//===- DAGISelMatcherOpt.cpp - Optimize a DAG Matcher ---------------------===// // // The LLVM Compiler Infrastructure // // This file is distributed under the University of Illinois Open Source // License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// // // This file implements the DAG Matcher optimizer. // //===----------------------------------------------------------------------===// #define DEBUG_TYPE "isel-opt" #include "DAGISelMatcher.h" #include "CodeGenDAGPatterns.h" #include "llvm/ADT/DenseSet.h" #include "llvm/ADT/StringSet.h" #include "llvm/Support/Debug.h" #include "llvm/Support/raw_ostream.h" #include using namespace llvm; /// ContractNodes - Turn multiple matcher node patterns like 'MoveChild+Record' /// into single compound nodes like RecordChild. static void ContractNodes(OwningPtr &MatcherPtr, const CodeGenDAGPatterns &CGP) { // If we reached the end of the chain, we're done. Matcher *N = MatcherPtr.get(); if (N == 0) return; // If we have a scope node, walk down all of the children. if (ScopeMatcher *Scope = dyn_cast(N)) { for (unsigned i = 0, e = Scope->getNumChildren(); i != e; ++i) { OwningPtr Child(Scope->takeChild(i)); ContractNodes(Child, CGP); Scope->resetChild(i, Child.take()); } return; } // If we found a movechild node with a node that comes in a 'foochild' form, // transform it. if (MoveChildMatcher *MC = dyn_cast(N)) { Matcher *New = 0; if (RecordMatcher *RM = dyn_cast(MC->getNext())) New = new RecordChildMatcher(MC->getChildNo(), RM->getWhatFor(), RM->getResultNo()); if (CheckTypeMatcher *CT= dyn_cast(MC->getNext())) New = new CheckChildTypeMatcher(MC->getChildNo(), CT->getType()); if (New) { // Insert the new node. New->setNext(MatcherPtr.take()); MatcherPtr.reset(New); // Remove the old one. MC->setNext(MC->getNext()->takeNext()); return ContractNodes(MatcherPtr, CGP); } } // Zap movechild -> moveparent. if (MoveChildMatcher *MC = dyn_cast(N)) if (MoveParentMatcher *MP = dyn_cast(MC->getNext())) { MatcherPtr.reset(MP->takeNext()); return ContractNodes(MatcherPtr, CGP); } // Turn EmitNode->MarkFlagResults->CompleteMatch into // MarkFlagResults->EmitNode->CompleteMatch when we can to encourage // MorphNodeTo formation. This is safe because MarkFlagResults never refers // to the root of the pattern. if (isa(N) && isa(N->getNext()) && isa(N->getNext()->getNext())) { // Unlink the two nodes from the list. Matcher *EmitNode = MatcherPtr.take(); Matcher *MFR = EmitNode->takeNext(); Matcher *Tail = MFR->takeNext(); // Relink them. MatcherPtr.reset(MFR); MFR->setNext(EmitNode); EmitNode->setNext(Tail); return ContractNodes(MatcherPtr, CGP); } // Turn EmitNode->CompleteMatch into MorphNodeTo if we can. if (EmitNodeMatcher *EN = dyn_cast(N)) if (CompleteMatchMatcher *CM = dyn_cast(EN->getNext())) { // We can only use MorphNodeTo if the result values match up. unsigned RootResultFirst = EN->getFirstResultSlot(); bool ResultsMatch = true; for (unsigned i = 0, e = CM->getNumResults(); i != e; ++i) if (CM->getResult(i) != RootResultFirst+i) ResultsMatch = false; // If the selected node defines a subset of the flag/chain results, we // can't use MorphNodeTo. For example, we can't use MorphNodeTo if the // matched pattern has a chain but the root node doesn't. const PatternToMatch &Pattern = CM->getPattern(); if (!EN->hasChain() && Pattern.getSrcPattern()->NodeHasProperty(SDNPHasChain, CGP)) ResultsMatch = false; // If the matched node has a flag and the output root doesn't, we can't // use MorphNodeTo. // // NOTE: Strictly speaking, we don't have to check for the flag here // because the code in the pattern generator doesn't handle it right. We // do it anyway for thoroughness. if (!EN->hasOutFlag() && Pattern.getSrcPattern()->NodeHasProperty(SDNPOutFlag, CGP)) ResultsMatch = false; // If the root result node defines more results than the source root node // *and* has a chain or flag input, then we can't match it because it // would end up replacing the extra result with the chain/flag. #if 0 if ((EN->hasFlag() || EN->hasChain()) && EN->getNumNonChainFlagVTs() > ... need to get no results reliably ...) ResultMatch = false; #endif if (ResultsMatch) { const SmallVectorImpl &VTs = EN->getVTList(); const SmallVectorImpl &Operands = EN->getOperandList(); MatcherPtr.reset(new MorphNodeToMatcher(EN->getOpcodeName(), VTs.data(), VTs.size(), Operands.data(),Operands.size(), EN->hasChain(), EN->hasInFlag(), EN->hasOutFlag(), EN->hasMemRefs(), EN->getNumFixedArityOperands(), Pattern)); return; } // FIXME2: Kill off all the SelectionDAG::SelectNodeTo and getMachineNode // variants. } ContractNodes(N->getNextPtr(), CGP); // If we have a CheckType/CheckChildType/Record node followed by a // CheckOpcode, invert the two nodes. We prefer to do structural checks // before type checks, as this opens opportunities for factoring on targets // like X86 where many operations are valid on multiple types. if ((isa(N) || isa(N) || isa(N)) && isa(N->getNext())) { // Unlink the two nodes from the list. Matcher *CheckType = MatcherPtr.take(); Matcher *CheckOpcode = CheckType->takeNext(); Matcher *Tail = CheckOpcode->takeNext(); // Relink them. MatcherPtr.reset(CheckOpcode); CheckOpcode->setNext(CheckType); CheckType->setNext(Tail); return ContractNodes(MatcherPtr, CGP); } } /// SinkPatternPredicates - Pattern predicates can be checked at any level of /// the matching tree. The generator dumps them at the top level of the pattern /// though, which prevents factoring from being able to see past them. This /// optimization sinks them as far down into the pattern as possible. /// /// Conceptually, we'd like to sink these predicates all the way to the last /// matcher predicate in the series. However, it turns out that some /// ComplexPatterns have side effects on the graph, so we really don't want to /// run a the complex pattern if the pattern predicate will fail. For this /// reason, we refuse to sink the pattern predicate past a ComplexPattern. /// static void SinkPatternPredicates(OwningPtr &MatcherPtr) { // Recursively scan for a PatternPredicate. // If we reached the end of the chain, we're done. Matcher *N = MatcherPtr.get(); if (N == 0) return; // Walk down all members of a scope node. if (ScopeMatcher *Scope = dyn_cast(N)) { for (unsigned i = 0, e = Scope->getNumChildren(); i != e; ++i) { OwningPtr Child(Scope->takeChild(i)); SinkPatternPredicates(Child); Scope->resetChild(i, Child.take()); } return; } // If this node isn't a CheckPatternPredicateMatcher we keep scanning until // we find one. CheckPatternPredicateMatcher *CPPM =dyn_cast(N); if (CPPM == 0) return SinkPatternPredicates(N->getNextPtr()); // Ok, we found one, lets try to sink it. Check if we can sink it past the // next node in the chain. If not, we won't be able to change anything and // might as well bail. if (!CPPM->getNext()->isSafeToReorderWithPatternPredicate()) return; // Okay, we know we can sink it past at least one node. Unlink it from the // chain and scan for the new insertion point. MatcherPtr.take(); // Don't delete CPPM. MatcherPtr.reset(CPPM->takeNext()); N = MatcherPtr.get(); while (N->getNext()->isSafeToReorderWithPatternPredicate()) N = N->getNext(); // At this point, we want to insert CPPM after N. CPPM->setNext(N->takeNext()); N->setNext(CPPM); } /// FindNodeWithKind - Scan a series of matchers looking for a matcher with a /// specified kind. Return null if we didn't find one otherwise return the /// matcher. static Matcher *FindNodeWithKind(Matcher *M, Matcher::KindTy Kind) { for (; M; M = M->getNext()) if (M->getKind() == Kind) return M; return 0; } /// FactorNodes - Turn matches like this: /// Scope /// OPC_CheckType i32 /// ABC /// OPC_CheckType i32 /// XYZ /// into: /// OPC_CheckType i32 /// Scope /// ABC /// XYZ /// static void FactorNodes(OwningPtr &MatcherPtr) { // If we reached the end of the chain, we're done. Matcher *N = MatcherPtr.get(); if (N == 0) return; // If this is not a push node, just scan for one. ScopeMatcher *Scope = dyn_cast(N); if (Scope == 0) return FactorNodes(N->getNextPtr()); // Okay, pull together the children of the scope node into a vector so we can // inspect it more easily. While we're at it, bucket them up by the hash // code of their first predicate. SmallVector OptionsToMatch; for (unsigned i = 0, e = Scope->getNumChildren(); i != e; ++i) { // Factor the subexpression. OwningPtr Child(Scope->takeChild(i)); FactorNodes(Child); if (Matcher *N = Child.take()) OptionsToMatch.push_back(N); } SmallVector NewOptionsToMatch; // Loop over options to match, merging neighboring patterns with identical // starting nodes into a shared matcher. for (unsigned OptionIdx = 0, e = OptionsToMatch.size(); OptionIdx != e;) { // Find the set of matchers that start with this node. Matcher *Optn = OptionsToMatch[OptionIdx++]; if (OptionIdx == e) { NewOptionsToMatch.push_back(Optn); continue; } // See if the next option starts with the same matcher. If the two // neighbors *do* start with the same matcher, we can factor the matcher out // of at least these two patterns. See what the maximal set we can merge // together is. SmallVector EqualMatchers; EqualMatchers.push_back(Optn); // Factor all of the known-equal matchers after this one into the same // group. while (OptionIdx != e && OptionsToMatch[OptionIdx]->isEqual(Optn)) EqualMatchers.push_back(OptionsToMatch[OptionIdx++]); // If we found a non-equal matcher, see if it is contradictory with the // current node. If so, we know that the ordering relation between the // current sets of nodes and this node don't matter. Look past it to see if // we can merge anything else into this matching group. unsigned Scan = OptionIdx; while (1) { // If we ran out of stuff to scan, we're done. if (Scan == e) break; Matcher *ScanMatcher = OptionsToMatch[Scan]; // If we found an entry that matches out matcher, merge it into the set to // handle. if (Optn->isEqual(ScanMatcher)) { // If is equal after all, add the option to EqualMatchers and remove it // from OptionsToMatch. EqualMatchers.push_back(ScanMatcher); OptionsToMatch.erase(OptionsToMatch.begin()+Scan); --e; continue; } // If the option we're checking for contradicts the start of the list, // skip over it. if (Optn->isContradictory(ScanMatcher)) { ++Scan; continue; } // If we're scanning for a simple node, see if it occurs later in the // sequence. If so, and if we can move it up, it might be contradictory // or the same as what we're looking for. If so, reorder it. if (Optn->isSimplePredicateOrRecordNode()) { Matcher *M2 = FindNodeWithKind(ScanMatcher, Optn->getKind()); if (M2 != 0 && M2 != ScanMatcher && M2->canMoveBefore(ScanMatcher) && (M2->isEqual(Optn) || M2->isContradictory(Optn))) { Matcher *MatcherWithoutM2 = ScanMatcher->unlinkNode(M2); M2->setNext(MatcherWithoutM2); OptionsToMatch[Scan] = M2; continue; } } // Otherwise, we don't know how to handle this entry, we have to bail. break; } if (Scan != e && // Don't print it's obvious nothing extra could be merged anyway. Scan+1 != e) { /*DEBUG(*/errs() << "Couldn't merge this:\n"; Optn->print(errs(), 4); errs() << "into this:\n"; OptionsToMatch[Scan]->print(errs(), 4); if (Scan+1 != e) OptionsToMatch[Scan+1]->printOne(errs()); if (Scan+2 < e) OptionsToMatch[Scan+2]->printOne(errs()); errs() << "\n"; } // If we only found one option starting with this matcher, no factoring is // possible. if (EqualMatchers.size() == 1) { NewOptionsToMatch.push_back(EqualMatchers[0]); continue; } // Factor these checks by pulling the first node off each entry and // discarding it. Take the first one off the first entry to reuse. Matcher *Shared = Optn; Optn = Optn->takeNext(); EqualMatchers[0] = Optn; // Remove and delete the first node from the other matchers we're factoring. for (unsigned i = 1, e = EqualMatchers.size(); i != e; ++i) { Matcher *Tmp = EqualMatchers[i]->takeNext(); delete EqualMatchers[i]; EqualMatchers[i] = Tmp; } Shared->setNext(new ScopeMatcher(&EqualMatchers[0], EqualMatchers.size())); // Recursively factor the newly created node. FactorNodes(Shared->getNextPtr()); NewOptionsToMatch.push_back(Shared); } // If we're down to a single pattern to match, then we don't need this scope // anymore. if (NewOptionsToMatch.size() == 1) { MatcherPtr.reset(NewOptionsToMatch[0]); return; } if (NewOptionsToMatch.empty()) { MatcherPtr.reset(0); return; } // If our factoring failed (didn't achieve anything) see if we can simplify in // other ways. // Check to see if all of the leading entries are now opcode checks. If so, // we can convert this Scope to be a OpcodeSwitch instead. bool AllOpcodeChecks = true, AllTypeChecks = true; for (unsigned i = 0, e = NewOptionsToMatch.size(); i != e; ++i) { // Check to see if this breaks a series of CheckOpcodeMatchers. if (AllOpcodeChecks && !isa(NewOptionsToMatch[i])) { #if 0 if (i > 3) { errs() << "FAILING OPC #" << i << "\n"; NewOptionsToMatch[i]->dump(); } #endif AllOpcodeChecks = false; } // Check to see if this breaks a series of CheckTypeMatcher's. if (AllTypeChecks) { CheckTypeMatcher *CTM = cast_or_null(FindNodeWithKind(NewOptionsToMatch[i], Matcher::CheckType)); if (CTM == 0 || // iPTR checks could alias any other case without us knowing, don't // bother with them. CTM->getType() == MVT::iPTR || // If the CheckType isn't at the start of the list, see if we can move // it there. !CTM->canMoveBefore(NewOptionsToMatch[i])) { #if 0 if (i > 3 && AllTypeChecks) { errs() << "FAILING TYPE #" << i << "\n"; NewOptionsToMatch[i]->dump(); } #endif AllTypeChecks = false; } } } // If all the options are CheckOpcode's, we can form the SwitchOpcode, woot. if (AllOpcodeChecks) { StringSet<> Opcodes; SmallVector, 8> Cases; for (unsigned i = 0, e = NewOptionsToMatch.size(); i != e; ++i) { CheckOpcodeMatcher *COM = cast(NewOptionsToMatch[i]); assert(Opcodes.insert(COM->getOpcode().getEnumName()) && "Duplicate opcodes not factored?"); Cases.push_back(std::make_pair(&COM->getOpcode(), COM->getNext())); } MatcherPtr.reset(new SwitchOpcodeMatcher(&Cases[0], Cases.size())); return; } // If all the options are CheckType's, we can form the SwitchType, woot. if (AllTypeChecks) { DenseMap TypeEntry; SmallVector, 8> Cases; for (unsigned i = 0, e = NewOptionsToMatch.size(); i != e; ++i) { CheckTypeMatcher *CTM = cast_or_null(FindNodeWithKind(NewOptionsToMatch[i], Matcher::CheckType)); Matcher *MatcherWithoutCTM = NewOptionsToMatch[i]->unlinkNode(CTM); MVT::SimpleValueType CTMTy = CTM->getType(); delete CTM; unsigned &Entry = TypeEntry[CTMTy]; if (Entry != 0) { // If we have unfactored duplicate types, then we should factor them. Matcher *PrevMatcher = Cases[Entry-1].second; if (ScopeMatcher *SM = dyn_cast(PrevMatcher)) { SM->setNumChildren(SM->getNumChildren()+1); SM->resetChild(SM->getNumChildren()-1, MatcherWithoutCTM); continue; } Matcher *Entries[2] = { PrevMatcher, MatcherWithoutCTM }; Cases[Entry-1].second = new ScopeMatcher(Entries, 2); continue; } Entry = Cases.size()+1; Cases.push_back(std::make_pair(CTMTy, MatcherWithoutCTM)); } if (Cases.size() != 1) { MatcherPtr.reset(new SwitchTypeMatcher(&Cases[0], Cases.size())); } else { // If we factored and ended up with one case, create it now. MatcherPtr.reset(new CheckTypeMatcher(Cases[0].first)); MatcherPtr->setNext(Cases[0].second); } return; } // Reassemble the Scope node with the adjusted children. Scope->setNumChildren(NewOptionsToMatch.size()); for (unsigned i = 0, e = NewOptionsToMatch.size(); i != e; ++i) Scope->resetChild(i, NewOptionsToMatch[i]); } Matcher *llvm::OptimizeMatcher(Matcher *TheMatcher, const CodeGenDAGPatterns &CGP) { OwningPtr MatcherPtr(TheMatcher); ContractNodes(MatcherPtr, CGP); SinkPatternPredicates(MatcherPtr); FactorNodes(MatcherPtr); return MatcherPtr.take(); }