//===-- SparcRegInfo.cpp - Sparc Target Register Information --------------===// // // The LLVM Compiler Infrastructure // // This file was developed by the LLVM research group and is distributed under // the University of Illinois Open Source License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// // // This file contains implementation of Sparc specific helper methods // used for register allocation. // //===----------------------------------------------------------------------===// #include "llvm/CodeGen/MachineFunction.h" #include "llvm/CodeGen/MachineFunctionInfo.h" #include "llvm/CodeGen/InstrSelection.h" #include "llvm/CodeGen/MachineInstrBuilder.h" #include "llvm/CodeGen/MachineCodeForInstruction.h" #include "llvm/CodeGen/MachineInstrAnnot.h" #include "RegAlloc/LiveRangeInfo.h" #include "RegAlloc/LiveRange.h" #include "llvm/DerivedTypes.h" #include "llvm/Function.h" #include "llvm/iTerminators.h" #include "llvm/iOther.h" #include "SparcInternals.h" #include "SparcRegClassInfo.h" #include "SparcRegInfo.h" #include "SparcTargetMachine.h" namespace llvm { enum { BadRegClass = ~0 }; SparcRegInfo::SparcRegInfo(const SparcTargetMachine &tgt) : TargetRegInfo(tgt), NumOfIntArgRegs(6), NumOfFloatArgRegs(32) { MachineRegClassArr.push_back(new SparcIntRegClass(IntRegClassID)); MachineRegClassArr.push_back(new SparcFloatRegClass(FloatRegClassID)); MachineRegClassArr.push_back(new SparcIntCCRegClass(IntCCRegClassID)); MachineRegClassArr.push_back(new SparcFloatCCRegClass(FloatCCRegClassID)); MachineRegClassArr.push_back(new SparcSpecialRegClass(SpecialRegClassID)); assert(SparcFloatRegClass::StartOfNonVolatileRegs == 32 && "32 Float regs are used for float arg passing"); } // getZeroRegNum - returns the register that contains always zero. // this is the unified register number // unsigned SparcRegInfo::getZeroRegNum() const { return getUnifiedRegNum(SparcRegInfo::IntRegClassID, SparcIntRegClass::g0); } // getCallAddressReg - returns the reg used for pushing the address when a // method is called. This can be used for other purposes between calls // unsigned SparcRegInfo::getCallAddressReg() const { return getUnifiedRegNum(SparcRegInfo::IntRegClassID, SparcIntRegClass::o7); } // Returns the register containing the return address. // It should be made sure that this register contains the return // value when a return instruction is reached. // unsigned SparcRegInfo::getReturnAddressReg() const { return getUnifiedRegNum(SparcRegInfo::IntRegClassID, SparcIntRegClass::i7); } // Register get name implementations... // Int register names in same order as enum in class SparcIntRegClass static const char * const IntRegNames[] = { "o0", "o1", "o2", "o3", "o4", "o5", "o7", "l0", "l1", "l2", "l3", "l4", "l5", "l6", "l7", "i0", "i1", "i2", "i3", "i4", "i5", "i6", "i7", "g0", "g1", "g2", "g3", "g4", "g5", "g6", "g7", "o6" }; const char * const SparcIntRegClass::getRegName(unsigned reg) const { assert(reg < NumOfAllRegs); return IntRegNames[reg]; } static const char * const FloatRegNames[] = { "f0", "f1", "f2", "f3", "f4", "f5", "f6", "f7", "f8", "f9", "f10", "f11", "f12", "f13", "f14", "f15", "f16", "f17", "f18", "f19", "f20", "f21", "f22", "f23", "f24", "f25", "f26", "f27", "f28", "f29", "f30", "f31", "f32", "f33", "f34", "f35", "f36", "f37", "f38", "f39", "f40", "f41", "f42", "f43", "f44", "f45", "f46", "f47", "f48", "f49", "f50", "f51", "f52", "f53", "f54", "f55", "f56", "f57", "f58", "f59", "f60", "f61", "f62", "f63" }; const char * const SparcFloatRegClass::getRegName(unsigned reg) const { assert (reg < NumOfAllRegs); return FloatRegNames[reg]; } static const char * const IntCCRegNames[] = { "xcc", "icc", "ccr" }; const char * const SparcIntCCRegClass::getRegName(unsigned reg) const { assert(reg < 3); return IntCCRegNames[reg]; } static const char * const FloatCCRegNames[] = { "fcc0", "fcc1", "fcc2", "fcc3" }; const char * const SparcFloatCCRegClass::getRegName(unsigned reg) const { assert (reg < 5); return FloatCCRegNames[reg]; } static const char * const SpecialRegNames[] = { "fsr" }; const char * const SparcSpecialRegClass::getRegName(unsigned reg) const { assert (reg < 1); return SpecialRegNames[reg]; } // Get unified reg number for frame pointer unsigned SparcRegInfo::getFramePointer() const { return getUnifiedRegNum(SparcRegInfo::IntRegClassID, SparcIntRegClass::i6); } // Get unified reg number for stack pointer unsigned SparcRegInfo::getStackPointer() const { return getUnifiedRegNum(SparcRegInfo::IntRegClassID, SparcIntRegClass::o6); } //--------------------------------------------------------------------------- // Finds whether a call is an indirect call //--------------------------------------------------------------------------- inline bool isVarArgsFunction(const Type *funcType) { return cast(cast(funcType) ->getElementType())->isVarArg(); } inline bool isVarArgsCall(const MachineInstr *CallMI) { Value* callee = CallMI->getOperand(0).getVRegValue(); // const Type* funcType = isa(callee)? callee->getType() // : cast(callee->getType())->getElementType(); const Type* funcType = callee->getType(); return isVarArgsFunction(funcType); } // Get the register number for the specified argument #argNo, // // Return value: // getInvalidRegNum(), if there is no int register available for the arg. // regNum, otherwise (this is NOT the unified reg. num). // regClassId is set to the register class ID. // int SparcRegInfo::regNumForIntArg(bool inCallee, bool isVarArgsCall, unsigned argNo, unsigned& regClassId) const { regClassId = IntRegClassID; if (argNo >= NumOfIntArgRegs) return getInvalidRegNum(); else return argNo + (inCallee? SparcIntRegClass::i0 : SparcIntRegClass::o0); } // Get the register number for the specified FP argument #argNo, // Use INT regs for FP args if this is a varargs call. // // Return value: // getInvalidRegNum(), if there is no int register available for the arg. // regNum, otherwise (this is NOT the unified reg. num). // regClassId is set to the register class ID. // int SparcRegInfo::regNumForFPArg(unsigned regType, bool inCallee, bool isVarArgsCall, unsigned argNo, unsigned& regClassId) const { if (isVarArgsCall) return regNumForIntArg(inCallee, isVarArgsCall, argNo, regClassId); else { regClassId = FloatRegClassID; if (regType == FPSingleRegType) return (argNo*2+1 >= NumOfFloatArgRegs)? getInvalidRegNum() : SparcFloatRegClass::f0 + (argNo * 2 + 1); else if (regType == FPDoubleRegType) return (argNo*2 >= NumOfFloatArgRegs)? getInvalidRegNum() : SparcFloatRegClass::f0 + (argNo * 2); else assert(0 && "Illegal FP register type"); return 0; } } //--------------------------------------------------------------------------- // Finds the return address of a call sparc specific call instruction //--------------------------------------------------------------------------- // The following 4 methods are used to find the RegType (SparcInternals.h) // of a LiveRange, a Value, and for a given register unified reg number. // int SparcRegInfo::getRegTypeForClassAndType(unsigned regClassID, const Type* type) const { switch (regClassID) { case IntRegClassID: return IntRegType; case FloatRegClassID: if (type == Type::FloatTy) return FPSingleRegType; else if (type == Type::DoubleTy) return FPDoubleRegType; assert(0 && "Unknown type in FloatRegClass"); return 0; case IntCCRegClassID: return IntCCRegType; case FloatCCRegClassID: return FloatCCRegType; case SpecialRegClassID: return SpecialRegType; default: assert( 0 && "Unknown reg class ID"); return 0; } } int SparcRegInfo::getRegTypeForDataType(const Type* type) const { return getRegTypeForClassAndType(getRegClassIDOfType(type), type); } int SparcRegInfo::getRegTypeForLR(const LiveRange *LR) const { return getRegTypeForClassAndType(LR->getRegClassID(), LR->getType()); } int SparcRegInfo::getRegType(int unifiedRegNum) const { if (unifiedRegNum < 32) return IntRegType; else if (unifiedRegNum < (32 + 32)) return FPSingleRegType; else if (unifiedRegNum < (64 + 32)) return FPDoubleRegType; else if (unifiedRegNum < (64+32+4)) return FloatCCRegType; else if (unifiedRegNum < (64+32+4+2)) return IntCCRegType; else assert(0 && "Invalid unified register number in getRegType"); return 0; } // To find the register class used for a specified Type // unsigned SparcRegInfo::getRegClassIDOfType(const Type *type, bool isCCReg) const { Type::PrimitiveID ty = type->getPrimitiveID(); unsigned res; // FIXME: Comparing types like this isn't very safe... if ((ty && ty <= Type::LongTyID) || (ty == Type::LabelTyID) || (ty == Type::FunctionTyID) || (ty == Type::PointerTyID) ) res = IntRegClassID; // sparc int reg (ty=0: void) else if (ty <= Type::DoubleTyID) res = FloatRegClassID; // sparc float reg class else { //std::cerr << "TypeID: " << ty << "\n"; assert(0 && "Cannot resolve register class for type"); return 0; } if (isCCReg) return res + 2; // corresponding condition code register else return res; } unsigned SparcRegInfo::getRegClassIDOfRegType(int regType) const { switch(regType) { case IntRegType: return IntRegClassID; case FPSingleRegType: case FPDoubleRegType: return FloatRegClassID; case IntCCRegType: return IntCCRegClassID; case FloatCCRegType: return FloatCCRegClassID; default: assert(0 && "Invalid register type in getRegClassIDOfRegType"); return 0; } } //--------------------------------------------------------------------------- // Suggests a register for the ret address in the RET machine instruction. // We always suggest %i7 by convention. //--------------------------------------------------------------------------- void SparcRegInfo::suggestReg4RetAddr(MachineInstr *RetMI, LiveRangeInfo& LRI) const { assert(target.getInstrInfo().isReturn(RetMI->getOpcode())); // return address is always mapped to i7 so set it immediately RetMI->SetRegForOperand(0, getUnifiedRegNum(IntRegClassID, SparcIntRegClass::i7)); // Possible Optimization: // Instead of setting the color, we can suggest one. In that case, // we have to test later whether it received the suggested color. // In that case, a LR has to be created at the start of method. // It has to be done as follows (remove the setRegVal above): // MachineOperand & MO = RetMI->getOperand(0); // const Value *RetAddrVal = MO.getVRegValue(); // assert( RetAddrVal && "LR for ret address must be created at start"); // LiveRange * RetAddrLR = LRI.getLiveRangeForValue( RetAddrVal); // RetAddrLR->setSuggestedColor(getUnifiedRegNum( IntRegClassID, // SparcIntRegOrdr::i7) ); } //--------------------------------------------------------------------------- // Suggests a register for the ret address in the JMPL/CALL machine instr. // Sparc ABI dictates that %o7 be used for this purpose. //--------------------------------------------------------------------------- void SparcRegInfo::suggestReg4CallAddr(MachineInstr * CallMI, LiveRangeInfo& LRI) const { CallArgsDescriptor* argDesc = CallArgsDescriptor::get(CallMI); const Value *RetAddrVal = argDesc->getReturnAddrReg(); assert(RetAddrVal && "INTERNAL ERROR: Return address value is required"); // A LR must already exist for the return address. LiveRange *RetAddrLR = LRI.getLiveRangeForValue(RetAddrVal); assert(RetAddrLR && "INTERNAL ERROR: No LR for return address of call!"); unsigned RegClassID = RetAddrLR->getRegClassID(); RetAddrLR->setColor(getUnifiedRegNum(IntRegClassID, SparcIntRegClass::o7)); } //--------------------------------------------------------------------------- // This method will suggest colors to incoming args to a method. // According to the Sparc ABI, the first 6 incoming args are in // %i0 - %i5 (if they are integer) OR in %f0 - %f31 (if they are float). // If the arg is passed on stack due to the lack of regs, NOTHING will be // done - it will be colored (or spilled) as a normal live range. //--------------------------------------------------------------------------- void SparcRegInfo::suggestRegs4MethodArgs(const Function *Meth, LiveRangeInfo& LRI) const { // Check if this is a varArgs function. needed for choosing regs. bool isVarArgs = isVarArgsFunction(Meth->getType()); // Count the arguments, *ignoring* whether they are int or FP args. // Use this common arg numbering to pick the right int or fp register. unsigned argNo=0; for(Function::const_aiterator I = Meth->abegin(), E = Meth->aend(); I != E; ++I, ++argNo) { LiveRange *LR = LRI.getLiveRangeForValue(I); assert(LR && "No live range found for method arg"); unsigned regType = getRegTypeForLR(LR); unsigned regClassIDOfArgReg = BadRegClass; // for chosen reg (unused) int regNum = (regType == IntRegType) ? regNumForIntArg(/*inCallee*/ true, isVarArgs, argNo, regClassIDOfArgReg) : regNumForFPArg(regType, /*inCallee*/ true, isVarArgs, argNo, regClassIDOfArgReg); if (regNum != getInvalidRegNum()) LR->setSuggestedColor(regNum); } } //--------------------------------------------------------------------------- // This method is called after graph coloring to move incoming args to // the correct hardware registers if they did not receive the correct // (suggested) color through graph coloring. //--------------------------------------------------------------------------- void SparcRegInfo::colorMethodArgs(const Function *Meth, LiveRangeInfo &LRI, std::vector& InstrnsBefore, std::vector& InstrnsAfter) const { // check if this is a varArgs function. needed for choosing regs. bool isVarArgs = isVarArgsFunction(Meth->getType()); MachineInstr *AdMI; // for each argument // for each argument. count INT and FP arguments separately. unsigned argNo=0, intArgNo=0, fpArgNo=0; for(Function::const_aiterator I = Meth->abegin(), E = Meth->aend(); I != E; ++I, ++argNo) { // get the LR of arg LiveRange *LR = LRI.getLiveRangeForValue(I); assert( LR && "No live range found for method arg"); unsigned regType = getRegTypeForLR(LR); unsigned RegClassID = LR->getRegClassID(); // Find whether this argument is coming in a register (if not, on stack) // Also find the correct register the argument must use (UniArgReg) // bool isArgInReg = false; unsigned UniArgReg = getInvalidRegNum(); // reg that LR MUST be colored with unsigned regClassIDOfArgReg = BadRegClass; // reg class of chosen reg int regNum = (regType == IntRegType) ? regNumForIntArg(/*inCallee*/ true, isVarArgs, argNo, regClassIDOfArgReg) : regNumForFPArg(regType, /*inCallee*/ true, isVarArgs, argNo, regClassIDOfArgReg); if(regNum != getInvalidRegNum()) { isArgInReg = true; UniArgReg = getUnifiedRegNum( regClassIDOfArgReg, regNum); } if( ! LR->isMarkedForSpill() ) { // if this arg received a register unsigned UniLRReg = getUnifiedRegNum( RegClassID, LR->getColor() ); // if LR received the correct color, nothing to do // if( UniLRReg == UniArgReg ) continue; // We are here because the LR did not receive the suggested // but LR received another register. // Now we have to copy the %i reg (or stack pos of arg) // to the register the LR was colored with. // if the arg is coming in UniArgReg register, it MUST go into // the UniLRReg register // if( isArgInReg ) { if( regClassIDOfArgReg != RegClassID ) { assert(0 && "This could should work but it is not tested yet"); // It is a variable argument call: the float reg must go in a %o reg. // We have to move an int reg to a float reg via memory. // assert(isVarArgs && RegClassID == FloatRegClassID && regClassIDOfArgReg == IntRegClassID && "This should only be an Int register for an FP argument"); int TmpOff = MachineFunction::get(Meth).getInfo()->pushTempValue( getSpilledRegSize(regType)); cpReg2MemMI(InstrnsBefore, UniArgReg, getFramePointer(), TmpOff, IntRegType); cpMem2RegMI(InstrnsBefore, getFramePointer(), TmpOff, UniLRReg, regType); } else { cpReg2RegMI(InstrnsBefore, UniArgReg, UniLRReg, regType); } } else { // Now the arg is coming on stack. Since the LR received a register, // we just have to load the arg on stack into that register // const TargetFrameInfo& frameInfo = target.getFrameInfo(); int offsetFromFP = frameInfo.getIncomingArgOffset(MachineFunction::get(Meth), argNo); // float arguments on stack are right justified so adjust the offset! // int arguments are also right justified but they are always loaded as // a full double-word so the offset does not need to be adjusted. if (regType == FPSingleRegType) { unsigned argSize = target.getTargetData().getTypeSize(LR->getType()); unsigned slotSize = frameInfo.getSizeOfEachArgOnStack(); assert(argSize <= slotSize && "Insufficient slot size!"); offsetFromFP += slotSize - argSize; } cpMem2RegMI(InstrnsBefore, getFramePointer(), offsetFromFP, UniLRReg, regType); } } // if LR received a color else { // Now, the LR did not receive a color. But it has a stack offset for // spilling. // So, if the arg is coming in UniArgReg register, we can just move // that on to the stack pos of LR if( isArgInReg ) { if( regClassIDOfArgReg != RegClassID ) { assert(0 && "FP arguments to a varargs function should be explicitly " "copied to/from int registers by instruction selection!"); // It must be a float arg for a variable argument call, which // must come in a %o reg. Move the int reg to the stack. // assert(isVarArgs && regClassIDOfArgReg == IntRegClassID && "This should only be an Int register for an FP argument"); cpReg2MemMI(InstrnsBefore, UniArgReg, getFramePointer(), LR->getSpillOffFromFP(), IntRegType); } else { cpReg2MemMI(InstrnsBefore, UniArgReg, getFramePointer(), LR->getSpillOffFromFP(), regType); } } else { // Now the arg is coming on stack. Since the LR did NOT // received a register as well, it is allocated a stack position. We // can simply change the stack position of the LR. We can do this, // since this method is called before any other method that makes // uses of the stack pos of the LR (e.g., updateMachineInstr) // const TargetFrameInfo& frameInfo = target.getFrameInfo(); int offsetFromFP = frameInfo.getIncomingArgOffset(MachineFunction::get(Meth), argNo); // FP arguments on stack are right justified so adjust offset! // int arguments are also right justified but they are always loaded as // a full double-word so the offset does not need to be adjusted. if (regType == FPSingleRegType) { unsigned argSize = target.getTargetData().getTypeSize(LR->getType()); unsigned slotSize = frameInfo.getSizeOfEachArgOnStack(); assert(argSize <= slotSize && "Insufficient slot size!"); offsetFromFP += slotSize - argSize; } LR->modifySpillOffFromFP( offsetFromFP ); } } } // for each incoming argument } //--------------------------------------------------------------------------- // This method is called before graph coloring to suggest colors to the // outgoing call args and the return value of the call. //--------------------------------------------------------------------------- void SparcRegInfo::suggestRegs4CallArgs(MachineInstr *CallMI, LiveRangeInfo& LRI) const { assert ( (target.getInstrInfo()).isCall(CallMI->getOpcode()) ); CallArgsDescriptor* argDesc = CallArgsDescriptor::get(CallMI); suggestReg4CallAddr(CallMI, LRI); // First color the return value of the call instruction, if any. // The return value will be in %o0 if the value is an integer type, // or in %f0 if the value is a float type. // if (const Value *RetVal = argDesc->getReturnValue()) { LiveRange *RetValLR = LRI.getLiveRangeForValue(RetVal); assert(RetValLR && "No LR for return Value of call!"); unsigned RegClassID = RetValLR->getRegClassID(); // now suggest a register depending on the register class of ret arg if( RegClassID == IntRegClassID ) RetValLR->setSuggestedColor(SparcIntRegClass::o0); else if (RegClassID == FloatRegClassID ) RetValLR->setSuggestedColor(SparcFloatRegClass::f0 ); else assert( 0 && "Unknown reg class for return value of call\n"); } // Now suggest colors for arguments (operands) of the call instruction. // Colors are suggested only if the arg number is smaller than the // the number of registers allocated for argument passing. // Now, go thru call args - implicit operands of the call MI unsigned NumOfCallArgs = argDesc->getNumArgs(); for(unsigned argNo=0, i=0, intArgNo=0, fpArgNo=0; i < NumOfCallArgs; ++i, ++argNo) { const Value *CallArg = argDesc->getArgInfo(i).getArgVal(); // get the LR of call operand (parameter) LiveRange *const LR = LRI.getLiveRangeForValue(CallArg); if (!LR) continue; // no live ranges for constants and labels unsigned regType = getRegTypeForLR(LR); unsigned regClassIDOfArgReg = BadRegClass; // chosen reg class (unused) // Choose a register for this arg depending on whether it is // an INT or FP value. Here we ignore whether or not it is a // varargs calls, because FP arguments will be explicitly copied // to an integer Value and handled under (argCopy != NULL) below. int regNum = (regType == IntRegType) ? regNumForIntArg(/*inCallee*/ false, /*isVarArgs*/ false, argNo, regClassIDOfArgReg) : regNumForFPArg(regType, /*inCallee*/ false, /*isVarArgs*/ false, argNo, regClassIDOfArgReg); // If a register could be allocated, use it. // If not, do NOTHING as this will be colored as a normal value. if(regNum != getInvalidRegNum()) LR->setSuggestedColor(regNum); } // for all call arguments } //--------------------------------------------------------------------------- // this method is called for an LLVM return instruction to identify which // values will be returned from this method and to suggest colors. //--------------------------------------------------------------------------- void SparcRegInfo::suggestReg4RetValue(MachineInstr *RetMI, LiveRangeInfo& LRI) const { assert( (target.getInstrInfo()).isReturn( RetMI->getOpcode() ) ); suggestReg4RetAddr(RetMI, LRI); // To find the return value (if any), we can get the LLVM return instr. // from the return address register, which is the first operand Value* tmpI = RetMI->getOperand(0).getVRegValue(); ReturnInst* retI=cast(cast(tmpI)->getOperand(0)); if (const Value *RetVal = retI->getReturnValue()) if (LiveRange *const LR = LRI.getLiveRangeForValue(RetVal)) LR->setSuggestedColor(LR->getRegClassID() == IntRegClassID ? (unsigned) SparcIntRegClass::i0 : (unsigned) SparcFloatRegClass::f0); } //--------------------------------------------------------------------------- // Check if a specified register type needs a scratch register to be // copied to/from memory. If it does, the reg. type that must be used // for scratch registers is returned in scratchRegType. // // Only the int CC register needs such a scratch register. // The FP CC registers can (and must) be copied directly to/from memory. //--------------------------------------------------------------------------- bool SparcRegInfo::regTypeNeedsScratchReg(int RegType, int& scratchRegType) const { if (RegType == IntCCRegType) { scratchRegType = IntRegType; return true; } return false; } //--------------------------------------------------------------------------- // Copy from a register to register. Register number must be the unified // register number. //--------------------------------------------------------------------------- void SparcRegInfo::cpReg2RegMI(std::vector& mvec, unsigned SrcReg, unsigned DestReg, int RegType) const { assert( ((int)SrcReg != getInvalidRegNum()) && ((int)DestReg != getInvalidRegNum()) && "Invalid Register"); MachineInstr * MI = NULL; switch( RegType ) { case IntCCRegType: if (getRegType(DestReg) == IntRegType) { // copy intCC reg to int reg MI = (BuildMI(V9::RDCCR, 2) .addMReg(getUnifiedRegNum(SparcRegInfo::IntCCRegClassID, SparcIntCCRegClass::ccr)) .addMReg(DestReg,MOTy::Def)); } else { // copy int reg to intCC reg assert(getRegType(SrcReg) == IntRegType && "Can only copy CC reg to/from integer reg"); MI = (BuildMI(V9::WRCCRr, 3) .addMReg(SrcReg) .addMReg(SparcIntRegClass::g0) .addMReg(getUnifiedRegNum(SparcRegInfo::IntCCRegClassID, SparcIntCCRegClass::ccr), MOTy::Def)); } break; case FloatCCRegType: assert(0 && "Cannot copy FPCC register to any other register"); break; case IntRegType: MI = BuildMI(V9::ADDr, 3).addMReg(SrcReg).addMReg(getZeroRegNum()) .addMReg(DestReg, MOTy::Def); break; case FPSingleRegType: MI = BuildMI(V9::FMOVS, 2).addMReg(SrcReg).addMReg(DestReg, MOTy::Def); break; case FPDoubleRegType: MI = BuildMI(V9::FMOVD, 2).addMReg(SrcReg).addMReg(DestReg, MOTy::Def); break; default: assert(0 && "Unknown RegType"); break; } if (MI) mvec.push_back(MI); } //--------------------------------------------------------------------------- // Copy from a register to memory (i.e., Store). Register number must // be the unified register number //--------------------------------------------------------------------------- void SparcRegInfo::cpReg2MemMI(std::vector& mvec, unsigned SrcReg, unsigned PtrReg, int Offset, int RegType, int scratchReg) const { MachineInstr * MI = NULL; int OffReg = -1; // If the Offset will not fit in the signed-immediate field, find an // unused register to hold the offset value. This takes advantage of // the fact that all the opcodes used below have the same size immed. field. // Use the register allocator, PRA, to find an unused reg. at this MI. // if (RegType != IntCCRegType) // does not use offset below if (! target.getInstrInfo().constantFitsInImmedField(V9::LDXi, Offset)) { #ifdef CAN_FIND_FREE_REGISTER_TRANSPARENTLY RegClass* RC = PRA.getRegClassByID(this->getRegClassIDOfRegType(RegType)); OffReg = PRA.getUnusedUniRegAtMI(RC, RegType, MInst, LVSetBef); #else // Default to using register g4 for holding large offsets OffReg = getUnifiedRegNum(SparcRegInfo::IntRegClassID, SparcIntRegClass::g4); #endif assert(OffReg >= 0 && "FIXME: cpReg2MemMI cannot find an unused reg."); mvec.push_back(BuildMI(V9::SETSW, 2).addZImm(Offset).addReg(OffReg)); } switch (RegType) { case IntRegType: if (target.getInstrInfo().constantFitsInImmedField(V9::STXi, Offset)) MI = BuildMI(V9::STXi,3).addMReg(SrcReg).addMReg(PtrReg).addSImm(Offset); else MI = BuildMI(V9::STXr,3).addMReg(SrcReg).addMReg(PtrReg).addMReg(OffReg); break; case FPSingleRegType: if (target.getInstrInfo().constantFitsInImmedField(V9::STFi, Offset)) MI = BuildMI(V9::STFi, 3).addMReg(SrcReg).addMReg(PtrReg).addSImm(Offset); else MI = BuildMI(V9::STFr, 3).addMReg(SrcReg).addMReg(PtrReg).addMReg(OffReg); break; case FPDoubleRegType: if (target.getInstrInfo().constantFitsInImmedField(V9::STDFi, Offset)) MI = BuildMI(V9::STDFi,3).addMReg(SrcReg).addMReg(PtrReg).addSImm(Offset); else MI = BuildMI(V9::STDFr,3).addMReg(SrcReg).addMReg(PtrReg).addSImm(OffReg); break; case IntCCRegType: assert(scratchReg >= 0 && "Need scratch reg to store %ccr to memory"); assert(getRegType(scratchReg) ==IntRegType && "Invalid scratch reg"); MI = (BuildMI(V9::RDCCR, 2) .addMReg(getUnifiedRegNum(SparcRegInfo::IntCCRegClassID, SparcIntCCRegClass::ccr)) .addMReg(scratchReg, MOTy::Def)); mvec.push_back(MI); cpReg2MemMI(mvec, scratchReg, PtrReg, Offset, IntRegType); return; case FloatCCRegType: { unsigned fsrReg = getUnifiedRegNum(SparcRegInfo::SpecialRegClassID, SparcSpecialRegClass::fsr); if (target.getInstrInfo().constantFitsInImmedField(V9::STXFSRi, Offset)) MI=BuildMI(V9::STXFSRi,3).addMReg(fsrReg).addMReg(PtrReg).addSImm(Offset); else MI=BuildMI(V9::STXFSRr,3).addMReg(fsrReg).addMReg(PtrReg).addMReg(OffReg); break; } default: assert(0 && "Unknown RegType in cpReg2MemMI"); } mvec.push_back(MI); } //--------------------------------------------------------------------------- // Copy from memory to a reg (i.e., Load) Register number must be the unified // register number //--------------------------------------------------------------------------- void SparcRegInfo::cpMem2RegMI(std::vector& mvec, unsigned PtrReg, int Offset, unsigned DestReg, int RegType, int scratchReg) const { MachineInstr * MI = NULL; int OffReg = -1; // If the Offset will not fit in the signed-immediate field, find an // unused register to hold the offset value. This takes advantage of // the fact that all the opcodes used below have the same size immed. field. // Use the register allocator, PRA, to find an unused reg. at this MI. // if (RegType != IntCCRegType) // does not use offset below if (! target.getInstrInfo().constantFitsInImmedField(V9::LDXi, Offset)) { #ifdef CAN_FIND_FREE_REGISTER_TRANSPARENTLY RegClass* RC = PRA.getRegClassByID(this->getRegClassIDOfRegType(RegType)); OffReg = PRA.getUnusedUniRegAtMI(RC, RegType, MInst, LVSetBef); #else // Default to using register g4 for holding large offsets OffReg = getUnifiedRegNum(SparcRegInfo::IntRegClassID, SparcIntRegClass::g4); #endif assert(OffReg >= 0 && "FIXME: cpReg2MemMI cannot find an unused reg."); mvec.push_back(BuildMI(V9::SETSW, 2).addZImm(Offset).addReg(OffReg)); } switch (RegType) { case IntRegType: if (target.getInstrInfo().constantFitsInImmedField(V9::LDXi, Offset)) MI = BuildMI(V9::LDXi, 3).addMReg(PtrReg).addSImm(Offset).addMReg(DestReg, MOTy::Def); else MI = BuildMI(V9::LDXr, 3).addMReg(PtrReg).addMReg(OffReg).addMReg(DestReg, MOTy::Def); break; case FPSingleRegType: if (target.getInstrInfo().constantFitsInImmedField(V9::LDFi, Offset)) MI = BuildMI(V9::LDFi, 3).addMReg(PtrReg).addSImm(Offset).addMReg(DestReg, MOTy::Def); else MI = BuildMI(V9::LDFr, 3).addMReg(PtrReg).addMReg(OffReg).addMReg(DestReg, MOTy::Def); break; case FPDoubleRegType: if (target.getInstrInfo().constantFitsInImmedField(V9::LDDFi, Offset)) MI= BuildMI(V9::LDDFi, 3).addMReg(PtrReg).addSImm(Offset).addMReg(DestReg, MOTy::Def); else MI= BuildMI(V9::LDDFr, 3).addMReg(PtrReg).addMReg(OffReg).addMReg(DestReg, MOTy::Def); break; case IntCCRegType: assert(scratchReg >= 0 && "Need scratch reg to load %ccr from memory"); assert(getRegType(scratchReg) ==IntRegType && "Invalid scratch reg"); cpMem2RegMI(mvec, PtrReg, Offset, scratchReg, IntRegType); MI = (BuildMI(V9::WRCCRr, 3) .addMReg(scratchReg) .addMReg(SparcIntRegClass::g0) .addMReg(getUnifiedRegNum(SparcRegInfo::IntCCRegClassID, SparcIntCCRegClass::ccr), MOTy::Def)); break; case FloatCCRegType: { unsigned fsrRegNum = getUnifiedRegNum(SparcRegInfo::SpecialRegClassID, SparcSpecialRegClass::fsr); if (target.getInstrInfo().constantFitsInImmedField(V9::LDXFSRi, Offset)) MI = BuildMI(V9::LDXFSRi, 3).addMReg(PtrReg).addSImm(Offset) .addMReg(fsrRegNum, MOTy::UseAndDef); else MI = BuildMI(V9::LDXFSRr, 3).addMReg(PtrReg).addMReg(OffReg) .addMReg(fsrRegNum, MOTy::UseAndDef); break; } default: assert(0 && "Unknown RegType in cpMem2RegMI"); } mvec.push_back(MI); } //--------------------------------------------------------------------------- // Generate a copy instruction to copy a value to another. Temporarily // used by PhiElimination code. //--------------------------------------------------------------------------- void SparcRegInfo::cpValue2Value(Value *Src, Value *Dest, std::vector& mvec) const { int RegType = getRegTypeForDataType(Src->getType()); MachineInstr * MI = NULL; switch( RegType ) { case IntRegType: MI = BuildMI(V9::ADDr, 3).addReg(Src).addMReg(getZeroRegNum()) .addRegDef(Dest); break; case FPSingleRegType: MI = BuildMI(V9::FMOVS, 2).addReg(Src).addRegDef(Dest); break; case FPDoubleRegType: MI = BuildMI(V9::FMOVD, 2).addReg(Src).addRegDef(Dest); break; default: assert(0 && "Unknow RegType in CpValu2Value"); } mvec.push_back(MI); } //--------------------------------------------------------------------------- // Print the register assigned to a LR //--------------------------------------------------------------------------- void SparcRegInfo::printReg(const LiveRange *LR) const { unsigned RegClassID = LR->getRegClassID(); std::cerr << " Node "; if (!LR->hasColor()) { std::cerr << " - could not find a color\n"; return; } // if a color is found std::cerr << " colored with color "<< LR->getColor(); unsigned uRegName = getUnifiedRegNum(RegClassID, LR->getColor()); std::cerr << "["; std::cerr<< getUnifiedRegName(uRegName); if (RegClassID == FloatRegClassID && LR->getType() == Type::DoubleTy) std::cerr << "+" << getUnifiedRegName(uRegName+1); std::cerr << "]\n"; } } // End llvm namespace