//===-- llvm/SymbolTable.h - Implement a type plane'd symtab ----*- C++ -*-===// // // The LLVM Compiler Infrastructure // // This file was developed by the LLVM research group and re-written by Reid // Spencer. It is distributed under the University of Illinois Open Source // License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// // // This file implements the main symbol table for LLVM. // //===----------------------------------------------------------------------===// #ifndef LLVM_SYMBOL_TABLE_H #define LLVM_SYMBOL_TABLE_H #include "llvm/Value.h" #include namespace llvm { /// This class provides a symbol table of name/value pairs that is broken /// up by type. For each Type* there is a "plane" of name/value pairs in /// the symbol table. Identical types may have overlapping symbol names as /// long as they are distinct. The SymbolTable also tracks, separately, a /// map of name/type pairs. This allows types to be named. Types are treated /// distinctly from Values. /// /// The SymbolTable provides several utility functions for answering common /// questions about its contents as well as an iterator interface for /// directly iterating over the contents. To reduce confusion, the terms /// "type", "value", and "plane" are used consistently. For example, /// There is a TypeMap typedef that is the mapping of names to Types. /// Similarly there is a ValueMap typedef that is the mapping of /// names to Values. Finally, there is a PlaneMap typedef that is the /// mapping of types to planes of ValueMap. THis is the basic structure /// of the symbol table. When you call type_begin() you're asking /// for an iterator at the start of the TypeMap. When you call /// plane_begin(), you're asking for an iterator at the start of /// the PlaneMap. Finally, when you call value_begin(), you're asking /// for an iterator at the start of a ValueMap for a specific type /// plane. class SymbolTable : public AbstractTypeUser { /// @name Types /// @{ public: /// @brief A mapping of names to types. typedef std::map TypeMap; /// @brief An iterator over the TypeMap. typedef TypeMap::iterator type_iterator; /// @brief A const_iterator over the TypeMap. typedef TypeMap::const_iterator type_const_iterator; /// @brief A mapping of names to values. typedef std::map ValueMap; /// @brief An iterator over a ValueMap. typedef ValueMap::iterator value_iterator; /// @brief A const_iterator over a ValueMap. typedef ValueMap::const_iterator value_const_iterator; /// @brief A mapping of types to names to values (type planes). typedef std::map PlaneMap; /// @brief An iterator over the type planes. typedef PlaneMap::iterator plane_iterator; /// @brief A const_iterator over the type planes typedef PlaneMap::const_iterator plane_const_iterator; /// @} /// @name Constructors /// @{ public: inline SymbolTable() : pmap(), tmap(), InternallyInconsistent(false), LastUnique(0) {} ~SymbolTable(); /// @} /// @name Accessors /// @{ public: /// This method finds the value with the given \p name in the /// type plane \p Ty and returns it. This method will not find any /// Types, only Values. Use lookupType to find Types by name. /// @returns null on failure, otherwise the Value associated with /// the \p name in type plane \p Ty. /// @brief Lookup a named, typed value. Value *lookup(const Type *Ty, const std::string &name) const; /// This method finds the type with the given \p name in the /// type map and returns it. /// @returns null if the name is not found, otherwise the Type /// associated with the \p name. /// @brief Lookup a type by name. Type* lookupType( const std::string& name ) const; /// @returns true iff the type map is not empty. /// @brief Determine if there are types in the symbol table inline bool hasTypes() const { return ! tmap.empty(); } /// @returns true iff the type map and the type plane are both not /// empty. /// @brief Determine if the symbol table is empty inline bool isEmpty() const { return pmap.empty() && tmap.empty(); } /// The plane associated with the \p TypeID parameter is found /// and the number of entries in the plane is returned. /// @returns Number of entries in the specified type plane or 0. /// @brief Get the size of a type plane. unsigned type_size(const Type *TypeID) const; /// @brief The number of name/type pairs is returned. inline unsigned num_types() const { return tmap.size(); } /// Finds the value \p val in the symbol table and returns its /// name. Only the type plane associated with the type of \p val /// is searched. /// @brief Return the name of a value std::string get_name( const Value* Val ) const; /// Finds the type \p Ty in the symbol table and returns its name. /// @brief Return the name of a type std::string get_name( const Type* Ty ) const; /// Given a base name, return a string that is either equal to it or /// derived from it that does not already occur in the symbol table /// for the specified type. /// @brief Get a name unique to this symbol table std::string getUniqueName(const Type *Ty, const std::string &BaseName) const; /// This function can be used from the debugger to display the /// content of the symbol table while debugging. /// @brief Print out symbol table on stderr void dump() const; /// @} /// @name Mutators /// @{ public: /// This method adds the provided value \p N to the symbol table. /// The Value must have both a name and a type which are extracted /// and used to place the value in the correct type plane under /// the value's name. /// @brief Add a named value to the symbol table inline void insert(Value *Val) { assert(Val && "Can't insert null type into symbol table!"); assert(Val->hasName() && "Value must be named to go into symbol table!"); insertEntry(Val->getName(), Val->getType(), Val); } /// Inserts a constant or type into the symbol table with the specified /// name. There can be a many to one mapping between names and constants /// or types. /// @brief Insert a constant or type. inline void insert(const std::string &Name, Value *Val) { assert(Val && "Can't insert null type into symbol table!"); assert((isa(Val) || isa(Val)) && "Can only insert types and constants into a symbol table!"); insertEntry(Name, Val->getType(), Val); } /// Inserts a type into the symbol table with the specified name. There /// can be a many-to-one mapping between names and types. This method /// allows a type with an existing entry in the symbol table to get /// a new name. /// @brief Insert a type under a new name. inline void insert(const std::string &Name, Type *Typ) { assert(Typ && "Can't insert null type into symbol table!"); insertEntry(Name, Typ ); } /// This method removes a named value from the symbol table. The /// type and name of the Value are extracted from \p N and used to /// lookup the Value in the correct type plane. If the Value is /// not in the symbol table, this method silently ignores the /// request. /// @brief Remove a named value from the symbol table. void remove(Value* Val); /// This method removes a named type from the symbol table. The /// name of the type is extracted from \P T and used to look up /// the Type in the type map. If the Type is not in the symbol /// table, this method silently ignores the request. /// @brief Remove a named type from the symbol table. void remove(Type* Typ ); /// Remove a constant or type with the specified name from the /// symbol table. /// @returns the removed Value. /// @brief Remove a constant or type from the symbol table. inline Value* remove(const std::string &Name, Value *Val) { assert(Val && "Can't remove null value from symbol table!"); plane_iterator PI = pmap.find(Val->getType()); return removeEntry(PI, PI->second.find(Name)); } /// Remove a type with the specified name from the symbol table. /// @returns the removed Type. /// @brief Remove a named tyep from the symbol table. inline Type* remove(const std::string& Name, Type* T ) { return removeEntry( tmap.find(Name) ); } /// Removes a specific value from the symbol table. /// @returns the removed value. /// @brief Remove a specific value given by an iterator inline Value *value_remove(const value_iterator &It) { return this->removeEntry(pmap.find(It->second->getType()), It); } /// This method will strip the symbol table of its names leaving /// the type and values. /// @brief Strip the symbol table. bool strip(); /// @brief Empty the symbol table completely. inline void clear() { pmap.clear(); tmap.clear(); } /// @} /// @name Iteration /// @{ public: /// Get an iterator that starts at the beginning of the type planes. /// The iterator will iterate over the Type/ValueMap pairs in the /// type planes. inline plane_iterator plane_begin() { return pmap.begin(); } /// Get a const_iterator that starts at the beginning of the type /// planes. The iterator will iterate over the Type/ValueMap pairs /// in the type planes. inline plane_const_iterator plane_begin() const { return pmap.begin(); } /// Get an iterator at the end of the type planes. This serves as /// the marker for end of iteration over the type planes. inline plane_iterator plane_end() { return pmap.end(); } /// Get a const_iterator at the end of the type planes. This serves as /// the marker for end of iteration over the type planes. inline plane_const_iterator plane_end() const { return pmap.end(); } /// Get an iterator that starts at the beginning of a type plane. /// The iterator will iterate over the name/value pairs in the type plane. /// @note The type plane must already exist before using this. inline value_iterator value_begin(const Type *Typ) { assert(Typ && "Can't get value iterator with null type!"); return pmap.find(Typ)->second.begin(); } /// Get a const_iterator that starts at the beginning of a type plane. /// The iterator will iterate over the name/value pairs in the type plane. /// @note The type plane must already exist before using this. inline value_const_iterator value_begin(const Type *Typ) const { assert(Typ && "Can't get value iterator with null type!"); return pmap.find(Typ)->second.begin(); } /// Get an iterator to the end of a type plane. This serves as the marker /// for end of iteration of the type plane. /// @note The type plane must already exist before using this. inline value_iterator value_end(const Type *Typ) { assert(Typ && "Can't get value iterator with null type!"); return pmap.find(Typ)->second.end(); } /// Get a const_iterator to the end of a type plane. This serves as the /// marker for end of iteration of the type plane. /// @note The type plane must already exist before using this. inline value_const_iterator value_end(const Type *Typ) const { assert(Typ && "Can't get value iterator with null type!"); return pmap.find(Typ)->second.end(); } /// Get an iterator to the start of the name/Type map. inline type_iterator type_begin() { return tmap.begin(); } /// @brief Get a const_iterator to the start of the name/Type map. inline type_const_iterator type_begin() const { return tmap.begin(); } /// Get an iterator to the end of the name/Type map. This serves as the /// marker for end of iteration of the types. inline type_iterator type_end() { return tmap.end(); } /// Get a const-iterator to the end of the name/Type map. This serves /// as the marker for end of iteration of the types. inline type_const_iterator type_end() const { return tmap.end(); } /// This method returns a plane_const_iterator for iteration over /// the type planes starting at a specific plane, given by \p Ty. /// @brief Find a type plane. inline plane_const_iterator find(const Type* Typ ) const { assert(Typ && "Can't find type plane with null type!"); return pmap.find( Typ ); } /// This method returns a plane_iterator for iteration over the /// type planes starting at a specific plane, given by \p Ty. /// @brief Find a type plane. inline plane_iterator find( const Type* Typ ) { assert(Typ && "Can't find type plane with null type!"); return pmap.find(Typ); } /// This method returns a ValueMap* for a specific type plane. This /// interface is deprecated and may go away in the future. /// @deprecated /// @brief Find a type plane inline const ValueMap* findPlane( const Type* Typ ) const { assert(Typ && "Can't find type plane with null type!"); plane_const_iterator I = pmap.find( Typ ); if ( I == pmap.end() ) return 0; return &I->second; } /// @} /// @name Internal Methods /// @{ private: /// @brief Insert a value into the symbol table with the specified name. void insertEntry(const std::string &Name, const Type *Ty, Value *V); /// @brief Insert a type into the symbol table with the specified name. void insertEntry(const std::string &Name, Type *T); /// Remove a specific value from a specific plane in the SymbolTable. /// @returns the removed Value. Value* removeEntry(plane_iterator Plane, value_iterator Entry); /// Remove a specific type from the SymbolTable. /// @returns the removed Type. Type* removeEntry(type_iterator Entry); /// This function is called when one of the types in the type plane /// is refined. virtual void refineAbstractType(const DerivedType *OldTy, const Type *NewTy); /// This function markes a type as being concrete (defined). virtual void typeBecameConcrete(const DerivedType *AbsTy); /// @} /// @name Internal Data /// @{ private: /// This is the main content of the symbol table. It provides /// separate type planes for named values. That is, each named /// value is organized into a separate dictionary based on /// Type. This means that the same name can be used for different /// types without conflict. Note that the Type::TypeTy plane is /// not stored in this map but is in tmap. /// @brief The mapping of types to names to values. PlaneMap pmap; /// This is the Type::TypeTy plane. It is separated from the pmap /// because the elements of the map are name/Type pairs not /// name/Value pairs and Type is not a Value. TypeMap tmap; /// There are times when the symbol table is internally inconsistent with /// the rest of the program. In this one case, a value exists with a Name, /// and it's not in the symbol table. When we call V->setName(""), it /// tries to remove itself from the symbol table and dies. We know this /// is happening, and so if the flag InternallyInconsistent is set, /// removal from the symbol table is a noop. /// @brief Indicator of symbol table internal inconsistency. bool InternallyInconsistent; /// This value is used to retain the last unique value used /// by getUniqueName to generate unique names. mutable unsigned long LastUnique; /// @} }; } // End llvm namespace // vim: sw=2 #endif