//===- PassManager.cpp - LLVM Pass Infrastructure Implementation ----------===// // // The LLVM Compiler Infrastructure // // This file was developed by Devang Patel and is distributed under // the University of Illinois Open Source License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// // // This file implements the LLVM Pass Manager infrastructure. // //===----------------------------------------------------------------------===// #include "llvm/PassManager.h" #include "llvm/Support/CommandLine.h" #include "llvm/Support/Timer.h" #include "llvm/Module.h" #include "llvm/ModuleProvider.h" #include "llvm/Support/Streams.h" #include "llvm/Support/ManagedStatic.h" #include #include using namespace llvm; class llvm::PMDataManager; //===----------------------------------------------------------------------===// // Overview: // The Pass Manager Infrastructure manages passes. It's responsibilities are: // // o Manage optimization pass execution order // o Make required Analysis information available before pass P is run // o Release memory occupied by dead passes // o If Analysis information is dirtied by a pass then regenerate Analysis // information before it is consumed by another pass. // // Pass Manager Infrastructure uses multiple pass managers. They are // PassManager, FunctionPassManager, MPPassManager, FPPassManager, BBPassManager. // This class hierarcy uses multiple inheritance but pass managers do not derive // from another pass manager. // // PassManager and FunctionPassManager are two top-level pass manager that // represents the external interface of this entire pass manager infrastucture. // // Important classes : // // [o] class PMTopLevelManager; // // Two top level managers, PassManager and FunctionPassManager, derive from // PMTopLevelManager. PMTopLevelManager manages information used by top level // managers such as last user info. // // [o] class PMDataManager; // // PMDataManager manages information, e.g. list of available analysis info, // used by a pass manager to manage execution order of passes. It also provides // a place to implement common pass manager APIs. All pass managers derive from // PMDataManager. // // [o] class BBPassManager : public FunctionPass, public PMDataManager; // // BBPassManager manages BasicBlockPasses. // // [o] class FunctionPassManager; // // This is a external interface used by JIT to manage FunctionPasses. This // interface relies on FunctionPassManagerImpl to do all the tasks. // // [o] class FunctionPassManagerImpl : public ModulePass, PMDataManager, // public PMTopLevelManager; // // FunctionPassManagerImpl is a top level manager. It manages FPPassManagers // // [o] class FPPassManager : public ModulePass, public PMDataManager; // // FPPassManager manages FunctionPasses and BBPassManagers // // [o] class MPPassManager : public Pass, public PMDataManager; // // MPPassManager manages ModulePasses and FPPassManagers // // [o] class PassManager; // // This is a external interface used by various tools to manages passes. It // relies on PassManagerImpl to do all the tasks. // // [o] class PassManagerImpl : public Pass, public PMDataManager, // public PMDTopLevelManager // // PassManagerImpl is a top level pass manager responsible for managing // MPPassManagers. //===----------------------------------------------------------------------===// namespace llvm { //===----------------------------------------------------------------------===// // Pass debugging information. Often it is useful to find out what pass is // running when a crash occurs in a utility. When this library is compiled with // debugging on, a command line option (--debug-pass) is enabled that causes the // pass name to be printed before it executes. // // Different debug levels that can be enabled... enum PassDebugLevel { None, Arguments, Structure, Executions, Details }; static cl::opt PassDebugging_New("debug-pass", cl::Hidden, cl::desc("Print PassManager debugging information"), cl::values( clEnumVal(None , "disable debug output"), clEnumVal(Arguments , "print pass arguments to pass to 'opt'"), clEnumVal(Structure , "print pass structure before run()"), clEnumVal(Executions, "print pass name before it is executed"), clEnumVal(Details , "print pass details when it is executed"), clEnumValEnd)); } // End of llvm namespace namespace { //===----------------------------------------------------------------------===// // PMTopLevelManager // /// PMTopLevelManager manages LastUser info and collects common APIs used by /// top level pass managers. class VISIBILITY_HIDDEN PMTopLevelManager { public: virtual unsigned getNumContainedManagers() { return PassManagers.size(); } /// Schedule pass P for execution. Make sure that passes required by /// P are run before P is run. Update analysis info maintained by /// the manager. Remove dead passes. This is a recursive function. void schedulePass(Pass *P); /// This is implemented by top level pass manager and used by /// schedulePass() to add analysis info passes that are not available. virtual void addTopLevelPass(Pass *P) = 0; /// Set pass P as the last user of the given analysis passes. void setLastUser(std::vector &AnalysisPasses, Pass *P); /// Collect passes whose last user is P void collectLastUses(std::vector &LastUses, Pass *P); /// Find the pass that implements Analysis AID. Search immutable /// passes and all pass managers. If desired pass is not found /// then return NULL. Pass *findAnalysisPass(AnalysisID AID); virtual ~PMTopLevelManager() { for (std::vector::iterator I = PassManagers.begin(), E = PassManagers.end(); I != E; ++I) delete *I; for (std::vector::iterator I = ImmutablePasses.begin(), E = ImmutablePasses.end(); I != E; ++I) delete *I; PassManagers.clear(); } /// Add immutable pass and initialize it. inline void addImmutablePass(ImmutablePass *P) { P->initializePass(); ImmutablePasses.push_back(P); } inline std::vector& getImmutablePasses() { return ImmutablePasses; } void addPassManager(Pass *Manager) { PassManagers.push_back(Manager); } // Add Manager into the list of managers that are not directly // maintained by this top level pass manager inline void addIndirectPassManager(PMDataManager *Manager) { IndirectPassManagers.push_back(Manager); } // Print passes managed by this top level manager. void dumpPasses() const; void dumpArguments() const; void initializeAllAnalysisInfo(); protected: /// Collection of pass managers std::vector PassManagers; private: /// Collection of pass managers that are not directly maintained /// by this pass manager std::vector IndirectPassManagers; // Map to keep track of last user of the analysis pass. // LastUser->second is the last user of Lastuser->first. std::map LastUser; /// Immutable passes are managed by top level manager. std::vector ImmutablePasses; }; } // End of anon namespace //===----------------------------------------------------------------------===// // PMDataManager namespace llvm { /// PMDataManager provides the common place to manage the analysis data /// used by pass managers. class PMDataManager { public: PMDataManager(int Depth) : TPM(NULL), Depth(Depth) { initializeAnalysisInfo(); } virtual ~PMDataManager() { for (std::vector::iterator I = PassVector.begin(), E = PassVector.end(); I != E; ++I) delete *I; PassVector.clear(); } /// Return true IFF pass P's required analysis set does not required new /// manager. bool manageablePass(Pass *P); /// Augment AvailableAnalysis by adding analysis made available by pass P. void recordAvailableAnalysis(Pass *P); /// Remove Analysis that is not preserved by the pass void removeNotPreservedAnalysis(Pass *P); /// Remove dead passes void removeDeadPasses(Pass *P, std::string &Msg); /// Add pass P into the PassVector. Update /// AvailableAnalysis appropriately if ProcessAnalysis is true. void addPassToManager(Pass *P, bool ProcessAnalysis = true); /// Initialize available analysis information. void initializeAnalysisInfo() { TransferLastUses.clear(); AvailableAnalysis.clear(); } /// Populate RequiredPasses with the analysis pass that are required by /// pass P. void collectRequiredAnalysisPasses(std::vector &RequiredPasses, Pass *P); /// All Required analyses should be available to the pass as it runs! Here /// we fill in the AnalysisImpls member of the pass so that it can /// successfully use the getAnalysis() method to retrieve the /// implementations it needs. void initializeAnalysisImpl(Pass *P); /// Find the pass that implements Analysis AID. If desired pass is not found /// then return NULL. Pass *findAnalysisPass(AnalysisID AID, bool Direction); // Access toplevel manager PMTopLevelManager *getTopLevelManager() { return TPM; } void setTopLevelManager(PMTopLevelManager *T) { TPM = T; } unsigned getDepth() const { return Depth; } // Print routines used by debug-pass void dumpLastUses(Pass *P, unsigned Offset) const; void dumpPassArguments() const; void dumpPassInfo(Pass *P, std::string &Msg1, std::string &Msg2) const; void dumpAnalysisSetInfo(const char *Msg, Pass *P, const std::vector &Set) const; std::vector& getTransferredLastUses() { return TransferLastUses; } virtual unsigned getNumContainedPasses() { return PassVector.size(); } virtual PassManagerType getPassManagerType() { assert ( 0 && "Invalid use of getPassManagerType"); return PMT_Unknown; } protected: // If a FunctionPass F is the last user of ModulePass info M // then the F's manager, not F, records itself as a last user of M. // Current pass manage is requesting parent manager to record parent // manager as the last user of these TrransferLastUses passes. std::vector TransferLastUses; // Top level manager. PMTopLevelManager *TPM; // Collection of pass that are managed by this manager std::vector PassVector; private: // Set of available Analysis. This information is used while scheduling // pass. If a pass requires an analysis which is not not available then // equired analysis pass is scheduled to run before the pass itself is // scheduled to run. std::map AvailableAnalysis; unsigned Depth; }; //===----------------------------------------------------------------------===// // BBPassManager // /// BBPassManager manages BasicBlockPass. It batches all the /// pass together and sequence them to process one basic block before /// processing next basic block. class VISIBILITY_HIDDEN BBPassManager : public PMDataManager, public FunctionPass { public: BBPassManager(int Depth) : PMDataManager(Depth) { } /// Add a pass into a passmanager queue. bool addPass(Pass *p); /// Execute all of the passes scheduled for execution. Keep track of /// whether any of the passes modifies the function, and if so, return true. bool runOnFunction(Function &F); /// Pass Manager itself does not invalidate any analysis info. void getAnalysisUsage(AnalysisUsage &Info) const { Info.setPreservesAll(); } bool doInitialization(Module &M); bool doInitialization(Function &F); bool doFinalization(Module &M); bool doFinalization(Function &F); // Print passes managed by this manager void dumpPassStructure(unsigned Offset) { llvm::cerr << std::string(Offset*2, ' ') << "BasicBlockPass Manager\n"; for (unsigned Index = 0; Index < getNumContainedPasses(); ++Index) { BasicBlockPass *BP = getContainedPass(Index); BP->dumpPassStructure(Offset + 1); dumpLastUses(BP, Offset+1); } } BasicBlockPass *getContainedPass(unsigned N) { assert ( N < PassVector.size() && "Pass number out of range!"); BasicBlockPass *BP = static_cast(PassVector[N]); return BP; } virtual PassManagerType getPassManagerType() { return PMT_BasicBlockPassManager; } }; //===----------------------------------------------------------------------===// // FPPassManager // /// FPPassManager manages BBPassManagers and FunctionPasses. /// It batches all function passes and basic block pass managers together and /// sequence them to process one function at a time before processing next /// function. class FPPassManager : public ModulePass, public PMDataManager { public: FPPassManager(int Depth) : PMDataManager(Depth) { activeBBPassManager = NULL; } /// Add a pass into a passmanager queue. bool addPass(Pass *p); /// run - Execute all of the passes scheduled for execution. Keep track of /// whether any of the passes modifies the module, and if so, return true. bool runOnFunction(Function &F); bool runOnModule(Module &M); /// doInitialization - Run all of the initializers for the function passes. /// bool doInitialization(Module &M); /// doFinalization - Run all of the initializers for the function passes. /// bool doFinalization(Module &M); /// Pass Manager itself does not invalidate any analysis info. void getAnalysisUsage(AnalysisUsage &Info) const { Info.setPreservesAll(); } // Print passes managed by this manager void dumpPassStructure(unsigned Offset) { llvm::cerr << std::string(Offset*2, ' ') << "FunctionPass Manager\n"; for (unsigned Index = 0; Index < getNumContainedPasses(); ++Index) { FunctionPass *FP = getContainedPass(Index); FP->dumpPassStructure(Offset + 1); dumpLastUses(FP, Offset+1); } } FunctionPass *getContainedPass(unsigned N) { assert ( N < PassVector.size() && "Pass number out of range!"); FunctionPass *FP = static_cast(PassVector[N]); return FP; } virtual PassManagerType getPassManagerType() { return PMT_FunctionPassManager; } private: // Active Pass Manager BBPassManager *activeBBPassManager; }; //===----------------------------------------------------------------------===// // FunctionPassManagerImpl // /// FunctionPassManagerImpl manages FPPassManagers class FunctionPassManagerImpl : public Pass, public PMDataManager, public PMTopLevelManager { public: FunctionPassManagerImpl(int Depth) : PMDataManager(Depth) { activeManager = NULL; } /// add - Add a pass to the queue of passes to run. This passes ownership of /// the Pass to the PassManager. When the PassManager is destroyed, the pass /// will be destroyed as well, so there is no need to delete the pass. This /// implies that all passes MUST be allocated with 'new'. void add(Pass *P) { schedulePass(P); } /// run - Execute all of the passes scheduled for execution. Keep track of /// whether any of the passes modifies the module, and if so, return true. bool run(Function &F); /// doInitialization - Run all of the initializers for the function passes. /// bool doInitialization(Module &M); /// doFinalization - Run all of the initializers for the function passes. /// bool doFinalization(Module &M); /// Pass Manager itself does not invalidate any analysis info. void getAnalysisUsage(AnalysisUsage &Info) const { Info.setPreservesAll(); } inline void addTopLevelPass(Pass *P) { if (ImmutablePass *IP = dynamic_cast (P)) { // P is a immutable pass and it will be managed by this // top level manager. Set up analysis resolver to connect them. AnalysisResolver *AR = new AnalysisResolver(*this); P->setResolver(AR); initializeAnalysisImpl(P); addImmutablePass(IP); recordAvailableAnalysis(IP); } else addPass(P); } FPPassManager *getContainedManager(unsigned N) { assert ( N < PassManagers.size() && "Pass number out of range!"); FPPassManager *FP = static_cast(PassManagers[N]); return FP; } /// Add a pass into a passmanager queue. bool addPass(Pass *p); private: // Active Pass Manager FPPassManager *activeManager; }; //===----------------------------------------------------------------------===// // MPPassManager // /// MPPassManager manages ModulePasses and function pass managers. /// It batches all Module passes passes and function pass managers together and /// sequence them to process one module. class MPPassManager : public Pass, public PMDataManager { public: MPPassManager(int Depth) : PMDataManager(Depth) { activeFunctionPassManager = NULL; } /// Add a pass into a passmanager queue. bool addPass(Pass *p); /// run - Execute all of the passes scheduled for execution. Keep track of /// whether any of the passes modifies the module, and if so, return true. bool runOnModule(Module &M); /// Pass Manager itself does not invalidate any analysis info. void getAnalysisUsage(AnalysisUsage &Info) const { Info.setPreservesAll(); } // Print passes managed by this manager void dumpPassStructure(unsigned Offset) { llvm::cerr << std::string(Offset*2, ' ') << "ModulePass Manager\n"; for (unsigned Index = 0; Index < getNumContainedPasses(); ++Index) { ModulePass *MP = getContainedPass(Index); MP->dumpPassStructure(Offset + 1); dumpLastUses(MP, Offset+1); } } ModulePass *getContainedPass(unsigned N) { assert ( N < PassVector.size() && "Pass number out of range!"); ModulePass *MP = static_cast(PassVector[N]); return MP; } virtual PassManagerType getPassManagerType() { return PMT_ModulePassManager; } private: // Active Pass Manager FPPassManager *activeFunctionPassManager; }; //===----------------------------------------------------------------------===// // PassManagerImpl // /// PassManagerImpl manages MPPassManagers class PassManagerImpl : public Pass, public PMDataManager, public PMTopLevelManager { public: PassManagerImpl(int Depth) : PMDataManager(Depth) { activeManager = NULL; } /// add - Add a pass to the queue of passes to run. This passes ownership of /// the Pass to the PassManager. When the PassManager is destroyed, the pass /// will be destroyed as well, so there is no need to delete the pass. This /// implies that all passes MUST be allocated with 'new'. void add(Pass *P) { schedulePass(P); } /// run - Execute all of the passes scheduled for execution. Keep track of /// whether any of the passes modifies the module, and if so, return true. bool run(Module &M); /// Pass Manager itself does not invalidate any analysis info. void getAnalysisUsage(AnalysisUsage &Info) const { Info.setPreservesAll(); } inline void addTopLevelPass(Pass *P) { if (ImmutablePass *IP = dynamic_cast (P)) { // P is a immutable pass and it will be managed by this // top level manager. Set up analysis resolver to connect them. AnalysisResolver *AR = new AnalysisResolver(*this); P->setResolver(AR); initializeAnalysisImpl(P); addImmutablePass(IP); recordAvailableAnalysis(IP); } else addPass(P); } MPPassManager *getContainedManager(unsigned N) { assert ( N < PassManagers.size() && "Pass number out of range!"); MPPassManager *MP = static_cast(PassManagers[N]); return MP; } private: /// Add a pass into a passmanager queue. bool addPass(Pass *p); // Active Pass Manager MPPassManager *activeManager; }; } // End of llvm namespace namespace { //===----------------------------------------------------------------------===// // TimingInfo Class - This class is used to calculate information about the // amount of time each pass takes to execute. This only happens when // -time-passes is enabled on the command line. // class VISIBILITY_HIDDEN TimingInfo { std::map TimingData; TimerGroup TG; public: // Use 'create' member to get this. TimingInfo() : TG("... Pass execution timing report ...") {} // TimingDtor - Print out information about timing information ~TimingInfo() { // Delete all of the timers... TimingData.clear(); // TimerGroup is deleted next, printing the report. } // createTheTimeInfo - This method either initializes the TheTimeInfo pointer // to a non null value (if the -time-passes option is enabled) or it leaves it // null. It may be called multiple times. static void createTheTimeInfo(); void passStarted(Pass *P) { if (dynamic_cast(P)) return; std::map::iterator I = TimingData.find(P); if (I == TimingData.end()) I=TimingData.insert(std::make_pair(P, Timer(P->getPassName(), TG))).first; I->second.startTimer(); } void passEnded(Pass *P) { if (dynamic_cast(P)) return; std::map::iterator I = TimingData.find(P); assert (I != TimingData.end() && "passStarted/passEnded not nested right!"); I->second.stopTimer(); } }; static TimingInfo *TheTimeInfo; } // End of anon namespace //===----------------------------------------------------------------------===// // PMTopLevelManager implementation /// Set pass P as the last user of the given analysis passes. void PMTopLevelManager::setLastUser(std::vector &AnalysisPasses, Pass *P) { for (std::vector::iterator I = AnalysisPasses.begin(), E = AnalysisPasses.end(); I != E; ++I) { Pass *AP = *I; LastUser[AP] = P; // If AP is the last user of other passes then make P last user of // such passes. for (std::map::iterator LUI = LastUser.begin(), LUE = LastUser.end(); LUI != LUE; ++LUI) { if (LUI->second == AP) LastUser[LUI->first] = P; } } } /// Collect passes whose last user is P void PMTopLevelManager::collectLastUses(std::vector &LastUses, Pass *P) { for (std::map::iterator LUI = LastUser.begin(), LUE = LastUser.end(); LUI != LUE; ++LUI) if (LUI->second == P) LastUses.push_back(LUI->first); } /// Schedule pass P for execution. Make sure that passes required by /// P are run before P is run. Update analysis info maintained by /// the manager. Remove dead passes. This is a recursive function. void PMTopLevelManager::schedulePass(Pass *P) { // TODO : Allocate function manager for this pass, other wise required set // may be inserted into previous function manager AnalysisUsage AnUsage; P->getAnalysisUsage(AnUsage); const std::vector &RequiredSet = AnUsage.getRequiredSet(); for (std::vector::const_iterator I = RequiredSet.begin(), E = RequiredSet.end(); I != E; ++I) { Pass *AnalysisPass = findAnalysisPass(*I); if (!AnalysisPass) { // Schedule this analysis run first. AnalysisPass = (*I)->createPass(); schedulePass(AnalysisPass); } } // Now all required passes are available. addTopLevelPass(P); } /// Find the pass that implements Analysis AID. Search immutable /// passes and all pass managers. If desired pass is not found /// then return NULL. Pass *PMTopLevelManager::findAnalysisPass(AnalysisID AID) { Pass *P = NULL; // Check pass managers for (std::vector::iterator I = PassManagers.begin(), E = PassManagers.end(); P == NULL && I != E; ++I) { PMDataManager *PMD = dynamic_cast(*I); assert(PMD && "This is not a PassManager"); P = PMD->findAnalysisPass(AID, false); } // Check other pass managers for (std::vector::iterator I = IndirectPassManagers.begin(), E = IndirectPassManagers.end(); P == NULL && I != E; ++I) P = (*I)->findAnalysisPass(AID, false); for (std::vector::iterator I = ImmutablePasses.begin(), E = ImmutablePasses.end(); P == NULL && I != E; ++I) { const PassInfo *PI = (*I)->getPassInfo(); if (PI == AID) P = *I; // If Pass not found then check the interfaces implemented by Immutable Pass if (!P) { const std::vector &ImmPI = PI->getInterfacesImplemented(); if (std::find(ImmPI.begin(), ImmPI.end(), AID) != ImmPI.end()) P = *I; } } return P; } // Print passes managed by this top level manager. void PMTopLevelManager::dumpPasses() const { if (PassDebugging_New < Structure) return; // Print out the immutable passes for (unsigned i = 0, e = ImmutablePasses.size(); i != e; ++i) { ImmutablePasses[i]->dumpPassStructure(0); } for (std::vector::const_iterator I = PassManagers.begin(), E = PassManagers.end(); I != E; ++I) (*I)->dumpPassStructure(1); } void PMTopLevelManager::dumpArguments() const { if (PassDebugging_New < Arguments) return; cerr << "Pass Arguments: "; for (std::vector::const_iterator I = PassManagers.begin(), E = PassManagers.end(); I != E; ++I) { PMDataManager *PMD = dynamic_cast(*I); assert(PMD && "This is not a PassManager"); PMD->dumpPassArguments(); } cerr << "\n"; } void PMTopLevelManager::initializeAllAnalysisInfo() { for (std::vector::iterator I = PassManagers.begin(), E = PassManagers.end(); I != E; ++I) { PMDataManager *PMD = dynamic_cast(*I); assert(PMD && "This is not a PassManager"); PMD->initializeAnalysisInfo(); } // Initailize other pass managers for (std::vector::iterator I = IndirectPassManagers.begin(), E = IndirectPassManagers.end(); I != E; ++I) (*I)->initializeAnalysisInfo(); } //===----------------------------------------------------------------------===// // PMDataManager implementation /// Return true IFF pass P's required analysis set does not required new /// manager. bool PMDataManager::manageablePass(Pass *P) { // TODO // If this pass is not preserving information that is required by a // pass maintained by higher level pass manager then do not insert // this pass into current manager. Use new manager. For example, // For example, If FunctionPass F is not preserving ModulePass Info M1 // that is used by another ModulePass M2 then do not insert F in // current function pass manager. return true; } /// Augement AvailableAnalysis by adding analysis made available by pass P. void PMDataManager::recordAvailableAnalysis(Pass *P) { if (const PassInfo *PI = P->getPassInfo()) { AvailableAnalysis[PI] = P; //This pass is the current implementation of all of the interfaces it //implements as well. const std::vector &II = PI->getInterfacesImplemented(); for (unsigned i = 0, e = II.size(); i != e; ++i) AvailableAnalysis[II[i]] = P; } } /// Remove Analyss not preserved by Pass P void PMDataManager::removeNotPreservedAnalysis(Pass *P) { AnalysisUsage AnUsage; P->getAnalysisUsage(AnUsage); if (AnUsage.getPreservesAll()) return; const std::vector &PreservedSet = AnUsage.getPreservedSet(); for (std::map::iterator I = AvailableAnalysis.begin(), E = AvailableAnalysis.end(); I != E; ) { std::map::iterator Info = I++; if (std::find(PreservedSet.begin(), PreservedSet.end(), Info->first) == PreservedSet.end()) { // Remove this analysis if (!dynamic_cast(Info->second)) AvailableAnalysis.erase(Info); } } } /// Remove analysis passes that are not used any longer void PMDataManager::removeDeadPasses(Pass *P, std::string &Msg) { std::vector DeadPasses; TPM->collectLastUses(DeadPasses, P); for (std::vector::iterator I = DeadPasses.begin(), E = DeadPasses.end(); I != E; ++I) { std::string Msg1 = " Freeing Pass '"; dumpPassInfo(*I, Msg1, Msg); if (TheTimeInfo) TheTimeInfo->passStarted(P); (*I)->releaseMemory(); if (TheTimeInfo) TheTimeInfo->passEnded(P); std::map::iterator Pos = AvailableAnalysis.find((*I)->getPassInfo()); // It is possible that pass is already removed from the AvailableAnalysis if (Pos != AvailableAnalysis.end()) AvailableAnalysis.erase(Pos); } } /// Add pass P into the PassVector. Update /// AvailableAnalysis appropriately if ProcessAnalysis is true. void PMDataManager::addPassToManager(Pass *P, bool ProcessAnalysis) { // This manager is going to manage pass P. Set up analysis resolver // to connect them. AnalysisResolver *AR = new AnalysisResolver(*this); P->setResolver(AR); if (ProcessAnalysis) { // At the moment, this pass is the last user of all required passes. std::vector LastUses; std::vector RequiredPasses; unsigned PDepth = this->getDepth(); collectRequiredAnalysisPasses(RequiredPasses, P); for (std::vector::iterator I = RequiredPasses.begin(), E = RequiredPasses.end(); I != E; ++I) { Pass *PRequired = *I; unsigned RDepth = 0; PMDataManager &DM = PRequired->getResolver()->getPMDataManager(); RDepth = DM.getDepth(); if (PDepth == RDepth) LastUses.push_back(PRequired); else if (PDepth > RDepth) { // Let the parent claim responsibility of last use TransferLastUses.push_back(PRequired); } else { // Note : This feature is not yet implemented assert (0 && "Unable to handle Pass that requires lower level Analysis pass"); } } LastUses.push_back(P); TPM->setLastUser(LastUses, P); // Take a note of analysis required and made available by this pass. // Remove the analysis not preserved by this pass removeNotPreservedAnalysis(P); recordAvailableAnalysis(P); } // Add pass PassVector.push_back(P); } /// Populate RequiredPasses with the analysis pass that are required by /// pass P. void PMDataManager::collectRequiredAnalysisPasses(std::vector &RP, Pass *P) { AnalysisUsage AnUsage; P->getAnalysisUsage(AnUsage); const std::vector &RequiredSet = AnUsage.getRequiredSet(); for (std::vector::const_iterator I = RequiredSet.begin(), E = RequiredSet.end(); I != E; ++I) { Pass *AnalysisPass = findAnalysisPass(*I, true); assert (AnalysisPass && "Analysis pass is not available"); RP.push_back(AnalysisPass); } const std::vector &IDs = AnUsage.getRequiredTransitiveSet(); for (std::vector::const_iterator I = IDs.begin(), E = IDs.end(); I != E; ++I) { Pass *AnalysisPass = findAnalysisPass(*I, true); assert (AnalysisPass && "Analysis pass is not available"); RP.push_back(AnalysisPass); } } // All Required analyses should be available to the pass as it runs! Here // we fill in the AnalysisImpls member of the pass so that it can // successfully use the getAnalysis() method to retrieve the // implementations it needs. // void PMDataManager::initializeAnalysisImpl(Pass *P) { AnalysisUsage AnUsage; P->getAnalysisUsage(AnUsage); for (std::vector::const_iterator I = AnUsage.getRequiredSet().begin(), E = AnUsage.getRequiredSet().end(); I != E; ++I) { Pass *Impl = findAnalysisPass(*I, true); if (Impl == 0) assert(0 && "Analysis used but not available!"); AnalysisResolver *AR = P->getResolver(); AR->addAnalysisImplsPair(*I, Impl); } } /// Find the pass that implements Analysis AID. If desired pass is not found /// then return NULL. Pass *PMDataManager::findAnalysisPass(AnalysisID AID, bool SearchParent) { // Check if AvailableAnalysis map has one entry. std::map::const_iterator I = AvailableAnalysis.find(AID); if (I != AvailableAnalysis.end()) return I->second; // Search Parents through TopLevelManager if (SearchParent) return TPM->findAnalysisPass(AID); return NULL; } // Print list of passes that are last used by P. void PMDataManager::dumpLastUses(Pass *P, unsigned Offset) const{ std::vector LUses; assert (TPM && "Top Level Manager is missing"); TPM->collectLastUses(LUses, P); for (std::vector::iterator I = LUses.begin(), E = LUses.end(); I != E; ++I) { llvm::cerr << "--" << std::string(Offset*2, ' '); (*I)->dumpPassStructure(0); } } void PMDataManager::dumpPassArguments() const { for(std::vector::const_iterator I = PassVector.begin(), E = PassVector.end(); I != E; ++I) { if (PMDataManager *PMD = dynamic_cast(*I)) PMD->dumpPassArguments(); else if (const PassInfo *PI = (*I)->getPassInfo()) if (!PI->isAnalysisGroup()) cerr << " -" << PI->getPassArgument(); } } void PMDataManager:: dumpPassInfo(Pass *P, std::string &Msg1, std::string &Msg2) const { if (PassDebugging_New < Executions) return; cerr << (void*)this << std::string(getDepth()*2+1, ' '); cerr << Msg1; cerr << P->getPassName(); cerr << Msg2; } void PMDataManager::dumpAnalysisSetInfo(const char *Msg, Pass *P, const std::vector &Set) const { if (PassDebugging_New >= Details && !Set.empty()) { cerr << (void*)P << std::string(getDepth()*2+3, ' ') << Msg << " Analyses:"; for (unsigned i = 0; i != Set.size(); ++i) { if (i) cerr << ","; cerr << " " << Set[i]->getPassName(); } cerr << "\n"; } } //===----------------------------------------------------------------------===// // NOTE: Is this the right place to define this method ? // getAnalysisToUpdate - Return an analysis result or null if it doesn't exist Pass *AnalysisResolver::getAnalysisToUpdate(AnalysisID ID, bool dir) const { return PM.findAnalysisPass(ID, dir); } //===----------------------------------------------------------------------===// // BBPassManager implementation /// Add pass P into PassVector and return true. If this pass is not /// manageable by this manager then return false. bool BBPassManager::addPass(Pass *P) { BasicBlockPass *BP = dynamic_cast(P); if (!BP) return false; // If this pass does not preserve analysis that is used by other passes // managed by this manager than it is not a suitable pass for this manager. if (!manageablePass(P)) return false; addPassToManager(BP); return true; } /// Execute all of the passes scheduled for execution by invoking /// runOnBasicBlock method. Keep track of whether any of the passes modifies /// the function, and if so, return true. bool BBPassManager::runOnFunction(Function &F) { if (F.isExternal()) return false; bool Changed = doInitialization(F); std::string Msg1 = "Executing Pass '"; std::string Msg3 = "' Made Modification '"; for (Function::iterator I = F.begin(), E = F.end(); I != E; ++I) for (unsigned Index = 0; Index < getNumContainedPasses(); ++Index) { BasicBlockPass *BP = getContainedPass(Index); AnalysisUsage AnUsage; BP->getAnalysisUsage(AnUsage); std::string Msg2 = "' on BasicBlock '" + (*I).getName() + "'...\n"; dumpPassInfo(BP, Msg1, Msg2); dumpAnalysisSetInfo("Required", BP, AnUsage.getRequiredSet()); initializeAnalysisImpl(BP); if (TheTimeInfo) TheTimeInfo->passStarted(BP); Changed |= BP->runOnBasicBlock(*I); if (TheTimeInfo) TheTimeInfo->passEnded(BP); if (Changed) dumpPassInfo(BP, Msg3, Msg2); dumpAnalysisSetInfo("Preserved", BP, AnUsage.getPreservedSet()); removeNotPreservedAnalysis(BP); recordAvailableAnalysis(BP); removeDeadPasses(BP, Msg2); } return Changed |= doFinalization(F); } // Implement doInitialization and doFinalization inline bool BBPassManager::doInitialization(Module &M) { bool Changed = false; for (unsigned Index = 0; Index < getNumContainedPasses(); ++Index) { BasicBlockPass *BP = getContainedPass(Index); Changed |= BP->doInitialization(M); } return Changed; } inline bool BBPassManager::doFinalization(Module &M) { bool Changed = false; for (unsigned Index = 0; Index < getNumContainedPasses(); ++Index) { BasicBlockPass *BP = getContainedPass(Index); Changed |= BP->doFinalization(M); } return Changed; } inline bool BBPassManager::doInitialization(Function &F) { bool Changed = false; for (unsigned Index = 0; Index < getNumContainedPasses(); ++Index) { BasicBlockPass *BP = getContainedPass(Index); Changed |= BP->doInitialization(F); } return Changed; } inline bool BBPassManager::doFinalization(Function &F) { bool Changed = false; for (unsigned Index = 0; Index < getNumContainedPasses(); ++Index) { BasicBlockPass *BP = getContainedPass(Index); Changed |= BP->doFinalization(F); } return Changed; } //===----------------------------------------------------------------------===// // FunctionPassManager implementation /// Create new Function pass manager FunctionPassManager::FunctionPassManager(ModuleProvider *P) { FPM = new FunctionPassManagerImpl(0); // FPM is the top level manager. FPM->setTopLevelManager(FPM); PMDataManager *PMD = dynamic_cast(FPM); AnalysisResolver *AR = new AnalysisResolver(*PMD); FPM->setResolver(AR); MP = P; } FunctionPassManager::~FunctionPassManager() { delete FPM; } /// add - Add a pass to the queue of passes to run. This passes /// ownership of the Pass to the PassManager. When the /// PassManager_X is destroyed, the pass will be destroyed as well, so /// there is no need to delete the pass. (TODO delete passes.) /// This implies that all passes MUST be allocated with 'new'. void FunctionPassManager::add(Pass *P) { FPM->add(P); } /// run - Execute all of the passes scheduled for execution. Keep /// track of whether any of the passes modifies the function, and if /// so, return true. /// bool FunctionPassManager::run(Function &F) { std::string errstr; if (MP->materializeFunction(&F, &errstr)) { cerr << "Error reading bytecode file: " << errstr << "\n"; abort(); } return FPM->run(F); } /// doInitialization - Run all of the initializers for the function passes. /// bool FunctionPassManager::doInitialization() { return FPM->doInitialization(*MP->getModule()); } /// doFinalization - Run all of the initializers for the function passes. /// bool FunctionPassManager::doFinalization() { return FPM->doFinalization(*MP->getModule()); } //===----------------------------------------------------------------------===// // FunctionPassManagerImpl implementation // /// Add P into active pass manager or use new module pass manager to /// manage it. bool FunctionPassManagerImpl::addPass(Pass *P) { if (!activeManager || !activeManager->addPass(P)) { activeManager = new FPPassManager(getDepth() + 1); // Inherit top level manager activeManager->setTopLevelManager(this->getTopLevelManager()); // This top level manager is going to manage activeManager. // Set up analysis resolver to connect them. AnalysisResolver *AR = new AnalysisResolver(*this); activeManager->setResolver(AR); addPassManager(activeManager); return activeManager->addPass(P); } return true; } inline bool FunctionPassManagerImpl::doInitialization(Module &M) { bool Changed = false; for (unsigned Index = 0; Index < getNumContainedManagers(); ++Index) { FPPassManager *FP = getContainedManager(Index); Changed |= FP->doInitialization(M); } return Changed; } inline bool FunctionPassManagerImpl::doFinalization(Module &M) { bool Changed = false; for (unsigned Index = 0; Index < getNumContainedManagers(); ++Index) { FPPassManager *FP = getContainedManager(Index); Changed |= FP->doFinalization(M); } return Changed; } // Execute all the passes managed by this top level manager. // Return true if any function is modified by a pass. bool FunctionPassManagerImpl::run(Function &F) { bool Changed = false; TimingInfo::createTheTimeInfo(); dumpArguments(); dumpPasses(); initializeAllAnalysisInfo(); for (unsigned Index = 0; Index < getNumContainedManagers(); ++Index) { FPPassManager *FP = getContainedManager(Index); Changed |= FP->runOnFunction(F); } return Changed; } //===----------------------------------------------------------------------===// // FPPassManager implementation /// Add pass P into the pass manager queue. If P is a BasicBlockPass then /// either use it into active basic block pass manager or create new basic /// block pass manager to handle pass P. bool FPPassManager::addPass(Pass *P) { // If P is a BasicBlockPass then use BBPassManager. if (BasicBlockPass *BP = dynamic_cast(P)) { if (!activeBBPassManager || !activeBBPassManager->addPass(BP)) { // If active manager exists then clear its analysis info. if (activeBBPassManager) activeBBPassManager->initializeAnalysisInfo(); // Create and add new manager activeBBPassManager = new BBPassManager(getDepth() + 1); // Inherit top level manager activeBBPassManager->setTopLevelManager(this->getTopLevelManager()); // Add new manager into current manager's list. addPassToManager(activeBBPassManager, false); // Add new manager into top level manager's indirect passes list PMDataManager *PMD = dynamic_cast(activeBBPassManager); assert (PMD && "Manager is not Pass Manager"); TPM->addIndirectPassManager(PMD); // Add pass into new manager. This time it must succeed. if (!activeBBPassManager->addPass(BP)) assert(0 && "Unable to add Pass"); // If activeBBPassManager transfered any Last Uses then handle them here. std::vector &TLU = activeBBPassManager->getTransferredLastUses(); if (!TLU.empty()) TPM->setLastUser(TLU, this); } return true; } FunctionPass *FP = dynamic_cast(P); if (!FP) return false; // If this pass does not preserve analysis that is used by other passes // managed by this manager than it is not a suitable pass for this manager. if (!manageablePass(P)) return false; addPassToManager (FP); // If active manager exists then clear its analysis info. if (activeBBPassManager) { activeBBPassManager->initializeAnalysisInfo(); activeBBPassManager = NULL; } return true; } /// Execute all of the passes scheduled for execution by invoking /// runOnFunction method. Keep track of whether any of the passes modifies /// the function, and if so, return true. bool FPPassManager::runOnFunction(Function &F) { bool Changed = false; if (F.isExternal()) return false; std::string Msg1 = "Executing Pass '"; std::string Msg3 = "' Made Modification '"; for (unsigned Index = 0; Index < getNumContainedPasses(); ++Index) { FunctionPass *FP = getContainedPass(Index); AnalysisUsage AnUsage; FP->getAnalysisUsage(AnUsage); std::string Msg2 = "' on Function '" + F.getName() + "'...\n"; dumpPassInfo(FP, Msg1, Msg2); dumpAnalysisSetInfo("Required", FP, AnUsage.getRequiredSet()); initializeAnalysisImpl(FP); if (TheTimeInfo) TheTimeInfo->passStarted(FP); Changed |= FP->runOnFunction(F); if (TheTimeInfo) TheTimeInfo->passEnded(FP); if (Changed) dumpPassInfo(FP, Msg3, Msg2); dumpAnalysisSetInfo("Preserved", FP, AnUsage.getPreservedSet()); removeNotPreservedAnalysis(FP); recordAvailableAnalysis(FP); removeDeadPasses(FP, Msg2); } return Changed; } bool FPPassManager::runOnModule(Module &M) { bool Changed = doInitialization(M); for(Module::iterator I = M.begin(), E = M.end(); I != E; ++I) this->runOnFunction(*I); return Changed |= doFinalization(M); } inline bool FPPassManager::doInitialization(Module &M) { bool Changed = false; for (unsigned Index = 0; Index < getNumContainedPasses(); ++Index) { FunctionPass *FP = getContainedPass(Index); Changed |= FP->doInitialization(M); } return Changed; } inline bool FPPassManager::doFinalization(Module &M) { bool Changed = false; for (unsigned Index = 0; Index < getNumContainedPasses(); ++Index) { FunctionPass *FP = getContainedPass(Index); Changed |= FP->doFinalization(M); } return Changed; } //===----------------------------------------------------------------------===// // MPPassManager implementation /// Add P into pass vector if it is manageble. If P is a FunctionPass /// then use FPPassManager to manage it. Return false if P /// is not manageable by this manager. bool MPPassManager::addPass(Pass *P) { // If P is FunctionPass then use function pass maanager. if (FunctionPass *FP = dynamic_cast(P)) { if (!activeFunctionPassManager || !activeFunctionPassManager->addPass(P)) { // If active manager exists then clear its analysis info. if (activeFunctionPassManager) activeFunctionPassManager->initializeAnalysisInfo(); // Create and add new manager activeFunctionPassManager = new FPPassManager(getDepth() + 1); // Add new manager into current manager's list addPassToManager(activeFunctionPassManager, false); // Inherit top level manager activeFunctionPassManager->setTopLevelManager(this->getTopLevelManager()); // Add new manager into top level manager's indirect passes list PMDataManager *PMD = dynamic_cast(activeFunctionPassManager); assert(PMD && "Manager is not Pass Manager"); TPM->addIndirectPassManager(PMD); // Add pass into new manager. This time it must succeed. if (!activeFunctionPassManager->addPass(FP)) assert(0 && "Unable to add pass"); // If activeFunctionPassManager transfered any Last Uses then // handle them here. std::vector &TLU = activeFunctionPassManager->getTransferredLastUses(); if (!TLU.empty()) TPM->setLastUser(TLU, this); } return true; } ModulePass *MP = dynamic_cast(P); if (!MP) return false; // If this pass does not preserve analysis that is used by other passes // managed by this manager than it is not a suitable pass for this manager. if (!manageablePass(P)) return false; addPassToManager(MP); // If active manager exists then clear its analysis info. if (activeFunctionPassManager) { activeFunctionPassManager->initializeAnalysisInfo(); activeFunctionPassManager = NULL; } return true; } /// Execute all of the passes scheduled for execution by invoking /// runOnModule method. Keep track of whether any of the passes modifies /// the module, and if so, return true. bool MPPassManager::runOnModule(Module &M) { bool Changed = false; std::string Msg1 = "Executing Pass '"; std::string Msg3 = "' Made Modification '"; for (unsigned Index = 0; Index < getNumContainedPasses(); ++Index) { ModulePass *MP = getContainedPass(Index); AnalysisUsage AnUsage; MP->getAnalysisUsage(AnUsage); std::string Msg2 = "' on Module '" + M.getModuleIdentifier() + "'...\n"; dumpPassInfo(MP, Msg1, Msg2); dumpAnalysisSetInfo("Required", MP, AnUsage.getRequiredSet()); initializeAnalysisImpl(MP); if (TheTimeInfo) TheTimeInfo->passStarted(MP); Changed |= MP->runOnModule(M); if (TheTimeInfo) TheTimeInfo->passEnded(MP); if (Changed) dumpPassInfo(MP, Msg3, Msg2); dumpAnalysisSetInfo("Preserved", MP, AnUsage.getPreservedSet()); removeNotPreservedAnalysis(MP); recordAvailableAnalysis(MP); removeDeadPasses(MP, Msg2); } return Changed; } //===----------------------------------------------------------------------===// // PassManagerImpl implementation // /// Add P into active pass manager or use new module pass manager to /// manage it. bool PassManagerImpl::addPass(Pass *P) { if (!activeManager || !activeManager->addPass(P)) { activeManager = new MPPassManager(getDepth() + 1); // Inherit top level manager activeManager->setTopLevelManager(this->getTopLevelManager()); // This top level manager is going to manage activeManager. // Set up analysis resolver to connect them. AnalysisResolver *AR = new AnalysisResolver(*this); activeManager->setResolver(AR); addPassManager(activeManager); return activeManager->addPass(P); } return true; } /// run - Execute all of the passes scheduled for execution. Keep track of /// whether any of the passes modifies the module, and if so, return true. bool PassManagerImpl::run(Module &M) { bool Changed = false; TimingInfo::createTheTimeInfo(); dumpArguments(); dumpPasses(); initializeAllAnalysisInfo(); for (unsigned Index = 0; Index < getNumContainedManagers(); ++Index) { MPPassManager *MP = getContainedManager(Index); Changed |= MP->runOnModule(M); } return Changed; } //===----------------------------------------------------------------------===// // PassManager implementation /// Create new pass manager PassManager::PassManager() { PM = new PassManagerImpl(0); // PM is the top level manager PM->setTopLevelManager(PM); } PassManager::~PassManager() { delete PM; } /// add - Add a pass to the queue of passes to run. This passes ownership of /// the Pass to the PassManager. When the PassManager is destroyed, the pass /// will be destroyed as well, so there is no need to delete the pass. This /// implies that all passes MUST be allocated with 'new'. void PassManager::add(Pass *P) { PM->add(P); } /// run - Execute all of the passes scheduled for execution. Keep track of /// whether any of the passes modifies the module, and if so, return true. bool PassManager::run(Module &M) { return PM->run(M); } //===----------------------------------------------------------------------===// // TimingInfo Class - This class is used to calculate information about the // amount of time each pass takes to execute. This only happens with // -time-passes is enabled on the command line. // bool llvm::TimePassesIsEnabled = false; static cl::opt EnableTiming("time-passes", cl::location(TimePassesIsEnabled), cl::desc("Time each pass, printing elapsed time for each on exit")); // createTheTimeInfo - This method either initializes the TheTimeInfo pointer to // a non null value (if the -time-passes option is enabled) or it leaves it // null. It may be called multiple times. void TimingInfo::createTheTimeInfo() { if (!TimePassesIsEnabled || TheTimeInfo) return; // Constructed the first time this is called, iff -time-passes is enabled. // This guarantees that the object will be constructed before static globals, // thus it will be destroyed before them. static ManagedStatic TTI; TheTimeInfo = &*TTI; } //===----------------------------------------------------------------------===// // PMStack implementation // // Pop Pass Manager from the stack and clear its analysis info. void PMStack::pop() { PMDataManager *Top = this->top(); Top->initializeAnalysisInfo(); S.pop_back(); } // Push PM on the stack and set its top level manager. void PMStack::push(Pass *P) { PMDataManager *Top = NULL; PMDataManager *PM = dynamic_cast(P); assert (PM && "Unable to push. Pass Manager expected"); if (this->empty()) { Top = PM; } else { Top = this->top(); PMTopLevelManager *TPM = Top->getTopLevelManager(); assert (TPM && "Unable to find top level manager"); TPM->addIndirectPassManager(PM); PM->setTopLevelManager(TPM); } AnalysisResolver *AR = new AnalysisResolver(*Top); P->setResolver(AR); S.push_back(PM); } // Dump content of the pass manager stack. void PMStack::dump() { for(std::deque::iterator I = S.begin(), E = S.end(); I != E; ++I) { Pass *P = dynamic_cast(*I); printf ("%s ", P->getPassName()); } if (!S.empty()) printf ("\n"); } // Walk Pass Manager stack and set LastUse markers if any // manager is transfering this priviledge to its parent manager void PMStack::handleLastUserOverflow() { for(PMStack::iterator I = this->begin(), E = this->end(); I != E;) { PMDataManager *Child = *I++; if (I != E) { PMDataManager *Parent = *I++; PMTopLevelManager *TPM = Parent->getTopLevelManager(); std::vector &TLU = Child->getTransferredLastUses(); if (!TLU.empty()) { Pass *P = dynamic_cast(Parent); TPM->setLastUser(TLU, P); } } } } /// Find appropriate Module Pass Manager in the PM Stack and /// add self into that manager. void ModulePass::assignPassManager(PMStack &PMS) { // Find Module Pass Manager while(!PMS.empty()) { if (PMS.top()->getPassManagerType() > PMT_ModulePassManager) PMS.pop(); // Pop children pass managers else break; } MPPassManager *MPP = dynamic_cast(PMS.top()); assert(MPP && "Unable to find Module Pass Manager"); MPP->addPassToManager(this); } /// Find appropriate Function Pass Manager or Call Graph Pass Manager /// in the PM Stack and add self into that manager. void FunctionPass::assignPassManager(PMStack &PMS) { // Find Module Pass Manager (TODO : Or Call Graph Pass Manager) while(!PMS.empty()) { if (PMS.top()->getPassManagerType() > PMT_FunctionPassManager) PMS.pop(); else break; } FPPassManager *FPP = dynamic_cast(PMS.top()); // Create new Function Pass Manager if (!FPP) { assert(!PMS.empty() && "Unable to create Function Pass Manager"); PMDataManager *PMD = PMS.top(); // [1] Create new Function Pass Manager FPP = new FPPassManager(PMD->getDepth() + 1); // [2] Set up new manager's top level manager PMTopLevelManager *TPM = PMD->getTopLevelManager(); TPM->addIndirectPassManager(FPP); // [3] Assign manager to manage this new manager. This may create // and push new managers into PMS Pass *P = dynamic_cast(FPP); P->assignPassManager(PMS); // [4] Push new manager into PMS PMS.push(FPP); } // Assign FPP as the manager of this pass. FPP->addPassToManager(this); } /// Find appropriate Basic Pass Manager or Call Graph Pass Manager /// in the PM Stack and add self into that manager. void BasicBlockPass::assignPassManager(PMStack &PMS) { BBPassManager *BBP = NULL; // Basic Pass Manager is a leaf pass manager. It does not handle // any other pass manager. if (!PMS.empty()) { BBP = dynamic_cast(PMS.top()); } // If leaf manager is not Basic Block Pass manager then create new // basic Block Pass manager. if (!BBP) { assert(!PMS.empty() && "Unable to create BasicBlock Pass Manager"); PMDataManager *PMD = PMS.top(); // [1] Create new Basic Block Manager BBP = new BBPassManager(PMD->getDepth() + 1); // [2] Set up new manager's top level manager // Basic Block Pass Manager does not live by itself PMTopLevelManager *TPM = PMD->getTopLevelManager(); TPM->addIndirectPassManager(BBP); // [3] Assign manager to manage this new manager. This may create // and push new managers into PMS Pass *P = dynamic_cast(BBP); P->assignPassManager(PMS); // [4] Push new manager into PMS PMS.push(BBP); } // Assign BBP as the manager of this pass. BBP->addPassToManager(this); }