//===- Dominators.cpp - Dominator Calculation -----------------------------===// // // The LLVM Compiler Infrastructure // // This file was developed by the LLVM research group and is distributed under // the University of Illinois Open Source License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// // // This file implements simple dominator construction algorithms for finding // forward dominators. Postdominators are available in libanalysis, but are not // included in libvmcore, because it's not needed. Forward dominators are // needed to support the Verifier pass. // //===----------------------------------------------------------------------===// #include "llvm/Analysis/Dominators.h" #include "llvm/Support/CFG.h" #include "llvm/Assembly/Writer.h" #include "llvm/ADT/DepthFirstIterator.h" #include "llvm/ADT/SetOperations.h" #include "llvm/ADT/SmallPtrSet.h" #include "llvm/Instructions.h" #include "llvm/Support/Streams.h" #include using namespace llvm; namespace llvm { static std::ostream &operator<<(std::ostream &o, const std::set &BBs) { for (std::set::const_iterator I = BBs.begin(), E = BBs.end(); I != E; ++I) if (*I) WriteAsOperand(o, *I, false); else o << " <>"; return o; } } //===----------------------------------------------------------------------===// // DominatorTree Implementation //===----------------------------------------------------------------------===// // // DominatorTree construction - This pass constructs immediate dominator // information for a flow-graph based on the algorithm described in this // document: // // A Fast Algorithm for Finding Dominators in a Flowgraph // T. Lengauer & R. Tarjan, ACM TOPLAS July 1979, pgs 121-141. // // This implements both the O(n*ack(n)) and the O(n*log(n)) versions of EVAL and // LINK, but it turns out that the theoretically slower O(n*log(n)) // implementation is actually faster than the "efficient" algorithm (even for // large CFGs) because the constant overheads are substantially smaller. The // lower-complexity version can be enabled with the following #define: // #define BALANCE_IDOM_TREE 0 // //===----------------------------------------------------------------------===// char DominatorTree::ID = 0; static RegisterPass E("domtree", "Dominator Tree Construction", true); unsigned DominatorTree::DFSPass(BasicBlock *V, InfoRec &VInfo, unsigned N) { // This is more understandable as a recursive algorithm, but we can't use the // recursive algorithm due to stack depth issues. Keep it here for // documentation purposes. #if 0 VInfo.Semi = ++N; VInfo.Label = V; Vertex.push_back(V); // Vertex[n] = V; //Info[V].Ancestor = 0; // Ancestor[n] = 0 //Info[V].Child = 0; // Child[v] = 0 VInfo.Size = 1; // Size[v] = 1 for (succ_iterator SI = succ_begin(V), E = succ_end(V); SI != E; ++SI) { InfoRec &SuccVInfo = Info[*SI]; if (SuccVInfo.Semi == 0) { SuccVInfo.Parent = V; N = DFSPass(*SI, SuccVInfo, N); } } #else std::vector > Worklist; Worklist.push_back(std::make_pair(V, 0U)); while (!Worklist.empty()) { BasicBlock *BB = Worklist.back().first; unsigned NextSucc = Worklist.back().second; // First time we visited this BB? if (NextSucc == 0) { InfoRec &BBInfo = Info[BB]; BBInfo.Semi = ++N; BBInfo.Label = BB; Vertex.push_back(BB); // Vertex[n] = V; //BBInfo[V].Ancestor = 0; // Ancestor[n] = 0 //BBInfo[V].Child = 0; // Child[v] = 0 BBInfo.Size = 1; // Size[v] = 1 } // If we are done with this block, remove it from the worklist. if (NextSucc == BB->getTerminator()->getNumSuccessors()) { Worklist.pop_back(); continue; } // Otherwise, increment the successor number for the next time we get to it. ++Worklist.back().second; // Visit the successor next, if it isn't already visited. BasicBlock *Succ = BB->getTerminator()->getSuccessor(NextSucc); InfoRec &SuccVInfo = Info[Succ]; if (SuccVInfo.Semi == 0) { SuccVInfo.Parent = BB; Worklist.push_back(std::make_pair(Succ, 0U)); } } #endif return N; } void DominatorTree::Compress(BasicBlock *VIn) { std::vector Work; std::set Visited; InfoRec &VInInfo = Info[VIn]; BasicBlock *VInAncestor = VInInfo.Ancestor; InfoRec &VInVAInfo = Info[VInAncestor]; if (VInVAInfo.Ancestor != 0) Work.push_back(VIn); while (!Work.empty()) { BasicBlock *V = Work.back(); InfoRec &VInfo = Info[V]; BasicBlock *VAncestor = VInfo.Ancestor; InfoRec &VAInfo = Info[VAncestor]; // Process Ancestor first if (Visited.count(VAncestor) == 0 && VAInfo.Ancestor != 0) { Work.push_back(VAncestor); Visited.insert(VAncestor); continue; } Work.pop_back(); // Update VINfo based on Ancestor info if (VAInfo.Ancestor == 0) continue; BasicBlock *VAncestorLabel = VAInfo.Label; BasicBlock *VLabel = VInfo.Label; if (Info[VAncestorLabel].Semi < Info[VLabel].Semi) VInfo.Label = VAncestorLabel; VInfo.Ancestor = VAInfo.Ancestor; } } BasicBlock *DominatorTree::Eval(BasicBlock *V) { InfoRec &VInfo = Info[V]; #if !BALANCE_IDOM_TREE // Higher-complexity but faster implementation if (VInfo.Ancestor == 0) return V; Compress(V); return VInfo.Label; #else // Lower-complexity but slower implementation if (VInfo.Ancestor == 0) return VInfo.Label; Compress(V); BasicBlock *VLabel = VInfo.Label; BasicBlock *VAncestorLabel = Info[VInfo.Ancestor].Label; if (Info[VAncestorLabel].Semi >= Info[VLabel].Semi) return VLabel; else return VAncestorLabel; #endif } void DominatorTree::Link(BasicBlock *V, BasicBlock *W, InfoRec &WInfo){ #if !BALANCE_IDOM_TREE // Higher-complexity but faster implementation WInfo.Ancestor = V; #else // Lower-complexity but slower implementation BasicBlock *WLabel = WInfo.Label; unsigned WLabelSemi = Info[WLabel].Semi; BasicBlock *S = W; InfoRec *SInfo = &Info[S]; BasicBlock *SChild = SInfo->Child; InfoRec *SChildInfo = &Info[SChild]; while (WLabelSemi < Info[SChildInfo->Label].Semi) { BasicBlock *SChildChild = SChildInfo->Child; if (SInfo->Size+Info[SChildChild].Size >= 2*SChildInfo->Size) { SChildInfo->Ancestor = S; SInfo->Child = SChild = SChildChild; SChildInfo = &Info[SChild]; } else { SChildInfo->Size = SInfo->Size; S = SInfo->Ancestor = SChild; SInfo = SChildInfo; SChild = SChildChild; SChildInfo = &Info[SChild]; } } InfoRec &VInfo = Info[V]; SInfo->Label = WLabel; assert(V != W && "The optimization here will not work in this case!"); unsigned WSize = WInfo.Size; unsigned VSize = (VInfo.Size += WSize); if (VSize < 2*WSize) std::swap(S, VInfo.Child); while (S) { SInfo = &Info[S]; SInfo->Ancestor = V; S = SInfo->Child; } #endif } void DominatorTree::calculate(Function& F) { BasicBlock* Root = Roots[0]; Nodes[Root] = RootNode = new Node(Root, 0); // Add a node for the root... Vertex.push_back(0); // Step #1: Number blocks in depth-first order and initialize variables used // in later stages of the algorithm. unsigned N = 0; for (unsigned i = 0, e = Roots.size(); i != e; ++i) N = DFSPass(Roots[i], Info[Roots[i]], 0); for (unsigned i = N; i >= 2; --i) { BasicBlock *W = Vertex[i]; InfoRec &WInfo = Info[W]; // Step #2: Calculate the semidominators of all vertices for (pred_iterator PI = pred_begin(W), E = pred_end(W); PI != E; ++PI) if (Info.count(*PI)) { // Only if this predecessor is reachable! unsigned SemiU = Info[Eval(*PI)].Semi; if (SemiU < WInfo.Semi) WInfo.Semi = SemiU; } Info[Vertex[WInfo.Semi]].Bucket.push_back(W); BasicBlock *WParent = WInfo.Parent; Link(WParent, W, WInfo); // Step #3: Implicitly define the immediate dominator of vertices std::vector &WParentBucket = Info[WParent].Bucket; while (!WParentBucket.empty()) { BasicBlock *V = WParentBucket.back(); WParentBucket.pop_back(); BasicBlock *U = Eval(V); IDoms[V] = Info[U].Semi < Info[V].Semi ? U : WParent; } } // Step #4: Explicitly define the immediate dominator of each vertex for (unsigned i = 2; i <= N; ++i) { BasicBlock *W = Vertex[i]; BasicBlock *&WIDom = IDoms[W]; if (WIDom != Vertex[Info[W].Semi]) WIDom = IDoms[WIDom]; } // Loop over all of the reachable blocks in the function... for (Function::iterator I = F.begin(), E = F.end(); I != E; ++I) if (BasicBlock *ImmDom = getIDom(I)) { // Reachable block. Node *&BBNode = Nodes[I]; if (!BBNode) { // Haven't calculated this node yet? // Get or calculate the node for the immediate dominator Node *IDomNode = getNodeForBlock(ImmDom); // Add a new tree node for this BasicBlock, and link it as a child of // IDomNode BBNode = IDomNode->addChild(new Node(I, IDomNode)); } } // Free temporary memory used to construct idom's Info.clear(); IDoms.clear(); std::vector().swap(Vertex); } // DominatorTreeBase::reset - Free all of the tree node memory. // void DominatorTreeBase::reset() { for (NodeMapType::iterator I = Nodes.begin(), E = Nodes.end(); I != E; ++I) delete I->second; Nodes.clear(); IDoms.clear(); Roots.clear(); Vertex.clear(); RootNode = 0; } void DominatorTreeBase::Node::setIDom(Node *NewIDom) { assert(IDom && "No immediate dominator?"); if (IDom != NewIDom) { std::vector::iterator I = std::find(IDom->Children.begin(), IDom->Children.end(), this); assert(I != IDom->Children.end() && "Not in immediate dominator children set!"); // I am no longer your child... IDom->Children.erase(I); // Switch to new dominator IDom = NewIDom; IDom->Children.push_back(this); } } DominatorTreeBase::Node *DominatorTree::getNodeForBlock(BasicBlock *BB) { Node *&BBNode = Nodes[BB]; if (BBNode) return BBNode; // Haven't calculated this node yet? Get or calculate the node for the // immediate dominator. BasicBlock *IDom = getIDom(BB); Node *IDomNode = getNodeForBlock(IDom); // Add a new tree node for this BasicBlock, and link it as a child of // IDomNode return BBNode = IDomNode->addChild(new Node(BB, IDomNode)); } static std::ostream &operator<<(std::ostream &o, const DominatorTreeBase::Node *Node) { if (Node->getBlock()) WriteAsOperand(o, Node->getBlock(), false); else o << " <>"; return o << "\n"; } static void PrintDomTree(const DominatorTreeBase::Node *N, std::ostream &o, unsigned Lev) { o << std::string(2*Lev, ' ') << "[" << Lev << "] " << N; for (DominatorTreeBase::Node::const_iterator I = N->begin(), E = N->end(); I != E; ++I) PrintDomTree(*I, o, Lev+1); } void DominatorTreeBase::print(std::ostream &o, const Module* ) const { o << "=============================--------------------------------\n" << "Inorder Dominator Tree:\n"; PrintDomTree(getRootNode(), o, 1); } void DominatorTreeBase::dump() { print (llvm::cerr); } bool DominatorTree::runOnFunction(Function &F) { reset(); // Reset from the last time we were run... Roots.push_back(&F.getEntryBlock()); calculate(F); return false; } //===----------------------------------------------------------------------===// // DominanceFrontier Implementation //===----------------------------------------------------------------------===// char DominanceFrontier::ID = 0; static RegisterPass G("domfrontier", "Dominance Frontier Construction", true); namespace { class DFCalculateWorkObject { public: DFCalculateWorkObject(BasicBlock *B, BasicBlock *P, const DominatorTree::Node *N, const DominatorTree::Node *PN) : currentBB(B), parentBB(P), Node(N), parentNode(PN) {} BasicBlock *currentBB; BasicBlock *parentBB; const DominatorTree::Node *Node; const DominatorTree::Node *parentNode; }; } const DominanceFrontier::DomSetType & DominanceFrontier::calculate(const DominatorTree &DT, const DominatorTree::Node *Node) { BasicBlock *BB = Node->getBlock(); DomSetType *Result = NULL; std::vector workList; SmallPtrSet visited; workList.push_back(DFCalculateWorkObject(BB, NULL, Node, NULL)); do { DFCalculateWorkObject *currentW = &workList.back(); assert (currentW && "Missing work object."); BasicBlock *currentBB = currentW->currentBB; BasicBlock *parentBB = currentW->parentBB; const DominatorTree::Node *currentNode = currentW->Node; const DominatorTree::Node *parentNode = currentW->parentNode; assert (currentBB && "Invalid work object. Missing current Basic Block"); assert (currentNode && "Invalid work object. Missing current Node"); DomSetType &S = Frontiers[currentBB]; // Visit each block only once. if (visited.count(currentBB) == 0) { visited.insert(currentBB); // Loop over CFG successors to calculate DFlocal[currentNode] for (succ_iterator SI = succ_begin(currentBB), SE = succ_end(currentBB); SI != SE; ++SI) { // Does Node immediately dominate this successor? if (DT[*SI]->getIDom() != currentNode) S.insert(*SI); } } // At this point, S is DFlocal. Now we union in DFup's of our children... // Loop through and visit the nodes that Node immediately dominates (Node's // children in the IDomTree) bool visitChild = false; for (DominatorTree::Node::const_iterator NI = currentNode->begin(), NE = currentNode->end(); NI != NE; ++NI) { DominatorTree::Node *IDominee = *NI; BasicBlock *childBB = IDominee->getBlock(); if (visited.count(childBB) == 0) { workList.push_back(DFCalculateWorkObject(childBB, currentBB, IDominee, currentNode)); visitChild = true; } } // If all children are visited or there is any child then pop this block // from the workList. if (!visitChild) { if (!parentBB) { Result = &S; break; } DomSetType::const_iterator CDFI = S.begin(), CDFE = S.end(); DomSetType &parentSet = Frontiers[parentBB]; for (; CDFI != CDFE; ++CDFI) { if (!parentNode->properlyDominates(DT[*CDFI])) parentSet.insert(*CDFI); } workList.pop_back(); } } while (!workList.empty()); return *Result; } void DominanceFrontierBase::print(std::ostream &o, const Module* ) const { for (const_iterator I = begin(), E = end(); I != E; ++I) { o << " DomFrontier for BB"; if (I->first) WriteAsOperand(o, I->first, false); else o << " <>"; o << " is:\t" << I->second << "\n"; } } void DominanceFrontierBase::dump() { print (llvm::cerr); } //===----------------------------------------------------------------------===// // ETOccurrence Implementation //===----------------------------------------------------------------------===// void ETOccurrence::Splay() { ETOccurrence *father; ETOccurrence *grandfather; int occdepth; int fatherdepth; while (Parent) { occdepth = Depth; father = Parent; fatherdepth = Parent->Depth; grandfather = father->Parent; // If we have no grandparent, a single zig or zag will do. if (!grandfather) { setDepthAdd(fatherdepth); MinOccurrence = father->MinOccurrence; Min = father->Min; // See what we have to rotate if (father->Left == this) { // Zig father->setLeft(Right); setRight(father); if (father->Left) father->Left->setDepthAdd(occdepth); } else { // Zag father->setRight(Left); setLeft(father); if (father->Right) father->Right->setDepthAdd(occdepth); } father->setDepth(-occdepth); Parent = NULL; father->recomputeMin(); return; } // If we have a grandfather, we need to do some // combination of zig and zag. int grandfatherdepth = grandfather->Depth; setDepthAdd(fatherdepth + grandfatherdepth); MinOccurrence = grandfather->MinOccurrence; Min = grandfather->Min; ETOccurrence *greatgrandfather = grandfather->Parent; if (grandfather->Left == father) { if (father->Left == this) { // Zig zig grandfather->setLeft(father->Right); father->setLeft(Right); setRight(father); father->setRight(grandfather); father->setDepth(-occdepth); if (father->Left) father->Left->setDepthAdd(occdepth); grandfather->setDepth(-fatherdepth); if (grandfather->Left) grandfather->Left->setDepthAdd(fatherdepth); } else { // Zag zig grandfather->setLeft(Right); father->setRight(Left); setLeft(father); setRight(grandfather); father->setDepth(-occdepth); if (father->Right) father->Right->setDepthAdd(occdepth); grandfather->setDepth(-occdepth - fatherdepth); if (grandfather->Left) grandfather->Left->setDepthAdd(occdepth + fatherdepth); } } else { if (father->Left == this) { // Zig zag grandfather->setRight(Left); father->setLeft(Right); setLeft(grandfather); setRight(father); father->setDepth(-occdepth); if (father->Left) father->Left->setDepthAdd(occdepth); grandfather->setDepth(-occdepth - fatherdepth); if (grandfather->Right) grandfather->Right->setDepthAdd(occdepth + fatherdepth); } else { // Zag Zag grandfather->setRight(father->Left); father->setRight(Left); setLeft(father); father->setLeft(grandfather); father->setDepth(-occdepth); if (father->Right) father->Right->setDepthAdd(occdepth); grandfather->setDepth(-fatherdepth); if (grandfather->Right) grandfather->Right->setDepthAdd(fatherdepth); } } // Might need one more rotate depending on greatgrandfather. setParent(greatgrandfather); if (greatgrandfather) { if (greatgrandfather->Left == grandfather) greatgrandfather->Left = this; else greatgrandfather->Right = this; } grandfather->recomputeMin(); father->recomputeMin(); } } //===----------------------------------------------------------------------===// // ETNode implementation //===----------------------------------------------------------------------===// void ETNode::Split() { ETOccurrence *right, *left; ETOccurrence *rightmost = RightmostOcc; ETOccurrence *parent; // Update the occurrence tree first. RightmostOcc->Splay(); // Find the leftmost occurrence in the rightmost subtree, then splay // around it. for (right = rightmost->Right; right->Left; right = right->Left); right->Splay(); // Start splitting right->Left->Parent = NULL; parent = ParentOcc; parent->Splay(); ParentOcc = NULL; left = parent->Left; parent->Right->Parent = NULL; right->setLeft(left); right->recomputeMin(); rightmost->Splay(); rightmost->Depth = 0; rightmost->Min = 0; delete parent; // Now update *our* tree if (Father->Son == this) Father->Son = Right; if (Father->Son == this) Father->Son = NULL; else { Left->Right = Right; Right->Left = Left; } Left = Right = NULL; Father = NULL; } void ETNode::setFather(ETNode *NewFather) { ETOccurrence *rightmost; ETOccurrence *leftpart; ETOccurrence *NewFatherOcc; ETOccurrence *temp; // First update the path in the splay tree NewFatherOcc = new ETOccurrence(NewFather); rightmost = NewFather->RightmostOcc; rightmost->Splay(); leftpart = rightmost->Left; temp = RightmostOcc; temp->Splay(); NewFatherOcc->setLeft(leftpart); NewFatherOcc->setRight(temp); temp->Depth++; temp->Min++; NewFatherOcc->recomputeMin(); rightmost->setLeft(NewFatherOcc); if (NewFatherOcc->Min + rightmost->Depth < rightmost->Min) { rightmost->Min = NewFatherOcc->Min + rightmost->Depth; rightmost->MinOccurrence = NewFatherOcc->MinOccurrence; } delete ParentOcc; ParentOcc = NewFatherOcc; // Update *our* tree ETNode *left; ETNode *right; Father = NewFather; right = Father->Son; if (right) left = right->Left; else left = right = this; left->Right = this; right->Left = this; Left = left; Right = right; Father->Son = this; } bool ETNode::Below(ETNode *other) { ETOccurrence *up = other->RightmostOcc; ETOccurrence *down = RightmostOcc; if (this == other) return true; up->Splay(); ETOccurrence *left, *right; left = up->Left; right = up->Right; if (!left) return false; left->Parent = NULL; if (right) right->Parent = NULL; down->Splay(); if (left == down || left->Parent != NULL) { if (right) right->Parent = up; up->setLeft(down); } else { left->Parent = up; // If the two occurrences are in different trees, put things // back the way they were. if (right && right->Parent != NULL) up->setRight(down); else up->setRight(right); return false; } if (down->Depth <= 0) return false; return !down->Right || down->Right->Min + down->Depth >= 0; } ETNode *ETNode::NCA(ETNode *other) { ETOccurrence *occ1 = RightmostOcc; ETOccurrence *occ2 = other->RightmostOcc; ETOccurrence *left, *right, *ret; ETOccurrence *occmin; int mindepth; if (this == other) return this; occ1->Splay(); left = occ1->Left; right = occ1->Right; if (left) left->Parent = NULL; if (right) right->Parent = NULL; occ2->Splay(); if (left == occ2 || (left && left->Parent != NULL)) { ret = occ2->Right; occ1->setLeft(occ2); if (right) right->Parent = occ1; } else { ret = occ2->Left; occ1->setRight(occ2); if (left) left->Parent = occ1; } if (occ2->Depth > 0) { occmin = occ1; mindepth = occ1->Depth; } else { occmin = occ2; mindepth = occ2->Depth + occ1->Depth; } if (ret && ret->Min + occ1->Depth + occ2->Depth < mindepth) return ret->MinOccurrence->OccFor; else return occmin->OccFor; } void ETNode::assignDFSNumber(int num) { std::vector workStack; std::set visitedNodes; workStack.push_back(this); visitedNodes.insert(this); this->DFSNumIn = num++; while (!workStack.empty()) { ETNode *Node = workStack.back(); // If this is leaf node then set DFSNumOut and pop the stack if (!Node->Son) { Node->DFSNumOut = num++; workStack.pop_back(); continue; } ETNode *son = Node->Son; // Visit Node->Son first if (visitedNodes.count(son) == 0) { son->DFSNumIn = num++; workStack.push_back(son); visitedNodes.insert(son); continue; } bool visitChild = false; // Visit remaining children for (ETNode *s = son->Right; s != son && !visitChild; s = s->Right) { if (visitedNodes.count(s) == 0) { visitChild = true; s->DFSNumIn = num++; workStack.push_back(s); visitedNodes.insert(s); } } if (!visitChild) { // If we reach here means all children are visited Node->DFSNumOut = num++; workStack.pop_back(); } } } //===----------------------------------------------------------------------===// // ETForest implementation //===----------------------------------------------------------------------===// char ETForest::ID = 0; static RegisterPass D("etforest", "ET Forest Construction", true); void ETForestBase::reset() { for (ETMapType::iterator I = Nodes.begin(), E = Nodes.end(); I != E; ++I) delete I->second; Nodes.clear(); } void ETForestBase::updateDFSNumbers() { int dfsnum = 0; // Iterate over all nodes in depth first order. for (unsigned i = 0, e = Roots.size(); i != e; ++i) for (df_iterator I = df_begin(Roots[i]), E = df_end(Roots[i]); I != E; ++I) { BasicBlock *BB = *I; ETNode *ETN = getNode(BB); if (ETN && !ETN->hasFather()) ETN->assignDFSNumber(dfsnum); } SlowQueries = 0; DFSInfoValid = true; } // dominates - Return true if A dominates B. THis performs the // special checks necessary if A and B are in the same basic block. bool ETForestBase::dominates(Instruction *A, Instruction *B) { BasicBlock *BBA = A->getParent(), *BBB = B->getParent(); if (BBA != BBB) return dominates(BBA, BBB); // It is not possible to determine dominance between two PHI nodes // based on their ordering. if (isa(A) && isa(B)) return false; // Loop through the basic block until we find A or B. BasicBlock::iterator I = BBA->begin(); for (; &*I != A && &*I != B; ++I) /*empty*/; if(!IsPostDominators) { // A dominates B if it is found first in the basic block. return &*I == A; } else { // A post-dominates B if B is found first in the basic block. return &*I == B; } } /// isReachableFromEntry - Return true if A is dominated by the entry /// block of the function containing it. const bool ETForestBase::isReachableFromEntry(BasicBlock* A) { return dominates(&A->getParent()->getEntryBlock(), A); } ETNode *ETForest::getNodeForBlock(BasicBlock *BB) { ETNode *&BBNode = Nodes[BB]; if (BBNode) return BBNode; // Haven't calculated this node yet? Get or calculate the node for the // immediate dominator. DominatorTree::Node *node= getAnalysis().getNode(BB); // If we are unreachable, we may not have an immediate dominator. if (!node || !node->getIDom()) return BBNode = new ETNode(BB); else { ETNode *IDomNode = getNodeForBlock(node->getIDom()->getBlock()); // Add a new tree node for this BasicBlock, and link it as a child of // IDomNode BBNode = new ETNode(BB); BBNode->setFather(IDomNode); return BBNode; } } void ETForest::calculate(const DominatorTree &DT) { assert(Roots.size() == 1 && "ETForest should have 1 root block!"); BasicBlock *Root = Roots[0]; Nodes[Root] = new ETNode(Root); // Add a node for the root Function *F = Root->getParent(); // Loop over all of the reachable blocks in the function... for (Function::iterator I = F->begin(), E = F->end(); I != E; ++I) { DominatorTree::Node* node = DT.getNode(I); if (node && node->getIDom()) { // Reachable block. BasicBlock* ImmDom = node->getIDom()->getBlock(); ETNode *&BBNode = Nodes[I]; if (!BBNode) { // Haven't calculated this node yet? // Get or calculate the node for the immediate dominator ETNode *IDomNode = getNodeForBlock(ImmDom); // Add a new ETNode for this BasicBlock, and set it's parent // to it's immediate dominator. BBNode = new ETNode(I); BBNode->setFather(IDomNode); } } } // Make sure we've got nodes around for every block for (Function::iterator I = F->begin(), E = F->end(); I != E; ++I) { ETNode *&BBNode = Nodes[I]; if (!BBNode) BBNode = new ETNode(I); } updateDFSNumbers (); } //===----------------------------------------------------------------------===// // ETForestBase Implementation //===----------------------------------------------------------------------===// void ETForestBase::addNewBlock(BasicBlock *BB, BasicBlock *IDom) { ETNode *&BBNode = Nodes[BB]; assert(!BBNode && "BasicBlock already in ET-Forest"); BBNode = new ETNode(BB); BBNode->setFather(getNode(IDom)); DFSInfoValid = false; } void ETForestBase::setImmediateDominator(BasicBlock *BB, BasicBlock *newIDom) { assert(getNode(BB) && "BasicBlock not in ET-Forest"); assert(getNode(newIDom) && "IDom not in ET-Forest"); ETNode *Node = getNode(BB); if (Node->hasFather()) { if (Node->getFather()->getData() == newIDom) return; Node->Split(); } Node->setFather(getNode(newIDom)); DFSInfoValid= false; } void ETForestBase::print(std::ostream &o, const Module *) const { o << "=============================--------------------------------\n"; o << "ET Forest:\n"; o << "DFS Info "; if (DFSInfoValid) o << "is"; else o << "is not"; o << " up to date\n"; Function *F = getRoots()[0]->getParent(); for (Function::iterator I = F->begin(), E = F->end(); I != E; ++I) { o << " DFS Numbers For Basic Block:"; WriteAsOperand(o, I, false); o << " are:"; if (ETNode *EN = getNode(I)) { o << "In: " << EN->getDFSNumIn(); o << " Out: " << EN->getDFSNumOut() << "\n"; } else { o << "No associated ETNode"; } o << "\n"; } o << "\n"; } void ETForestBase::dump() { print (llvm::cerr); }