//===- GlobalOpt.cpp - Optimize Global Variables --------------------------===// // // The LLVM Compiler Infrastructure // // This file was developed by the LLVM research group and is distributed under // the University of Illinois Open Source License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// // // This pass transforms simple global variables that never have their address // taken. If obviously true, it marks read/write globals as constant, deletes // variables only stored to, etc. // //===----------------------------------------------------------------------===// #define DEBUG_TYPE "globalopt" #include "llvm/Transforms/IPO.h" #include "llvm/Constants.h" #include "llvm/DerivedTypes.h" #include "llvm/Instructions.h" #include "llvm/Module.h" #include "llvm/Pass.h" #include "llvm/Support/Debug.h" #include "llvm/ADT/Statistic.h" #include "llvm/ADT/StringExtras.h" #include #include using namespace llvm; namespace { Statistic<> NumMarked ("globalopt", "Number of globals marked constant"); Statistic<> NumSRA ("globalopt", "Number of aggregate globals broken " "into scalars"); Statistic<> NumDeleted ("globalopt", "Number of globals deleted"); Statistic<> NumFnDeleted("globalopt", "Number of functions deleted"); struct GlobalOpt : public ModulePass { bool runOnModule(Module &M); }; RegisterOpt X("globalopt", "Global Variable Optimizer"); } ModulePass *llvm::createGlobalOptimizerPass() { return new GlobalOpt(); } /// GlobalStatus - As we analyze each global, keep track of some information /// about it. If we find out that the address of the global is taken, none of /// this info will be accurate. struct GlobalStatus { /// isLoaded - True if the global is ever loaded. If the global isn't ever /// loaded it can be deleted. bool isLoaded; /// StoredType - Keep track of what stores to the global look like. /// enum StoredType { /// NotStored - There is no store to this global. It can thus be marked /// constant. NotStored, /// isInitializerStored - This global is stored to, but the only thing /// stored is the constant it was initialized with. This is only tracked /// for scalar globals. isInitializerStored, /// isStoredOnce - This global is stored to, but only its initializer and /// one other value is ever stored to it. If this global isStoredOnce, we /// track the value stored to it in StoredOnceValue below. This is only /// tracked for scalar globals. isStoredOnce, /// isStored - This global is stored to by multiple values or something else /// that we cannot track. isStored } StoredType; /// StoredOnceValue - If only one value (besides the initializer constant) is /// ever stored to this global, keep track of what value it is. Value *StoredOnceValue; /// isNotSuitableForSRA - Keep track of whether any SRA preventing users of /// the global exist. Such users include GEP instruction with variable /// indexes, and non-gep/load/store users like constant expr casts. bool isNotSuitableForSRA; GlobalStatus() : isLoaded(false), StoredType(NotStored), StoredOnceValue(0), isNotSuitableForSRA(false) {} }; /// AnalyzeGlobal - Look at all uses of the global and fill in the GlobalStatus /// structure. If the global has its address taken, return true to indicate we /// can't do anything with it. /// static bool AnalyzeGlobal(Value *V, GlobalStatus &GS, std::set &PHIUsers) { for (Value::use_iterator UI = V->use_begin(), E = V->use_end(); UI != E; ++UI) if (ConstantExpr *CE = dyn_cast(*UI)) { if (AnalyzeGlobal(CE, GS, PHIUsers)) return true; if (CE->getOpcode() != Instruction::GetElementPtr) GS.isNotSuitableForSRA = true; else if (!GS.isNotSuitableForSRA) { // Check to see if this ConstantExpr GEP is SRA'able. In particular, we // don't like < 3 operand CE's, and we don't like non-constant integer // indices. if (CE->getNumOperands() < 3 || !CE->getOperand(1)->isNullValue()) GS.isNotSuitableForSRA = true; else { for (unsigned i = 1, e = CE->getNumOperands(); i != e; ++i) if (!isa(CE->getOperand(i))) { GS.isNotSuitableForSRA = true; break; } } } } else if (Instruction *I = dyn_cast(*UI)) { if (isa(I)) { GS.isLoaded = true; } else if (StoreInst *SI = dyn_cast(I)) { // Don't allow a store OF the address, only stores TO the address. if (SI->getOperand(0) == V) return true; // If this is a direct store to the global (i.e., the global is a scalar // value, not an aggregate), keep more specific information about // stores. if (GS.StoredType != GlobalStatus::isStored) if (GlobalVariable *GV = dyn_cast(SI->getOperand(1))){ if (SI->getOperand(0) == GV->getInitializer()) { if (GS.StoredType < GlobalStatus::isInitializerStored) GS.StoredType = GlobalStatus::isInitializerStored; } else if (GS.StoredType < GlobalStatus::isStoredOnce) { GS.StoredType = GlobalStatus::isStoredOnce; GS.StoredOnceValue = SI->getOperand(0); } else if (GS.StoredType == GlobalStatus::isStoredOnce && GS.StoredOnceValue == SI->getOperand(0)) { // noop. } else { GS.StoredType = GlobalStatus::isStored; } } else { GS.StoredType = GlobalStatus::isStored; } } else if (I->getOpcode() == Instruction::GetElementPtr) { if (AnalyzeGlobal(I, GS, PHIUsers)) return true; // Theoretically we could SRA globals with GEP insts if all indexes are // constants. In practice, these GEPs would already be constant exprs // if that was the case though. GS.isNotSuitableForSRA = true; } else if (I->getOpcode() == Instruction::Select) { if (AnalyzeGlobal(I, GS, PHIUsers)) return true; GS.isNotSuitableForSRA = true; } else if (PHINode *PN = dyn_cast(I)) { // PHI nodes we can check just like select or GEP instructions, but we // have to be careful about infinite recursion. if (PHIUsers.insert(PN).second) // Not already visited. if (AnalyzeGlobal(I, GS, PHIUsers)) return true; GS.isNotSuitableForSRA = true; } else if (isa(I)) { GS.isNotSuitableForSRA = true; } else { return true; // Any other non-load instruction might take address! } } else { // Otherwise must be a global or some other user. return true; } return false; } static Constant *getAggregateConstantElement(Constant *Agg, Constant *Idx) { ConstantInt *CI = dyn_cast(Idx); if (!CI) return 0; uint64_t IdxV = CI->getRawValue(); if (ConstantStruct *CS = dyn_cast(Agg)) { if (IdxV < CS->getNumOperands()) return CS->getOperand(IdxV); } else if (ConstantArray *CA = dyn_cast(Agg)) { if (IdxV < CA->getNumOperands()) return CA->getOperand(IdxV); } else if (ConstantPacked *CP = dyn_cast(Agg)) { if (IdxV < CP->getNumOperands()) return CP->getOperand(IdxV); } else if (ConstantAggregateZero *CAZ = dyn_cast(Agg)) { if (const StructType *STy = dyn_cast(Agg->getType())) { if (IdxV < STy->getNumElements()) return Constant::getNullValue(STy->getElementType(IdxV)); } else if (const SequentialType *STy = dyn_cast(Agg->getType())) { return Constant::getNullValue(STy->getElementType()); } } return 0; } static Constant *TraverseGEPInitializer(User *GEP, Constant *Init) { if (GEP->getNumOperands() == 1 || !isa(GEP->getOperand(1)) || !cast(GEP->getOperand(1))->isNullValue()) return 0; for (unsigned i = 2, e = GEP->getNumOperands(); i != e; ++i) { ConstantInt *Idx = dyn_cast(GEP->getOperand(i)); if (!Idx) return 0; Init = getAggregateConstantElement(Init, Idx); if (Init == 0) return 0; } return Init; } /// CleanupConstantGlobalUsers - We just marked GV constant. Loop over all /// users of the global, cleaning up the obvious ones. This is largely just a /// quick scan over the use list to clean up the easy and obvious cruft. static void CleanupConstantGlobalUsers(Value *V, Constant *Init) { for (Value::use_iterator UI = V->use_begin(), E = V->use_end(); UI != E;) { User *U = *UI++; if (LoadInst *LI = dyn_cast(U)) { // Replace the load with the initializer. LI->replaceAllUsesWith(Init); LI->getParent()->getInstList().erase(LI); } else if (StoreInst *SI = dyn_cast(U)) { // Store must be unreachable or storing Init into the global. SI->getParent()->getInstList().erase(SI); } else if (ConstantExpr *CE = dyn_cast(U)) { if (CE->getOpcode() == Instruction::GetElementPtr) { if (Constant *SubInit = TraverseGEPInitializer(CE, Init)) CleanupConstantGlobalUsers(CE, SubInit); if (CE->use_empty()) CE->destroyConstant(); } } else if (GetElementPtrInst *GEP = dyn_cast(U)) { if (Constant *SubInit = TraverseGEPInitializer(GEP, Init)) CleanupConstantGlobalUsers(GEP, SubInit); if (GEP->use_empty()) GEP->getParent()->getInstList().erase(GEP); } } } /// SRAGlobal - Perform scalar replacement of aggregates on the specified global /// variable. This opens the door for other optimizations by exposing the /// behavior of the program in a more fine-grained way. We have determined that /// this transformation is safe already. We return the first global variable we /// insert so that the caller can reprocess it. static GlobalVariable *SRAGlobal(GlobalVariable *GV) { assert(GV->hasInternalLinkage() && !GV->isConstant()); Constant *Init = GV->getInitializer(); const Type *Ty = Init->getType(); std::vector NewGlobals; Module::GlobalListType &Globals = GV->getParent()->getGlobalList(); if (const StructType *STy = dyn_cast(Ty)) { NewGlobals.reserve(STy->getNumElements()); for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i) { Constant *In = getAggregateConstantElement(Init, ConstantUInt::get(Type::UIntTy, i)); assert(In && "Couldn't get element of initializer?"); GlobalVariable *NGV = new GlobalVariable(STy->getElementType(i), false, GlobalVariable::InternalLinkage, In, GV->getName()+"."+utostr(i)); Globals.insert(GV, NGV); NewGlobals.push_back(NGV); } } else if (const SequentialType *STy = dyn_cast(Ty)) { unsigned NumElements = 0; if (const ArrayType *ATy = dyn_cast(STy)) NumElements = ATy->getNumElements(); else if (const PackedType *PTy = dyn_cast(STy)) NumElements = PTy->getNumElements(); else assert(0 && "Unknown aggregate sequential type!"); if (NumElements > 16) return 0; // It's not worth it. NewGlobals.reserve(NumElements); for (unsigned i = 0, e = NumElements; i != e; ++i) { Constant *In = getAggregateConstantElement(Init, ConstantUInt::get(Type::UIntTy, i)); assert(In && "Couldn't get element of initializer?"); GlobalVariable *NGV = new GlobalVariable(STy->getElementType(), false, GlobalVariable::InternalLinkage, In, GV->getName()+"."+utostr(i)); Globals.insert(GV, NGV); NewGlobals.push_back(NGV); } } if (NewGlobals.empty()) return 0; Constant *NullInt = Constant::getNullValue(Type::IntTy); // Loop over all of the uses of the global, replacing the constantexpr geps, // with smaller constantexpr geps or direct references. while (!GV->use_empty()) { ConstantExpr *CE = cast(GV->use_back()); assert(CE->getOpcode() == Instruction::GetElementPtr && "NonGEP CE's are not SRAable!"); // Ignore the 1th operand, which has to be zero or else the program is quite // broken (undefined). Get the 2nd operand, which is the structure or array // index. unsigned Val = cast(CE->getOperand(2))->getRawValue(); if (Val >= NewGlobals.size()) Val = 0; // Out of bound array access. Constant *NewPtr = NewGlobals[Val]; // Form a shorter GEP if needed. if (CE->getNumOperands() > 3) { std::vector Idxs; Idxs.push_back(NullInt); for (unsigned i = 3, e = CE->getNumOperands(); i != e; ++i) Idxs.push_back(CE->getOperand(i)); NewPtr = ConstantExpr::getGetElementPtr(NewPtr, Idxs); } CE->replaceAllUsesWith(NewPtr); CE->destroyConstant(); } ++NumSRA; return NewGlobals[0]; } bool GlobalOpt::runOnModule(Module &M) { bool Changed = false; // As a prepass, delete functions that are trivially dead. bool LocalChange = true; while (LocalChange) { LocalChange = false; for (Module::iterator FI = M.begin(), E = M.end(); FI != E; ) { Function *F = FI++; F->removeDeadConstantUsers(); if (F->use_empty() && (F->hasInternalLinkage() || F->hasWeakLinkage())) { M.getFunctionList().erase(F); LocalChange = true; ++NumFnDeleted; } } Changed |= LocalChange; } std::set PHIUsers; for (Module::giterator GVI = M.gbegin(), E = M.gend(); GVI != E;) { GlobalVariable *GV = GVI++; if (!GV->isConstant() && GV->hasInternalLinkage() && GV->hasInitializer()) { GlobalStatus GS; PHIUsers.clear(); GV->removeDeadConstantUsers(); if (!AnalyzeGlobal(GV, GS, PHIUsers)) { // If the global is never loaded (but may be stored to), it is dead. // Delete it now. if (!GS.isLoaded) { DEBUG(std::cerr << "GLOBAL NEVER LOADED: " << *GV); // Delete any stores we can find to the global. We may not be able to // make it completely dead though. CleanupConstantGlobalUsers(GV, GV->getInitializer()); // If the global is dead now, delete it. if (GV->use_empty()) { M.getGlobalList().erase(GV); ++NumDeleted; } Changed = true; } else if (GS.StoredType <= GlobalStatus::isInitializerStored) { DEBUG(std::cerr << "MARKING CONSTANT: " << *GV); GV->setConstant(true); // Clean up any obviously simplifiable users now. CleanupConstantGlobalUsers(GV, GV->getInitializer()); // If the global is dead now, just nuke it. if (GV->use_empty()) { M.getGlobalList().erase(GV); ++NumDeleted; } ++NumMarked; Changed = true; } else if (!GS.isNotSuitableForSRA && !GV->getInitializer()->getType()->isFirstClassType()) { DEBUG(std::cerr << "PERFORMING GLOBAL SRA ON: " << *GV); if (GlobalVariable *FirstNewGV = SRAGlobal(GV)) GVI = FirstNewGV; // Don't skip the newly produced globals! } } } } return Changed; }