//===- FunctionInlining.cpp - Code to perform function inlining -----------===// // // This file implements inlining of functions. // // Specifically, this: // * Exports functionality to inline any function call // * Inlines functions that consist of a single basic block // * Is able to inline ANY function call // . Has a smart heuristic for when to inline a function // // Notice that: // * This pass opens up a lot of opportunities for constant propogation. It // is a good idea to to run a constant propogation pass, then a DCE pass // sometime after running this pass. // // FIXME: This pass should transform alloca instructions in the called function // into malloc/free pairs! // //===----------------------------------------------------------------------===// #include "llvm/Transforms/FunctionInlining.h" #include "llvm/Module.h" #include "llvm/Pass.h" #include "llvm/iTerminators.h" #include "llvm/iPHINode.h" #include "llvm/iOther.h" #include "llvm/Type.h" #include "Support/Statistic.h" #include static Statistic<> NumInlined("inline", "Number of functions inlined"); using std::cerr; // RemapInstruction - Convert the instruction operands from referencing the // current values into those specified by ValueMap. // static inline void RemapInstruction(Instruction *I, std::map &ValueMap) { for (unsigned op = 0, E = I->getNumOperands(); op != E; ++op) { const Value *Op = I->getOperand(op); Value *V = ValueMap[Op]; if (!V && (isa(Op) || isa(Op))) continue; // Globals and constants don't get relocated if (!V) { cerr << "Val = \n" << Op << "Addr = " << (void*)Op; cerr << "\nInst = " << I; } assert(V && "Referenced value not in value map!"); I->setOperand(op, V); } } // InlineFunction - This function forcibly inlines the called function into the // basic block of the caller. This returns false if it is not possible to // inline this call. The program is still in a well defined state if this // occurs though. // // Note that this only does one level of inlining. For example, if the // instruction 'call B' is inlined, and 'B' calls 'C', then the call to 'C' now // exists in the instruction stream. Similiarly this will inline a recursive // function by one level. // bool InlineFunction(CallInst *CI) { assert(isa(CI) && "InlineFunction only works on CallInst nodes"); assert(CI->getParent() && "Instruction not embedded in basic block!"); assert(CI->getParent()->getParent() && "Instruction not in function!"); const Function *CalledFunc = CI->getCalledFunction(); if (CalledFunc == 0 || // Can't inline external function or indirect call! CalledFunc->isExternal()) return false; //cerr << "Inlining " << CalledFunc->getName() << " into " // << CurrentMeth->getName() << "\n"; BasicBlock *OrigBB = CI->getParent(); // Call splitBasicBlock - The original basic block now ends at the instruction // immediately before the call. The original basic block now ends with an // unconditional branch to NewBB, and NewBB starts with the call instruction. // BasicBlock *NewBB = OrigBB->splitBasicBlock(CI); NewBB->setName("InlinedFunctionReturnNode"); // Remove (unlink) the CallInst from the start of the new basic block. NewBB->getInstList().remove(CI); // If we have a return value generated by this call, convert it into a PHI // node that gets values from each of the old RET instructions in the original // function. // PHINode *PHI = 0; if (CalledFunc->getReturnType() != Type::VoidTy) { // The PHI node should go at the front of the new basic block to merge all // possible incoming values. // PHI = new PHINode(CalledFunc->getReturnType(), CI->getName(), NewBB->begin()); // Anything that used the result of the function call should now use the PHI // node as their operand. // CI->replaceAllUsesWith(PHI); } // Keep a mapping between the original function's values and the new // duplicated code's values. This includes all of: Function arguments, // instruction values, constant pool entries, and basic blocks. // std::map ValueMap; // Add the function arguments to the mapping: (start counting at 1 to skip the // function reference itself) // Function::const_aiterator PTI = CalledFunc->abegin(); for (unsigned a = 1, E = CI->getNumOperands(); a != E; ++a, ++PTI) ValueMap[PTI] = CI->getOperand(a); ValueMap[NewBB] = NewBB; // Returns get converted to reference NewBB // Loop over all of the basic blocks in the function, inlining them as // appropriate. Keep track of the first basic block of the function... // for (Function::const_iterator BB = CalledFunc->begin(); BB != CalledFunc->end(); ++BB) { assert(BB->getTerminator() && "BasicBlock doesn't have terminator!?!?"); // Create a new basic block to copy instructions into! BasicBlock *IBB = new BasicBlock("", NewBB->getParent()); if (BB->hasName()) IBB->setName(BB->getName()+".i"); // .i = inlined once ValueMap[BB] = IBB; // Add basic block mapping. // Make sure to capture the mapping that a return will use... // TODO: This assumes that the RET is returning a value computed in the same // basic block as the return was issued from! // const TerminatorInst *TI = BB->getTerminator(); // Loop over all instructions copying them over... Instruction *NewInst; for (BasicBlock::const_iterator II = BB->begin(); II != --BB->end(); ++II) { IBB->getInstList().push_back((NewInst = II->clone())); ValueMap[II] = NewInst; // Add instruction map to value. if (II->hasName()) NewInst->setName(II->getName()+".i"); // .i = inlined once } // Copy over the terminator now... switch (TI->getOpcode()) { case Instruction::Ret: { const ReturnInst *RI = cast(TI); if (PHI) { // The PHI node should include this value! assert(RI->getReturnValue() && "Ret should have value!"); assert(RI->getReturnValue()->getType() == PHI->getType() && "Ret value not consistent in function!"); PHI->addIncoming((Value*)RI->getReturnValue(), (BasicBlock*)cast(&*BB)); } // Add a branch to the code that was after the original Call. IBB->getInstList().push_back(new BranchInst(NewBB)); break; } case Instruction::Br: IBB->getInstList().push_back(TI->clone()); break; default: cerr << "FunctionInlining: Don't know how to handle terminator: " << TI; abort(); } } // Loop over all of the instructions in the function, fixing up operand // references as we go. This uses ValueMap to do all the hard work. // for (Function::const_iterator BB = CalledFunc->begin(); BB != CalledFunc->end(); ++BB) { BasicBlock *NBB = (BasicBlock*)ValueMap[BB]; // Loop over all instructions, fixing each one as we find it... // for (BasicBlock::iterator II = NBB->begin(); II != NBB->end(); ++II) RemapInstruction(II, ValueMap); } if (PHI) { RemapInstruction(PHI, ValueMap); // Fix the PHI node also... // Check to see if the PHI node only has one argument. This is a common // case resulting from there only being a single return instruction in the // function call. Because this is so common, eliminate the PHI node. // if (PHI->getNumIncomingValues() == 1) { PHI->replaceAllUsesWith(PHI->getIncomingValue(0)); PHI->getParent()->getInstList().erase(PHI); } } // Change the branch that used to go to NewBB to branch to the first basic // block of the inlined function. // TerminatorInst *Br = OrigBB->getTerminator(); assert(Br && Br->getOpcode() == Instruction::Br && "splitBasicBlock broken!"); Br->setOperand(0, ValueMap[&CalledFunc->front()]); // Since we are now done with the CallInst, we can finally delete it. delete CI; return true; } static inline bool ShouldInlineFunction(const CallInst *CI, const Function *F) { assert(CI->getParent() && CI->getParent()->getParent() && "Call not embedded into a function!"); // Don't inline a recursive call. if (CI->getParent()->getParent() == F) return false; // Don't inline something too big. This is a really crappy heuristic if (F->size() > 3) return false; // Don't inline into something too big. This is a **really** crappy heuristic if (CI->getParent()->getParent()->size() > 10) return false; // Go ahead and try just about anything else. return true; } static inline bool DoFunctionInlining(BasicBlock *BB) { for (BasicBlock::iterator I = BB->begin(); I != BB->end(); ++I) { if (CallInst *CI = dyn_cast(&*I)) { // Check to see if we should inline this function Function *F = CI->getCalledFunction(); if (F && ShouldInlineFunction(CI, F)) { return InlineFunction(CI); } } } return false; } // doFunctionInlining - Use a heuristic based approach to inline functions that // seem to look good. // static bool doFunctionInlining(Function &F) { bool Changed = false; // Loop through now and inline instructions a basic block at a time... for (Function::iterator I = F.begin(); I != F.end(); ) if (DoFunctionInlining(I)) { ++NumInlined; Changed = true; } else { ++I; } return Changed; } namespace { struct FunctionInlining : public FunctionPass { virtual bool runOnFunction(Function &F) { return doFunctionInlining(F); } }; RegisterOpt X("inline", "Function Integration/Inlining"); } Pass *createFunctionInliningPass() { return new FunctionInlining(); }