//===- PTXInstrInfo.cpp - PTX Instruction Information ---------------------===// // // The LLVM Compiler Infrastructure // // This file is distributed under the University of Illinois Open Source // License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// // // This file contains the PTX implementation of the TargetInstrInfo class. // //===----------------------------------------------------------------------===// #define DEBUG_TYPE "ptx-instrinfo" #include "PTX.h" #include "PTXInstrInfo.h" #include "llvm/CodeGen/MachineInstrBuilder.h" #include "llvm/CodeGen/MachineRegisterInfo.h" #include "llvm/CodeGen/SelectionDAG.h" #include "llvm/CodeGen/SelectionDAGNodes.h" #include "llvm/Support/Debug.h" #include "llvm/Support/TargetRegistry.h" #include "llvm/Support/raw_ostream.h" #define GET_INSTRINFO_CTOR #include "PTXGenInstrInfo.inc" using namespace llvm; PTXInstrInfo::PTXInstrInfo(PTXTargetMachine &_TM) : PTXGenInstrInfo(), RI(_TM, *this), TM(_TM) {} static const struct map_entry { const TargetRegisterClass *cls; const int opcode; } map[] = { { &PTX::RegI16RegClass, PTX::MOVU16rr }, { &PTX::RegI32RegClass, PTX::MOVU32rr }, { &PTX::RegI64RegClass, PTX::MOVU64rr }, { &PTX::RegF32RegClass, PTX::MOVF32rr }, { &PTX::RegF64RegClass, PTX::MOVF64rr }, { &PTX::RegPredRegClass, PTX::MOVPREDrr } }; void PTXInstrInfo::copyPhysReg(MachineBasicBlock &MBB, MachineBasicBlock::iterator I, DebugLoc DL, unsigned DstReg, unsigned SrcReg, bool KillSrc) const { const MachineRegisterInfo& MRI = MBB.getParent()->getRegInfo(); //assert(MRI.getRegClass(SrcReg) == MRI.getRegClass(DstReg) && // "Invalid register copy between two register classes"); for (int i = 0, e = sizeof(map)/sizeof(map[0]); i != e; ++i) { if (map[i].cls == MRI.getRegClass(DstReg)) { const MCInstrDesc &MCID = get(map[i].opcode); MachineInstr *MI = BuildMI(MBB, I, DL, MCID, DstReg). addReg(SrcReg, getKillRegState(KillSrc)); AddDefaultPredicate(MI); return; } } llvm_unreachable("Impossible reg-to-reg copy"); } bool PTXInstrInfo::copyRegToReg(MachineBasicBlock &MBB, MachineBasicBlock::iterator I, unsigned DstReg, unsigned SrcReg, const TargetRegisterClass *DstRC, const TargetRegisterClass *SrcRC, DebugLoc DL) const { if (DstRC != SrcRC) return false; for (int i = 0, e = sizeof(map)/sizeof(map[0]); i != e; ++ i) if (DstRC == map[i].cls) { const MCInstrDesc &MCID = get(map[i].opcode); MachineInstr *MI = BuildMI(MBB, I, DL, MCID, DstReg).addReg(SrcReg); AddDefaultPredicate(MI); return true; } return false; } bool PTXInstrInfo::isMoveInstr(const MachineInstr& MI, unsigned &SrcReg, unsigned &DstReg, unsigned &SrcSubIdx, unsigned &DstSubIdx) const { switch (MI.getOpcode()) { default: return false; case PTX::MOVU16rr: case PTX::MOVU32rr: case PTX::MOVU64rr: case PTX::MOVF32rr: case PTX::MOVF64rr: case PTX::MOVPREDrr: assert(MI.getNumOperands() >= 2 && MI.getOperand(0).isReg() && MI.getOperand(1).isReg() && "Invalid register-register move instruction"); SrcSubIdx = DstSubIdx = 0; // No sub-registers DstReg = MI.getOperand(0).getReg(); SrcReg = MI.getOperand(1).getReg(); return true; } } // predicate support bool PTXInstrInfo::isPredicated(const MachineInstr *MI) const { int i = MI->findFirstPredOperandIdx(); return i != -1 && MI->getOperand(i).getReg() != PTX::NoRegister; } bool PTXInstrInfo::isUnpredicatedTerminator(const MachineInstr *MI) const { return !isPredicated(MI) && get(MI->getOpcode()).isTerminator(); } bool PTXInstrInfo:: PredicateInstruction(MachineInstr *MI, const SmallVectorImpl &Pred) const { if (Pred.size() < 2) llvm_unreachable("lesser than 2 predicate operands are provided"); int i = MI->findFirstPredOperandIdx(); if (i == -1) llvm_unreachable("missing predicate operand"); MI->getOperand(i).setReg(Pred[0].getReg()); MI->getOperand(i+1).setImm(Pred[1].getImm()); return true; } bool PTXInstrInfo:: SubsumesPredicate(const SmallVectorImpl &Pred1, const SmallVectorImpl &Pred2) const { const MachineOperand &PredReg1 = Pred1[0]; const MachineOperand &PredReg2 = Pred2[0]; if (PredReg1.getReg() != PredReg2.getReg()) return false; const MachineOperand &PredOp1 = Pred1[1]; const MachineOperand &PredOp2 = Pred2[1]; if (PredOp1.getImm() != PredOp2.getImm()) return false; return true; } bool PTXInstrInfo:: DefinesPredicate(MachineInstr *MI, std::vector &Pred) const { // If an instruction sets a predicate register, it defines a predicate. // TODO supprot 5-operand format of setp instruction if (MI->getNumOperands() < 1) return false; const MachineOperand &MO = MI->getOperand(0); if (!MO.isReg() || RI.getRegClass(MO.getReg()) != &PTX::RegPredRegClass) return false; Pred.push_back(MO); Pred.push_back(MachineOperand::CreateImm(PTX::PRED_NORMAL)); return true; } // branch support bool PTXInstrInfo:: AnalyzeBranch(MachineBasicBlock &MBB, MachineBasicBlock *&TBB, MachineBasicBlock *&FBB, SmallVectorImpl &Cond, bool AllowModify) const { // TODO implement cases when AllowModify is true if (MBB.empty()) return true; MachineBasicBlock::const_iterator iter = MBB.end(); const MachineInstr& instLast1 = *--iter; const MCInstrDesc &desc1 = instLast1.getDesc(); // for special case that MBB has only 1 instruction const bool IsSizeOne = MBB.size() == 1; // if IsSizeOne is true, *--iter and instLast2 are invalid // we put a dummy value in instLast2 and desc2 since they are used const MachineInstr& instLast2 = IsSizeOne ? instLast1 : *--iter; const MCInstrDesc &desc2 = IsSizeOne ? desc1 : instLast2.getDesc(); DEBUG(dbgs() << "\n"); DEBUG(dbgs() << "AnalyzeBranch: opcode: " << instLast1.getOpcode() << "\n"); DEBUG(dbgs() << "AnalyzeBranch: MBB: " << MBB.getName().str() << "\n"); DEBUG(dbgs() << "AnalyzeBranch: TBB: " << TBB << "\n"); DEBUG(dbgs() << "AnalyzeBranch: FBB: " << FBB << "\n"); // this block ends with no branches if (!IsAnyKindOfBranch(instLast1)) { DEBUG(dbgs() << "AnalyzeBranch: ends with no branch\n"); return false; } // this block ends with only an unconditional branch if (desc1.isUnconditionalBranch() && // when IsSizeOne is true, it "absorbs" the evaluation of instLast2 (IsSizeOne || !IsAnyKindOfBranch(instLast2))) { DEBUG(dbgs() << "AnalyzeBranch: ends with only uncond branch\n"); TBB = GetBranchTarget(instLast1); return false; } // this block ends with a conditional branch and // it falls through to a successor block if (desc1.isConditionalBranch() && IsAnySuccessorAlsoLayoutSuccessor(MBB)) { DEBUG(dbgs() << "AnalyzeBranch: ends with cond branch and fall through\n"); TBB = GetBranchTarget(instLast1); int i = instLast1.findFirstPredOperandIdx(); Cond.push_back(instLast1.getOperand(i)); Cond.push_back(instLast1.getOperand(i+1)); return false; } // when IsSizeOne is true, we are done if (IsSizeOne) return true; // this block ends with a conditional branch // followed by an unconditional branch if (desc2.isConditionalBranch() && desc1.isUnconditionalBranch()) { DEBUG(dbgs() << "AnalyzeBranch: ends with cond and uncond branch\n"); TBB = GetBranchTarget(instLast2); FBB = GetBranchTarget(instLast1); int i = instLast2.findFirstPredOperandIdx(); Cond.push_back(instLast2.getOperand(i)); Cond.push_back(instLast2.getOperand(i+1)); return false; } // branch cannot be understood DEBUG(dbgs() << "AnalyzeBranch: cannot be understood\n"); return true; } unsigned PTXInstrInfo::RemoveBranch(MachineBasicBlock &MBB) const { unsigned count = 0; while (!MBB.empty()) if (IsAnyKindOfBranch(MBB.back())) { MBB.pop_back(); ++count; } else break; DEBUG(dbgs() << "RemoveBranch: MBB: " << MBB.getName().str() << "\n"); DEBUG(dbgs() << "RemoveBranch: remove " << count << " branch inst\n"); return count; } unsigned PTXInstrInfo:: InsertBranch(MachineBasicBlock &MBB, MachineBasicBlock *TBB, MachineBasicBlock *FBB, const SmallVectorImpl &Cond, DebugLoc DL) const { DEBUG(dbgs() << "InsertBranch: MBB: " << MBB.getName().str() << "\n"); DEBUG(if (TBB) dbgs() << "InsertBranch: TBB: " << TBB->getName().str() << "\n"; else dbgs() << "InsertBranch: TBB: (NULL)\n"); DEBUG(if (FBB) dbgs() << "InsertBranch: FBB: " << FBB->getName().str() << "\n"; else dbgs() << "InsertBranch: FBB: (NULL)\n"); DEBUG(dbgs() << "InsertBranch: Cond size: " << Cond.size() << "\n"); assert(TBB && "TBB is NULL"); if (FBB) { BuildMI(&MBB, DL, get(PTX::BRAdp)) .addMBB(TBB).addReg(Cond[0].getReg()).addImm(Cond[1].getImm()); BuildMI(&MBB, DL, get(PTX::BRAd)) .addMBB(FBB).addReg(PTX::NoRegister).addImm(PTX::PRED_NORMAL); return 2; } else if (Cond.size()) { BuildMI(&MBB, DL, get(PTX::BRAdp)) .addMBB(TBB).addReg(Cond[0].getReg()).addImm(Cond[1].getImm()); return 1; } else { BuildMI(&MBB, DL, get(PTX::BRAd)) .addMBB(TBB).addReg(PTX::NoRegister).addImm(PTX::PRED_NORMAL); return 1; } } // Memory operand folding for spills void PTXInstrInfo::storeRegToStackSlot(MachineBasicBlock &MBB, MachineBasicBlock::iterator MII, unsigned SrcReg, bool isKill, int FrameIdx, const TargetRegisterClass *RC, const TargetRegisterInfo *TRI) const { MachineInstr& MI = *MII; DebugLoc DL = MI.getDebugLoc(); DEBUG(dbgs() << "storeRegToStackSlot: " << MI); int OpCode; // Select the appropriate opcode based on the register class if (RC == PTX::RegI16RegisterClass) { OpCode = PTX::STACKSTOREI16; } else if (RC == PTX::RegI32RegisterClass) { OpCode = PTX::STACKSTOREI32; } else if (RC == PTX::RegI64RegisterClass) { OpCode = PTX::STACKSTOREI32; } else if (RC == PTX::RegF32RegisterClass) { OpCode = PTX::STACKSTOREF32; } else if (RC == PTX::RegF64RegisterClass) { OpCode = PTX::STACKSTOREF64; } else { llvm_unreachable("Unknown PTX register class!"); } // Build the store instruction (really a mov) MachineInstrBuilder MIB = BuildMI(MBB, MII, DL, get(OpCode)); MIB.addFrameIndex(FrameIdx); MIB.addReg(SrcReg); AddDefaultPredicate(MIB); } void PTXInstrInfo::loadRegFromStackSlot(MachineBasicBlock &MBB, MachineBasicBlock::iterator MII, unsigned DestReg, int FrameIdx, const TargetRegisterClass *RC, const TargetRegisterInfo *TRI) const { MachineInstr& MI = *MII; DebugLoc DL = MI.getDebugLoc(); DEBUG(dbgs() << "loadRegToStackSlot: " << MI); int OpCode; // Select the appropriate opcode based on the register class if (RC == PTX::RegI16RegisterClass) { OpCode = PTX::STACKLOADI16; } else if (RC == PTX::RegI32RegisterClass) { OpCode = PTX::STACKLOADI32; } else if (RC == PTX::RegI64RegisterClass) { OpCode = PTX::STACKLOADI32; } else if (RC == PTX::RegF32RegisterClass) { OpCode = PTX::STACKLOADF32; } else if (RC == PTX::RegF64RegisterClass) { OpCode = PTX::STACKLOADF64; } else { llvm_unreachable("Unknown PTX register class!"); } // Build the load instruction (really a mov) MachineInstrBuilder MIB = BuildMI(MBB, MII, DL, get(OpCode)); MIB.addReg(DestReg); MIB.addFrameIndex(FrameIdx); AddDefaultPredicate(MIB); } // static helper routines MachineSDNode *PTXInstrInfo:: GetPTXMachineNode(SelectionDAG *DAG, unsigned Opcode, DebugLoc dl, EVT VT, SDValue Op1) { SDValue predReg = DAG->getRegister(PTX::NoRegister, MVT::i1); SDValue predOp = DAG->getTargetConstant(PTX::PRED_NORMAL, MVT::i32); SDValue ops[] = { Op1, predReg, predOp }; return DAG->getMachineNode(Opcode, dl, VT, ops, array_lengthof(ops)); } MachineSDNode *PTXInstrInfo:: GetPTXMachineNode(SelectionDAG *DAG, unsigned Opcode, DebugLoc dl, EVT VT, SDValue Op1, SDValue Op2) { SDValue predReg = DAG->getRegister(PTX::NoRegister, MVT::i1); SDValue predOp = DAG->getTargetConstant(PTX::PRED_NORMAL, MVT::i32); SDValue ops[] = { Op1, Op2, predReg, predOp }; return DAG->getMachineNode(Opcode, dl, VT, ops, array_lengthof(ops)); } void PTXInstrInfo::AddDefaultPredicate(MachineInstr *MI) { if (MI->findFirstPredOperandIdx() == -1) { MI->addOperand(MachineOperand::CreateReg(PTX::NoRegister, /*IsDef=*/false)); MI->addOperand(MachineOperand::CreateImm(PTX::PRED_NORMAL)); } } bool PTXInstrInfo::IsAnyKindOfBranch(const MachineInstr& inst) { const MCInstrDesc &desc = inst.getDesc(); return desc.isTerminator() || desc.isBranch() || desc.isIndirectBranch(); } bool PTXInstrInfo:: IsAnySuccessorAlsoLayoutSuccessor(const MachineBasicBlock& MBB) { for (MachineBasicBlock::const_succ_iterator i = MBB.succ_begin(), e = MBB.succ_end(); i != e; ++i) if (MBB.isLayoutSuccessor((const MachineBasicBlock*) &*i)) return true; return false; } MachineBasicBlock *PTXInstrInfo::GetBranchTarget(const MachineInstr& inst) { // FIXME So far all branch instructions put destination in 1st operand const MachineOperand& target = inst.getOperand(0); assert(target.isMBB() && "FIXME: detect branch target operand"); return target.getMBB(); }