//===- PassManagerT.h - Container for Passes ---------------------*- C++ -*--=// // // This file defines the PassManagerT class. This class is used to hold, // maintain, and optimize execution of Pass's. The PassManager class ensures // that analysis results are available before a pass runs, and that Pass's are // destroyed when the PassManager is destroyed. // // The PassManagerT template is instantiated three times to do its job. The // public PassManager class is a Pimpl around the PassManagerT interface // to avoid having all of the PassManager clients being exposed to the // implementation details herein. // //===----------------------------------------------------------------------===// #ifndef LLVM_PASSMANAGER_T_H #define LLVM_PASSMANAGER_T_H #include "llvm/Pass.h" #include #include class Annotable; //===----------------------------------------------------------------------===// // PMDebug class - a set of debugging functions, that are not to be // instantiated by the template. // struct PMDebug { // If compiled in debug mode, these functions can be enabled by setting // -debug-pass on the command line of the tool being used. // static void PrintPassStructure(Pass *P); static void PrintPassInformation(unsigned,const char*,Pass *, Annotable *); static void PrintAnalysisSetInfo(unsigned,const char*,Pass *P, const std::vector &); }; //===----------------------------------------------------------------------===// // TimingInfo Class - This class is used to calculate information about the // amount of time each pass takes to execute. This only happens when // -time-passes is enabled on the command line. // class TimingInfo { std::map TimingData; TimingInfo() {} // Private ctor, must use create member public: // Create method. If Timing is enabled, this creates and returns a new timing // object, otherwise it returns null. // static TimingInfo *create(); // TimingDtor - Print out information about timing information ~TimingInfo(); void passStarted(Pass *P); void passEnded(Pass *P); }; //===----------------------------------------------------------------------===// // Declare the PassManagerTraits which will be specialized... // template class PassManagerTraits; // Do not define. //===----------------------------------------------------------------------===// // PassManagerT - Container object for passes. The PassManagerT destructor // deletes all passes contained inside of the PassManagerT, so you shouldn't // delete passes manually, and all passes should be dynamically allocated. // template class PassManagerT : public PassManagerTraits,public AnalysisResolver{ typedef PassManagerTraits Traits; typedef typename Traits::PassClass PassClass; typedef typename Traits::SubPassClass SubPassClass; typedef typename Traits::BatcherClass BatcherClass; typedef typename Traits::ParentClass ParentClass; friend typename Traits::PassClass; friend typename Traits::SubPassClass; friend class Traits; std::vector Passes; // List of pass's to run // The parent of this pass manager... ParentClass * const Parent; // The current batcher if one is in use, or null BatcherClass *Batcher; // CurrentAnalyses - As the passes are being run, this map contains the // analyses that are available to the current pass for use. This is accessed // through the getAnalysis() function in this class and in Pass. // std::map CurrentAnalyses; // LastUseOf - This map keeps track of the last usage in our pipeline of a // particular pass. When executing passes, the memory for .first is free'd // after .second is run. // std::map LastUseOf; public: PassManagerT(ParentClass *Par = 0) : Parent(Par), Batcher(0) {} ~PassManagerT() { // Delete all of the contained passes... for (std::vector::iterator I = Passes.begin(), E = Passes.end(); I != E; ++I) delete *I; } // run - Run all of the queued passes on the specified module in an optimal // way. virtual bool runOnUnit(UnitType *M) { bool MadeChanges = false; closeBatcher(); CurrentAnalyses.clear(); // LastUserOf - This contains the inverted LastUseOfMap... std::map > LastUserOf; for (std::map::iterator I = LastUseOf.begin(), E = LastUseOf.end(); I != E; ++I) LastUserOf[I->second].push_back(I->first); // Output debug information... if (Parent == 0) PMDebug::PrintPassStructure(this); // Run all of the passes for (unsigned i = 0, e = Passes.size(); i < e; ++i) { PassClass *P = Passes[i]; PMDebug::PrintPassInformation(getDepth(), "Executing Pass", P, (Annotable*)M); // Get information about what analyses the pass uses... AnalysisUsage AnUsage; P->getAnalysisUsage(AnUsage); PMDebug::PrintAnalysisSetInfo(getDepth(), "Required", P, AnUsage.getRequiredSet()); #ifndef NDEBUG // All Required analyses should be available to the pass as it runs! for (vector::const_iterator I = AnUsage.getRequiredSet().begin(), E = AnUsage.getRequiredSet().end(); I != E; ++I) { assert(getAnalysisOrNullUp(*I) && "Analysis used but not available!"); } #endif // Run the sub pass! startPass(P); bool Changed = runPass(P, M); endPass(P); MadeChanges |= Changed; if (Changed) PMDebug::PrintPassInformation(getDepth()+1, "Made Modification", P, (Annotable*)M); PMDebug::PrintAnalysisSetInfo(getDepth(), "Preserved", P, AnUsage.getPreservedSet()); PMDebug::PrintAnalysisSetInfo(getDepth(), "Provided", P, AnUsage.getProvidedSet()); // Erase all analyses not in the preserved set... if (!AnUsage.preservesAll()) { const std::vector &PreservedSet = AnUsage.getPreservedSet(); for (std::map::iterator I = CurrentAnalyses.begin(), E = CurrentAnalyses.end(); I != E; ) if (std::find(PreservedSet.begin(), PreservedSet.end(), I->first) != PreservedSet.end()) ++I; // This analysis is preserved, leave it in the available set... else { #if MAP_DOESNT_HAVE_BROKEN_ERASE_MEMBER I = CurrentAnalyses.erase(I); // Analysis not preserved! #else // GCC 2.95.3 STL doesn't have correct erase member! CurrentAnalyses.erase(I); I = CurrentAnalyses.begin(); #endif } } // Add all analyses in the provided set... for (std::vector::const_iterator I = AnUsage.getProvidedSet().begin(), E = AnUsage.getProvidedSet().end(); I != E; ++I) CurrentAnalyses[*I] = P; // Free memory for any passes that we are the last use of... std::vector &DeadPass = LastUserOf[P]; for (std::vector::iterator I = DeadPass.begin(),E = DeadPass.end(); I != E; ++I) { PMDebug::PrintPassInformation(getDepth()+1, "Freeing Pass", *I, (Annotable*)M); (*I)->releaseMemory(); } } return MadeChanges; } // dumpPassStructure - Implement the -debug-passes=PassStructure option virtual void dumpPassStructure(unsigned Offset = 0) { std::cerr << std::string(Offset*2, ' ') << Traits::getPMName() << " Pass Manager\n"; for (std::vector::iterator I = Passes.begin(), E = Passes.end(); I != E; ++I) { PassClass *P = *I; P->dumpPassStructure(Offset+1); // Loop through and see which classes are destroyed after this one... for (std::map::iterator I = LastUseOf.begin(), E = LastUseOf.end(); I != E; ++I) { if (P == I->second) { std::cerr << "Fr" << std::string(Offset*2, ' '); I->first->dumpPassStructure(0); } } } } Pass *getAnalysisOrNullDown(AnalysisID ID) const { std::map::const_iterator I = CurrentAnalyses.find(ID); if (I == CurrentAnalyses.end()) { if (Batcher) return ((AnalysisResolver*)Batcher)->getAnalysisOrNullDown(ID); return 0; } return I->second; } Pass *getAnalysisOrNullUp(AnalysisID ID) const { std::map::const_iterator I = CurrentAnalyses.find(ID); if (I == CurrentAnalyses.end()) { if (Parent) return Parent->getAnalysisOrNullUp(ID); return 0; } return I->second; } // {start/end}Pass - Called when a pass is started, it just propogates // information up to the top level PassManagerT object to tell it that a pass // has started or ended. This is used to gather timing information about // passes. // void startPass(Pass *P) { if (Parent) Parent->startPass(P); else PassStarted(P); } void endPass(Pass *P) { if (Parent) Parent->endPass(P); else PassEnded(P); } // markPassUsed - Inform higher level pass managers (and ourselves) // that these analyses are being used by this pass. This is used to // make sure that analyses are not free'd before we have to use // them... // void markPassUsed(AnalysisID P, Pass *User) { std::map::iterator I = CurrentAnalyses.find(P); if (I != CurrentAnalyses.end()) { LastUseOf[I->second] = User; // Local pass, extend the lifetime } else { // Pass not in current available set, must be a higher level pass // available to us, propogate to parent pass manager... We tell the // parent that we (the passmanager) are using the analysis so that it // frees the analysis AFTER this pass manager runs. // assert(Parent != 0 && "Pass available but not found! " "Did your analysis pass 'Provide' itself?"); Parent->markPassUsed(P, this); } } // Return the number of parent PassManagers that exist virtual unsigned getDepth() const { if (Parent == 0) return 0; return 1 + Parent->getDepth(); } // add - Add a pass to the queue of passes to run. This passes ownership of // the Pass to the PassManager. When the PassManager is destroyed, the pass // will be destroyed as well, so there is no need to delete the pass. This // implies that all passes MUST be new'd. // void add(PassClass *P) { // Get information about what analyses the pass uses... AnalysisUsage AnUsage; P->getAnalysisUsage(AnUsage); const std::vector &Required = AnUsage.getRequiredSet(); // Loop over all of the analyses used by this pass, for (std::vector::const_iterator I = Required.begin(), E = Required.end(); I != E; ++I) { if (getAnalysisOrNullDown(*I) == 0) add((PassClass*)I->createPass()); } // Tell the pass to add itself to this PassManager... the way it does so // depends on the class of the pass, and is critical to laying out passes in // an optimal order.. // P->addToPassManager(this, AnUsage); } private: // addPass - These functions are used to implement the subclass specific // behaviors present in PassManager. Basically the add(Pass*) method ends up // reflecting its behavior into a Pass::addToPassManager call. Subclasses of // Pass override it specifically so that they can reflect the type // information inherent in "this" back to the PassManager. // // For generic Pass subclasses (which are interprocedural passes), we simply // add the pass to the end of the pass list and terminate any accumulation of // FunctionPass's that are present. // void addPass(PassClass *P, AnalysisUsage &AnUsage) { const std::vector &RequiredSet = AnUsage.getRequiredSet(); const std::vector &ProvidedSet = AnUsage.getProvidedSet(); // Providers are analysis classes which are forbidden to modify the module // they are operating on, so they are allowed to be reordered to before the // batcher... // if (Batcher && ProvidedSet.empty()) closeBatcher(); // This pass cannot be batched! // Set the Resolver instance variable in the Pass so that it knows where to // find this object... // setAnalysisResolver(P, this); Passes.push_back(P); // Inform higher level pass managers (and ourselves) that these analyses are // being used by this pass. This is used to make sure that analyses are not // free'd before we have to use them... // for (std::vector::const_iterator I = RequiredSet.begin(), E = RequiredSet.end(); I != E; ++I) markPassUsed(*I, P); // Mark *I as used by P // Erase all analyses not in the preserved set... if (!AnUsage.preservesAll()) { const std::vector &PreservedSet = AnUsage.getPreservedSet(); for (std::map::iterator I = CurrentAnalyses.begin(), E = CurrentAnalyses.end(); I != E; ) if (std::find(PreservedSet.begin(), PreservedSet.end(), I->first) != PreservedSet.end()) ++I; // This analysis is preserved, leave it in the available set... else { #if MAP_DOESNT_HAVE_BROKEN_ERASE_MEMBER I = CurrentAnalyses.erase(I); // Analysis not preserved! #else CurrentAnalyses.erase(I);// GCC 2.95.3 STL doesn't have correct erase! I = CurrentAnalyses.begin(); #endif } } // Add all analyses in the provided set... for (std::vector::const_iterator I = ProvidedSet.begin(), E = ProvidedSet.end(); I != E; ++I) CurrentAnalyses[*I] = P; // For now assume that our results are never used... LastUseOf[P] = P; } // For FunctionPass subclasses, we must be sure to batch the FunctionPass's // together in a BatcherClass object so that all of the analyses are run // together a function at a time. // void addPass(SubPassClass *MP, AnalysisUsage &AnUsage) { if (Batcher == 0) // If we don't have a batcher yet, make one now. Batcher = new BatcherClass(this); // The Batcher will queue them passes up MP->addToPassManager(Batcher, AnUsage); } // closeBatcher - Terminate the batcher that is being worked on. void closeBatcher() { if (Batcher) { Passes.push_back(Batcher); Batcher = 0; } } }; //===----------------------------------------------------------------------===// // PassManagerTraits Specialization // // This pass manager is used to group together all of the BasicBlockPass's // into a single unit. // template<> struct PassManagerTraits : public BasicBlockPass { // PassClass - The type of passes tracked by this PassManager typedef BasicBlockPass PassClass; // SubPassClass - The types of classes that should be collated together // This is impossible to match, so BasicBlock instantiations of PassManagerT // do not collate. // typedef PassManagerT SubPassClass; // BatcherClass - The type to use for collation of subtypes... This class is // never instantiated for the PassManager, but it must be an // instance of PassClass to typecheck. // typedef PassClass BatcherClass; // ParentClass - The type of the parent PassManager... typedef PassManagerT ParentClass; // PMType - The type of the passmanager that subclasses this class typedef PassManagerT PMType; // runPass - Specify how the pass should be run on the UnitType static bool runPass(PassClass *P, BasicBlock *M) { // todo, init and finalize return P->runOnBasicBlock(M); } // Dummy implementation of PassStarted/PassEnded static void PassStarted(Pass *P) {} static void PassEnded(Pass *P) {} // getPMName() - Return the name of the unit the PassManager operates on for // debugging. const char *getPMName() const { return "BasicBlock"; } // Implement the BasicBlockPass interface... virtual bool doInitialization(Module *M); virtual bool runOnBasicBlock(BasicBlock *BB); virtual bool doFinalization(Module *M); }; //===----------------------------------------------------------------------===// // PassManagerTraits Specialization // // This pass manager is used to group together all of the FunctionPass's // into a single unit. // template<> struct PassManagerTraits : public FunctionPass { // PassClass - The type of passes tracked by this PassManager typedef FunctionPass PassClass; // SubPassClass - The types of classes that should be collated together typedef BasicBlockPass SubPassClass; // BatcherClass - The type to use for collation of subtypes... typedef PassManagerT BatcherClass; // ParentClass - The type of the parent PassManager... typedef PassManagerT ParentClass; // PMType - The type of the passmanager that subclasses this class typedef PassManagerT PMType; // runPass - Specify how the pass should be run on the UnitType static bool runPass(PassClass *P, Function *F) { return P->runOnFunction(F); } // Dummy implementation of PassStarted/PassEnded static void PassStarted(Pass *P) {} static void PassEnded(Pass *P) {} // getPMName() - Return the name of the unit the PassManager operates on for // debugging. const char *getPMName() const { return "Function"; } // Implement the FunctionPass interface... virtual bool doInitialization(Module *M); virtual bool runOnFunction(Function *F); virtual bool doFinalization(Module *M); }; //===----------------------------------------------------------------------===// // PassManagerTraits Specialization // // This is the top level PassManager implementation that holds generic passes. // template<> struct PassManagerTraits : public Pass { // PassClass - The type of passes tracked by this PassManager typedef Pass PassClass; // SubPassClass - The types of classes that should be collated together typedef FunctionPass SubPassClass; // BatcherClass - The type to use for collation of subtypes... typedef PassManagerT BatcherClass; // ParentClass - The type of the parent PassManager... typedef AnalysisResolver ParentClass; // runPass - Specify how the pass should be run on the UnitType static bool runPass(PassClass *P, Module *M) { return P->run(M); } // getPMName() - Return the name of the unit the PassManager operates on for // debugging. const char *getPMName() const { return "Module"; } // TimingInformation - This data member maintains timing information for each // of the passes that is executed. // TimingInfo *TimeInfo; // PassStarted/Ended - This callback is notified any time a pass is started // or stops. This is used to collect timing information about the different // passes being executed. // void PassStarted(Pass *P) { if (TimeInfo) TimeInfo->passStarted(P); } void PassEnded(Pass *P) { if (TimeInfo) TimeInfo->passEnded(P); } // run - Implement the PassManager interface... bool run(Module *M) { TimeInfo = TimingInfo::create(); bool Result = ((PassManagerT*)this)->runOnUnit(M); if (TimeInfo) { delete TimeInfo; TimeInfo = 0; } return Result; } // PassManagerTraits constructor - Create a timing info object if the user // specified timing info should be collected on the command line. // PassManagerTraits() : TimeInfo(0) {} }; //===----------------------------------------------------------------------===// // PassManagerTraits Method Implementations // // PassManagerTraits Implementations // inline bool PassManagerTraits::doInitialization(Module *M) { bool Changed = false; for (unsigned i = 0, e = ((PMType*)this)->Passes.size(); i != e; ++i) ((PMType*)this)->Passes[i]->doInitialization(M); return Changed; } inline bool PassManagerTraits::runOnBasicBlock(BasicBlock *BB) { return ((PMType*)this)->runOnUnit(BB); } inline bool PassManagerTraits::doFinalization(Module *M) { bool Changed = false; for (unsigned i = 0, e = ((PMType*)this)->Passes.size(); i != e; ++i) ((PMType*)this)->Passes[i]->doFinalization(M); return Changed; } // PassManagerTraits Implementations // inline bool PassManagerTraits::doInitialization(Module *M) { bool Changed = false; for (unsigned i = 0, e = ((PMType*)this)->Passes.size(); i != e; ++i) ((PMType*)this)->Passes[i]->doInitialization(M); return Changed; } inline bool PassManagerTraits::runOnFunction(Function *F) { return ((PMType*)this)->runOnUnit(F); } inline bool PassManagerTraits::doFinalization(Module *M) { bool Changed = false; for (unsigned i = 0, e = ((PMType*)this)->Passes.size(); i != e; ++i) ((PMType*)this)->Passes[i]->doFinalization(M); return Changed; } #endif