//===- LowerSwitch.cpp - Eliminate Switch instructions --------------------===// // // The LLVM Compiler Infrastructure // // This file was developed by the LLVM research group and is distributed under // the University of Illinois Open Source License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// // // The LowerSwitch transformation rewrites switch statements with a sequence of // branches, which allows targets to get away with not implementing the switch // statement until it is convenient. // //===----------------------------------------------------------------------===// #include "llvm/Transforms/Scalar.h" #include "llvm/Transforms/Utils/UnifyFunctionExitNodes.h" #include "llvm/Constants.h" #include "llvm/Function.h" #include "llvm/Instructions.h" #include "llvm/Pass.h" #include "llvm/Support/Debug.h" #include "llvm/ADT/Statistic.h" #include #include using namespace llvm; namespace { Statistic<> NumLowered("lowerswitch", "Number of SwitchInst's replaced"); /// LowerSwitch Pass - Replace all SwitchInst instructions with chained branch /// instructions. Note that this cannot be a BasicBlock pass because it /// modifies the CFG! class LowerSwitch : public FunctionPass { public: virtual bool runOnFunction(Function &F); virtual void getAnalysisUsage(AnalysisUsage &AU) const { // This is a cluster of orthogonal Transforms AU.addPreserved(); AU.addPreservedID(PromoteMemoryToRegisterID); AU.addPreservedID(LowerSelectID); } typedef std::pair Case; typedef std::vector::iterator CaseItr; private: void processSwitchInst(SwitchInst *SI); BasicBlock* switchConvert(CaseItr Begin, CaseItr End, Value* Val, BasicBlock* OrigBlock, BasicBlock* Default); BasicBlock* newLeafBlock(Case& Leaf, Value* Val, BasicBlock* OrigBlock, BasicBlock* Default); }; /// The comparison function for sorting the switch case values in the vector. struct CaseCmp { bool operator () (const LowerSwitch::Case& C1, const LowerSwitch::Case& C2) { if (const ConstantUInt* U1 = dyn_cast(C1.first)) return U1->getValue() < cast(C2.first)->getValue(); const ConstantSInt* S1 = dyn_cast(C1.first); return S1->getValue() < cast(C2.first)->getValue(); } }; RegisterOpt X("lowerswitch", "Lower SwitchInst's to branches"); } // Publically exposed interface to pass... const PassInfo *llvm::LowerSwitchID = X.getPassInfo(); // createLowerSwitchPass - Interface to this file... FunctionPass *llvm::createLowerSwitchPass() { return new LowerSwitch(); } bool LowerSwitch::runOnFunction(Function &F) { bool Changed = false; for (Function::iterator I = F.begin(), E = F.end(); I != E; ) { BasicBlock *Cur = I++; // Advance over block so we don't traverse new blocks if (SwitchInst *SI = dyn_cast(Cur->getTerminator())) { Changed = true; processSwitchInst(SI); } } return Changed; } // operator<< - Used for debugging purposes. // std::ostream& operator<<(std::ostream &O, const std::vector &C) { O << "["; for (std::vector::const_iterator B = C.begin(), E = C.end(); B != E; ) { O << *B->first; if (++B != E) O << ", "; } return O << "]"; } // switchConvert - Convert the switch statement into a binary lookup of // the case values. The function recursively builds this tree. // BasicBlock* LowerSwitch::switchConvert(CaseItr Begin, CaseItr End, Value* Val, BasicBlock* OrigBlock, BasicBlock* Default) { unsigned Size = End - Begin; if (Size == 1) return newLeafBlock(*Begin, Val, OrigBlock, Default); unsigned Mid = Size / 2; std::vector LHS(Begin, Begin + Mid); DEBUG(std::cerr << "LHS: " << LHS << "\n"); std::vector RHS(Begin + Mid, End); DEBUG(std::cerr << "RHS: " << RHS << "\n"); Case& Pivot = *(Begin + Mid); DEBUG(std::cerr << "Pivot ==> " << (int64_t)cast(Pivot.first)->getRawValue() << "\n"); BasicBlock* LBranch = switchConvert(LHS.begin(), LHS.end(), Val, OrigBlock, Default); BasicBlock* RBranch = switchConvert(RHS.begin(), RHS.end(), Val, OrigBlock, Default); // Create a new node that checks if the value is < pivot. Go to the // left branch if it is and right branch if not. Function* F = OrigBlock->getParent(); BasicBlock* NewNode = new BasicBlock("NodeBlock"); F->getBasicBlockList().insert(OrigBlock->getNext(), NewNode); SetCondInst* Comp = new SetCondInst(Instruction::SetLT, Val, Pivot.first, "Pivot"); NewNode->getInstList().push_back(Comp); new BranchInst(LBranch, RBranch, Comp, NewNode); return NewNode; } // newLeafBlock - Create a new leaf block for the binary lookup tree. It // checks if the switch's value == the case's value. If not, then it // jumps to the default branch. At this point in the tree, the value // can't be another valid case value, so the jump to the "default" branch // is warranted. // BasicBlock* LowerSwitch::newLeafBlock(Case& Leaf, Value* Val, BasicBlock* OrigBlock, BasicBlock* Default) { Function* F = OrigBlock->getParent(); BasicBlock* NewLeaf = new BasicBlock("LeafBlock"); F->getBasicBlockList().insert(OrigBlock->getNext(), NewLeaf); // Make the seteq instruction... SetCondInst* Comp = new SetCondInst(Instruction::SetEQ, Val, Leaf.first, "SwitchLeaf"); NewLeaf->getInstList().push_back(Comp); // Make the conditional branch... BasicBlock* Succ = Leaf.second; new BranchInst(Succ, Default, Comp, NewLeaf); // If there were any PHI nodes in this successor, rewrite one entry // from OrigBlock to come from NewLeaf. for (BasicBlock::iterator I = Succ->begin(); isa(I); ++I) { PHINode* PN = cast(I); int BlockIdx = PN->getBasicBlockIndex(OrigBlock); assert(BlockIdx != -1 && "Switch didn't go to this successor??"); PN->setIncomingBlock((unsigned)BlockIdx, NewLeaf); } return NewLeaf; } // processSwitchInst - Replace the specified switch instruction with a sequence // of chained if-then insts in a balanced binary search. // void LowerSwitch::processSwitchInst(SwitchInst *SI) { BasicBlock *CurBlock = SI->getParent(); BasicBlock *OrigBlock = CurBlock; Function *F = CurBlock->getParent(); Value *Val = SI->getOperand(0); // The value we are switching on... BasicBlock* Default = SI->getDefaultDest(); // If there is only the default destination, don't bother with the code below. if (SI->getNumOperands() == 2) { new BranchInst(SI->getDefaultDest(), CurBlock); CurBlock->getInstList().erase(SI); return; } // Create a new, empty default block so that the new hierarchy of // if-then statements go to this and the PHI nodes are happy. BasicBlock* NewDefault = new BasicBlock("NewDefault"); F->getBasicBlockList().insert(Default, NewDefault); new BranchInst(Default, NewDefault); // If there is an entry in any PHI nodes for the default edge, make sure // to update them as well. for (BasicBlock::iterator I = Default->begin(); isa(I); ++I) { PHINode *PN = cast(I); int BlockIdx = PN->getBasicBlockIndex(OrigBlock); assert(BlockIdx != -1 && "Switch didn't go to this successor??"); PN->setIncomingBlock((unsigned)BlockIdx, NewDefault); } std::vector Cases; // Expand comparisons for all of the non-default cases... for (unsigned i = 1; i < SI->getNumSuccessors(); ++i) Cases.push_back(Case(SI->getSuccessorValue(i), SI->getSuccessor(i))); std::sort(Cases.begin(), Cases.end(), CaseCmp()); DEBUG(std::cerr << "Cases: " << Cases << "\n"); BasicBlock* SwitchBlock = switchConvert(Cases.begin(), Cases.end(), Val, OrigBlock, NewDefault); // Branch to our shiny new if-then stuff... new BranchInst(SwitchBlock, OrigBlock); // We are now done with the switch instruction, delete it. CurBlock->getInstList().erase(SI); }