We may run into multiple chains that merge into a single chain. We mark the // stores that we vectorized so that we don't visit the same store twice. BoUpSLP::ValueSet VectorizedStores; bool Changed = false; // Do a quadratic search on all of the given stores and find // all of the pairs of stores that follow each other. for (unsigned i = 0, e = Stores.size(); i < e; ++i) { for (unsigned j = 0; j < e; ++j) { if (i == j) continue; if (R.isConsecutiveAccess(Stores[i], Stores[j])) { Tails.insert(Stores[j]); Heads.insert(Stores[i]); ConsecutiveChain[Stores[i]] = Stores[j]; } } } // For stores that start but don't end a link in the chain: for (SetVector::iterator it = Heads.begin(), e = Heads.end(); it != e; ++it) { if (Tails.count(*it)) continue; // We found a store instr that starts a chain. Now follow the chain and try // to vectorize it. BoUpSLP::ValueList Operands; Value *I = *it; // Collect the chain into a list. while (Tails.count(I) || Heads.count(I)) { if (VectorizedStores.count(I)) break; Operands.push_back(I); // Move to the next value in the chain. I = ConsecutiveChain[I]; } bool Vectorized = vectorizeStoreChain(Operands, costThreshold, R); // Mark the vectorized stores so that we don't vectorize them again. if (Vectorized) VectorizedStores.insert(Operands.begin(), Operands.end()); Changed |= Vectorized; } return Changed; } unsigned SLPVectorizer::collectStores(BasicBlock *BB, BoUpSLP &R) { unsigned count = 0; StoreRefs.clear(); for (BasicBlock::iterator it = BB->begin(), e = BB->end(); it != e; ++it) { StoreInst *SI = dyn_cast(it); if (!SI) continue; // Check that the pointer points to scalars. Type *Ty = SI->getValueOperand()->getType(); if (Ty->isAggregateType() || Ty->isVectorTy()) return 0; // Find the base of the GEP. Value *Ptr = SI->getPointerOperand(); if (GetElementPtrInst *GEP = dyn_cast(Ptr)) Ptr = GEP->getPointerOperand(); // Save the store locations. StoreRefs[Ptr].push_back(SI); count++; } return count; } bool SLPVectorizer::tryToVectorizePair(Value *A, Value *B, BoUpSLP &R) { if (!A || !B) return false; Value *VL[] = { A, B }; return tryToVectorizeList(VL, R); } bool SLPVectorizer::tryToVectorizeList(ArrayRef VL, BoUpSLP &R) { if (VL.size() < 2) return false; DEBUG(dbgs() << "SLP: Vectorizing a list of length = " << VL.size() << ".\n"); // Check that all of the parts are scalar instructions of the same type. Instruction *I0 = dyn_cast(VL[0]); if (!I0) return 0; unsigned Opcode0 = I0->getOpcode(); for (int i = 0, e = VL.size(); i < e; ++i) { Type *Ty = VL[i]->getType(); if (Ty->isAggregateType() || Ty->isVectorTy()) return 0; Instruction *Inst = dyn_cast(VL[i]); if (!Inst || Inst->getOpcode() != Opcode0) return 0; } R.buildTree(VL); int Cost = R.getTreeCost(); if (Cost >= -SLPCostThreshold) return false; DEBUG(dbgs() << "SLP: Vectorizing pair at cost:" << Cost << ".\n"); R.vectorizeTree(); return true; } bool SLPVectorizer::tryToVectorize(BinaryOperator *V, BoUpSLP &R) { if (!V) return false; // Try to vectorize V. if (tryToVectorizePair(V->getOperand(0), V->getOperand(1), R)) return true; BinaryOperator *A = dyn_cast(V->getOperand(0)); BinaryOperator *B = dyn_cast(V->getOperand(1)); // Try to skip B. if (B && B->hasOneUse()) { BinaryOperator *B0 = dyn_cast(B->getOperand(0)); BinaryOperator *B1 = dyn_cast(B->getOperand(1)); if (tryToVectorizePair(A, B0, R)) { B->moveBefore(V); return true; } if (tryToVectorizePair(A, B1, R)) { B->moveBefore(V); return true; } } // Try to skip A. if (A && A->hasOneUse()) { BinaryOperator *A0 = dyn_cast(A->getOperand(0)); BinaryOperator *A1 = dyn_cast(A->getOperand(1)); if (tryToVectorizePair(A0, B, R)) { A->moveBefore(V); return true; } if (tryToVectorizePair(A1, B, R)) { A->moveBefore(V); return true; } } return 0; } bool SLPVectorizer::vectorizeChainsInBlock(BasicBlock *BB, BoUpSLP &R) { bool Changed = false; SmallVector Incoming; // Collect the incoming values from the PHIs. for (BasicBlock::iterator instr = BB->begin(), ie = BB->end(); instr != ie; ++instr) { PHINode *P = dyn_cast(instr); if (!P) break; // Stop constructing the list when you reach a different type. if (Incoming.size() && P->getType() != Incoming[0]->getType()) { Changed |= tryToVectorizeList(Incoming, R); Incoming.clear(); } Incoming.push_back(P); } if (Incoming.size() > 1) Changed |= tryToVectorizeList(Incoming, R); for (BasicBlock::iterator it = BB->begin(), e = BB->end(); it != e; ++it) { if (isa(it)) continue; // Try to vectorize reductions that use PHINodes. if (PHINode *P = dyn_cast(it)) { // Check that the PHI is a reduction PHI. if (P->getNumIncomingValues() != 2) return Changed; Value *Rdx = (P->getIncomingBlock(0) == BB ? (P->getIncomingValue(0)) : (P->getIncomingBlock(1) == BB ? P->getIncomingValue(1) : 0)); // Check if this is a Binary Operator. BinaryOperator *BI = dyn_cast_or_null(Rdx); if (!BI) continue; Value *Inst = BI->getOperand(0); if (Inst == P) Inst = BI->getOperand(1); Changed |= tryToVectorize(dyn_cast(Inst), R); continue; } // Try to vectorize trees that start at compare instructions. if (CmpInst *CI = dyn_cast(it)) { if (tryToVectorizePair(CI->getOperand(0), CI->getOperand(1), R)) { Changed |= true; continue; } for (int i = 0; i < 2; ++i) if (BinaryOperator *BI = dyn_cast(CI->getOperand(i))) Changed |= tryToVectorizePair(BI->getOperand(0), BI->getOperand(1), R); continue; } } return Changed; } bool SLPVectorizer::vectorizeStoreChains(BoUpSLP &R) { bool Changed = false; // Attempt to sort and vectorize each of the store-groups. for (StoreListMap::iterator it = StoreRefs.begin(), e = StoreRefs.end(); it != e; ++it) { if (it->second.size() < 2) continue; DEBUG(dbgs() << "SLP: Analyzing a store chain of length " << it->second.size() << ".\n"); // Process the stores in chunks of 16. for (unsigned CI = 0, CE = it->second.size(); CI < CE; CI+=16) { unsigned Len = std::min(CE - CI, 16); ArrayRef Chunk(&it->second[CI], Len); Changed |= vectorizeStores(Chunk, -SLPCostThreshold, R); } } return Changed; } } // end anonymous namespace char SLPVectorizer::ID = 0; static const char lv_name[] = "SLP Vectorizer"; INITIALIZE_PASS_BEGIN(SLPVectorizer, SV_NAME, lv_name, false, false) INITIALIZE_AG_DEPENDENCY(AliasAnalysis) INITIALIZE_AG_DEPENDENCY(TargetTransformInfo) INITIALIZE_PASS_DEPENDENCY(ScalarEvolution) INITIALIZE_PASS_DEPENDENCY(LoopSimplify) INITIALIZE_PASS_END(SLPVectorizer, SV_NAME, lv_name, false, false) namespace llvm { Pass *createSLPVectorizerPass() { return new SLPVectorizer(); } }