//===-- ProfilePaths.cpp - interface to insert instrumentation ---*- C++ -*--=// // // This inserts intrumentation for counting // execution of paths though a given function // Its implemented as a "Function" Pass, and called using opt // // This pass is implemented by using algorithms similar to // 1."Efficient Path Profiling": Ball, T. and Larus, J. R., // Proceedings of Micro-29, Dec 1996, Paris, France. // 2."Efficiently Counting Program events with support for on-line // "queries": Ball T., ACM Transactions on Programming Languages // and systems, Sep 1994. // // The algorithms work on a Graph constructed over the nodes // made from Basic Blocks: The transformations then take place on // the constucted graph (implementation in Graph.cpp and GraphAuxillary.cpp) // and finally, appropriate instrumentation is placed over suitable edges. // (code inserted through EdgeCode.cpp). // // The algorithm inserts code such that every acyclic path in the CFG // of a function is identified through a unique number. the code insertion // is optimal in the sense that its inserted over a minimal set of edges. Also, // the algorithm makes sure than initialization, path increment and counter // update can be collapsed into minmimum number of edges. //===----------------------------------------------------------------------===// #include "llvm/Transforms/Instrumentation/ProfilePaths.h" #include "llvm/Transforms/UnifyFunctionExitNodes.h" #include "llvm/Support/CFG.h" #include "llvm/Function.h" #include "llvm/BasicBlock.h" #include "llvm/Constants.h" #include "llvm/DerivedTypes.h" #include "llvm/iMemory.h" #include "llvm/Pass.h" #include "Graph.h" using std::vector; class ProfilePaths: public FunctionPass { public: bool runOnFunction(Function *F); // Before this pass, make sure that there is only one // entry and only one exit node for the function in the CFG of the function // void ProfilePaths::getAnalysisUsage(AnalysisUsage &AU) const { AU.addRequired(UnifyFunctionExitNodes::ID); } }; // createProfilePathsPass - Create a new pass to add path profiling // Pass *createProfilePathsPass() { return new ProfilePaths(); } static Node *findBB(std::set &st, BasicBlock *BB){ for(std::set::iterator si=st.begin(); si!=st.end(); ++si){ if(((*si)->getElement())==BB){ return *si; } } return NULL; } //Per function pass for inserting counters and trigger code bool ProfilePaths::runOnFunction(Function *M){ // Transform the cfg s.t. we have just one exit node BasicBlock *ExitNode = getAnalysis().getExitNode(); // iterating over BBs and making graph std::set nodes; std::set edges; Node *tmp; Node *exitNode, *startNode; // The nodes must be uniquesly identified: // That is, no two nodes must hav same BB* // First enter just nodes: later enter edges for (Function::iterator BB = M->begin(), BE=M->end(); BB != BE; ++BB){ Node *nd=new Node(*BB); nodes.insert(nd); if(*BB==ExitNode) exitNode=nd; if(*BB==M->front()) startNode=nd; } // now do it againto insert edges for (Function::iterator BB = M->begin(), BE=M->end(); BB != BE; ++BB){ Node *nd=findBB(nodes, *BB); assert(nd && "No node for this edge!"); for(BasicBlock::succ_iterator s=succ_begin(*BB), se=succ_end(*BB); s!=se; ++s){ Node *nd2=findBB(nodes,*s); assert(nd2 && "No node for this edge!"); Edge ed(nd,nd2,0); edges.insert(ed); } } Graph g(nodes,edges, startNode, exitNode); #ifdef DEBUG_PATH_PROFILES printGraph(g); #endif BasicBlock *fr=M->front(); // If only one BB, don't instrument if (M->getBasicBlocks().size() == 1) { // The graph is made acyclic: this is done // by removing back edges for now, and adding them later on vector be; g.getBackEdges(be); #ifdef DEBUG_PATH_PROFILES cerr<<"Backedges:"<b is a back edge // Then we add 2 back edges for it: // 1. from root->b (in vector stDummy) // and 2. from a->exit (in vector exDummy) vector stDummy; vector exDummy; addDummyEdges(stDummy, exDummy, g, be); // Now, every edge in the graph is assigned a weight // This weight later adds on to assign path // numbers to different paths in the graph // All paths for now are acyclic, // since no back edges in the graph now // numPaths is the number of acyclic paths in the graph int numPaths=valueAssignmentToEdges(g); // create instruction allocation r and count // r is the variable that'll act like an accumulator // all along the path, we just add edge values to r // and at the end, r reflects the path number // count is an array: count[x] would store // the number of executions of path numbered x Instruction *rVar=new AllocaInst(PointerType::get(Type::IntTy), ConstantUInt::get(Type::UIntTy,1),"R"); Instruction *countVar=new AllocaInst(PointerType::get(Type::IntTy), ConstantUInt::get(Type::UIntTy, numPaths), "Count"); // insert initialization code in first (entry) BB // this includes initializing r and count insertInTopBB(M->getEntryNode(),numPaths, rVar, countVar); // now process the graph: get path numbers, // get increments along different paths, // and assign "increments" and "updates" (to r and count) // "optimally". Finally, insert llvm code along various edges processGraph(g, rVar, countVar, be, stDummy, exDummy); } return true; // Always modifies function }