//===-- Constants.cpp - Implement Constant nodes --------------------------===// // // This file implements the Constant* classes... // //===----------------------------------------------------------------------===// #include "llvm/Constants.h" #include "llvm/ConstantHandling.h" #include "llvm/DerivedTypes.h" #include "llvm/iMemory.h" #include "llvm/SymbolTable.h" #include "llvm/Module.h" #include "Support/StringExtras.h" #include ConstantBool *ConstantBool::True = new ConstantBool(true); ConstantBool *ConstantBool::False = new ConstantBool(false); //===----------------------------------------------------------------------===// // Constant Class //===----------------------------------------------------------------------===// // Specialize setName to take care of symbol table majik void Constant::setName(const std::string &Name, SymbolTable *ST) { assert(ST && "Type::setName - Must provide symbol table argument!"); if (Name.size()) ST->insert(Name, this); } void Constant::destroyConstantImpl() { // When a Constant is destroyed, there may be lingering // references to the constant by other constants in the constant pool. These // constants are implicitly dependant on the module that is being deleted, // but they don't know that. Because we only find out when the CPV is // deleted, we must now notify all of our users (that should only be // Constants) that they are, in fact, invalid now and should be deleted. // while (!use_empty()) { Value *V = use_back(); #ifndef NDEBUG // Only in -g mode... if (!isa(V)) std::cerr << "While deleting: " << *this << "\n\nUse still stuck around after Def is destroyed: " << *V << "\n\n"; #endif assert(isa(V) && "References remain to Constant being destroyed"); Constant *CPV = cast(V); CPV->destroyConstant(); // The constant should remove itself from our use list... assert((use_empty() || use_back() != V) && "Constant not removed!"); } // Value has no outstanding references it is safe to delete it now... delete this; } // Static constructor to create a '0' constant of arbitrary type... Constant *Constant::getNullValue(const Type *Ty) { switch (Ty->getPrimitiveID()) { case Type::BoolTyID: return ConstantBool::get(false); case Type::SByteTyID: case Type::ShortTyID: case Type::IntTyID: case Type::LongTyID: return ConstantSInt::get(Ty, 0); case Type::UByteTyID: case Type::UShortTyID: case Type::UIntTyID: case Type::ULongTyID: return ConstantUInt::get(Ty, 0); case Type::FloatTyID: case Type::DoubleTyID: return ConstantFP::get(Ty, 0); case Type::PointerTyID: return ConstantPointerNull::get(cast(Ty)); case Type::StructTyID: { const StructType *ST = cast(Ty); const StructType::ElementTypes &ETs = ST->getElementTypes(); std::vector Elements; Elements.resize(ETs.size()); for (unsigned i = 0, e = ETs.size(); i != e; ++i) Elements[i] = Constant::getNullValue(ETs[i]); return ConstantStruct::get(ST, Elements); } case Type::ArrayTyID: { const ArrayType *AT = cast(Ty); Constant *El = Constant::getNullValue(AT->getElementType()); unsigned NumElements = AT->getNumElements(); return ConstantArray::get(AT, std::vector(NumElements, El)); } default: // Function, Type, Label, or Opaque type? assert(0 && "Cannot create a null constant of that type!"); return 0; } } // Static constructor to create the maximum constant of an integral type... ConstantIntegral *ConstantIntegral::getMaxValue(const Type *Ty) { switch (Ty->getPrimitiveID()) { case Type::BoolTyID: return ConstantBool::True; case Type::SByteTyID: case Type::ShortTyID: case Type::IntTyID: case Type::LongTyID: { // Calculate 011111111111111... unsigned TypeBits = Ty->getPrimitiveSize()*8; int64_t Val = INT64_MAX; // All ones Val >>= 64-TypeBits; // Shift out unwanted 1 bits... return ConstantSInt::get(Ty, Val); } case Type::UByteTyID: case Type::UShortTyID: case Type::UIntTyID: case Type::ULongTyID: return getAllOnesValue(Ty); default: return 0; } } // Static constructor to create the minimum constant for an integral type... ConstantIntegral *ConstantIntegral::getMinValue(const Type *Ty) { switch (Ty->getPrimitiveID()) { case Type::BoolTyID: return ConstantBool::False; case Type::SByteTyID: case Type::ShortTyID: case Type::IntTyID: case Type::LongTyID: { // Calculate 1111111111000000000000 unsigned TypeBits = Ty->getPrimitiveSize()*8; int64_t Val = -1; // All ones Val <<= TypeBits-1; // Shift over to the right spot return ConstantSInt::get(Ty, Val); } case Type::UByteTyID: case Type::UShortTyID: case Type::UIntTyID: case Type::ULongTyID: return ConstantUInt::get(Ty, 0); default: return 0; } } // Static constructor to create an integral constant with all bits set ConstantIntegral *ConstantIntegral::getAllOnesValue(const Type *Ty) { switch (Ty->getPrimitiveID()) { case Type::BoolTyID: return ConstantBool::True; case Type::SByteTyID: case Type::ShortTyID: case Type::IntTyID: case Type::LongTyID: return ConstantSInt::get(Ty, -1); case Type::UByteTyID: case Type::UShortTyID: case Type::UIntTyID: case Type::ULongTyID: { // Calculate ~0 of the right type... unsigned TypeBits = Ty->getPrimitiveSize()*8; uint64_t Val = ~0ULL; // All ones Val >>= 64-TypeBits; // Shift out unwanted 1 bits... return ConstantUInt::get(Ty, Val); } default: return 0; } } bool ConstantUInt::isAllOnesValue() const { unsigned TypeBits = getType()->getPrimitiveSize()*8; uint64_t Val = ~0ULL; // All ones Val >>= 64-TypeBits; // Shift out inappropriate bits return getValue() == Val; } //===----------------------------------------------------------------------===// // ConstantXXX Classes //===----------------------------------------------------------------------===// //===----------------------------------------------------------------------===// // Normal Constructors ConstantBool::ConstantBool(bool V) : ConstantIntegral(Type::BoolTy) { Val = V; } ConstantInt::ConstantInt(const Type *Ty, uint64_t V) : ConstantIntegral(Ty) { Val.Unsigned = V; } ConstantSInt::ConstantSInt(const Type *Ty, int64_t V) : ConstantInt(Ty, V) { assert(Ty->isInteger() && Ty->isSigned() && "Illegal type for unsigned integer constant!"); assert(isValueValidForType(Ty, V) && "Value too large for type!"); } ConstantUInt::ConstantUInt(const Type *Ty, uint64_t V) : ConstantInt(Ty, V) { assert(Ty->isInteger() && Ty->isUnsigned() && "Illegal type for unsigned integer constant!"); assert(isValueValidForType(Ty, V) && "Value too large for type!"); } ConstantFP::ConstantFP(const Type *Ty, double V) : Constant(Ty) { assert(isValueValidForType(Ty, V) && "Value too large for type!"); Val = V; } ConstantArray::ConstantArray(const ArrayType *T, const std::vector &V) : Constant(T) { Operands.reserve(V.size()); for (unsigned i = 0, e = V.size(); i != e; ++i) { assert(V[i]->getType() == T->getElementType()); Operands.push_back(Use(V[i], this)); } } ConstantStruct::ConstantStruct(const StructType *T, const std::vector &V) : Constant(T) { const StructType::ElementTypes &ETypes = T->getElementTypes(); assert(V.size() == ETypes.size() && "Invalid initializer vector for constant structure"); Operands.reserve(V.size()); for (unsigned i = 0, e = V.size(); i != e; ++i) { assert((V[i]->getType() == ETypes[i] || (ETypes[i]->isAbstract() && ETypes[i]->getPrimitiveID()==V[i]->getType()->getPrimitiveID())) && "Initializer for struct element doesn't match struct element type!"); Operands.push_back(Use(V[i], this)); } } ConstantPointerRef::ConstantPointerRef(GlobalValue *GV) : ConstantPointer(GV->getType()) { Operands.push_back(Use(GV, this)); } ConstantExpr::ConstantExpr(unsigned Opcode, Constant *C, const Type *Ty) : Constant(Ty), iType(Opcode) { Operands.push_back(Use(C, this)); } static bool isSetCC(unsigned Opcode) { return Opcode == Instruction::SetEQ || Opcode == Instruction::SetNE || Opcode == Instruction::SetLT || Opcode == Instruction::SetGT || Opcode == Instruction::SetLE || Opcode == Instruction::SetGE; } ConstantExpr::ConstantExpr(unsigned Opcode, Constant *C1, Constant *C2) : Constant(isSetCC(Opcode) ? Type::BoolTy : C1->getType()), iType(Opcode) { Operands.push_back(Use(C1, this)); Operands.push_back(Use(C2, this)); } ConstantExpr::ConstantExpr(Constant *C, const std::vector &IdxList, const Type *DestTy) : Constant(DestTy), iType(Instruction::GetElementPtr) { Operands.reserve(1+IdxList.size()); Operands.push_back(Use(C, this)); for (unsigned i = 0, E = IdxList.size(); i != E; ++i) Operands.push_back(Use(IdxList[i], this)); } //===----------------------------------------------------------------------===// // classof implementations bool ConstantIntegral::classof(const Constant *CPV) { return CPV->getType()->isIntegral() && !isa(CPV); } bool ConstantInt::classof(const Constant *CPV) { return CPV->getType()->isInteger() && !isa(CPV); } bool ConstantSInt::classof(const Constant *CPV) { return CPV->getType()->isSigned() && !isa(CPV); } bool ConstantUInt::classof(const Constant *CPV) { return CPV->getType()->isUnsigned() && !isa(CPV); } bool ConstantFP::classof(const Constant *CPV) { const Type *Ty = CPV->getType(); return ((Ty == Type::FloatTy || Ty == Type::DoubleTy) && !isa(CPV)); } bool ConstantArray::classof(const Constant *CPV) { return isa(CPV->getType()) && !isa(CPV); } bool ConstantStruct::classof(const Constant *CPV) { return isa(CPV->getType()) && !isa(CPV); } bool ConstantPointer::classof(const Constant *CPV) { return (isa(CPV->getType()) && !isa(CPV)); } //===----------------------------------------------------------------------===// // isValueValidForType implementations bool ConstantSInt::isValueValidForType(const Type *Ty, int64_t Val) { switch (Ty->getPrimitiveID()) { default: return false; // These can't be represented as integers!!! // Signed types... case Type::SByteTyID: return (Val <= INT8_MAX && Val >= INT8_MIN); case Type::ShortTyID: return (Val <= INT16_MAX && Val >= INT16_MIN); case Type::IntTyID: return (Val <= INT32_MAX && Val >= INT32_MIN); case Type::LongTyID: return true; // This is the largest type... } assert(0 && "WTF?"); return false; } bool ConstantUInt::isValueValidForType(const Type *Ty, uint64_t Val) { switch (Ty->getPrimitiveID()) { default: return false; // These can't be represented as integers!!! // Unsigned types... case Type::UByteTyID: return (Val <= UINT8_MAX); case Type::UShortTyID: return (Val <= UINT16_MAX); case Type::UIntTyID: return (Val <= UINT32_MAX); case Type::ULongTyID: return true; // This is the largest type... } assert(0 && "WTF?"); return false; } bool ConstantFP::isValueValidForType(const Type *Ty, double Val) { switch (Ty->getPrimitiveID()) { default: return false; // These can't be represented as floating point! // TODO: Figure out how to test if a double can be cast to a float! case Type::FloatTyID: /* return (Val <= UINT8_MAX); */ case Type::DoubleTyID: return true; // This is the largest type... } }; //===----------------------------------------------------------------------===// // replaceUsesOfWithOnConstant implementations void ConstantArray::replaceUsesOfWithOnConstant(Value *From, Value *To) { assert(isa(To) && "Cannot make Constant refer to non-constant!"); std::vector Values; Values.reserve(getValues().size()); // Build replacement array... for (unsigned i = 0, e = getValues().size(); i != e; ++i) { Constant *Val = cast(getValues()[i]); if (Val == From) Val = cast(To); Values.push_back(Val); } ConstantArray *Replacement = ConstantArray::get(getType(), Values); assert(Replacement != this && "I didn't contain From!"); // Everyone using this now uses the replacement... replaceAllUsesWith(Replacement); // Delete the old constant! destroyConstant(); } void ConstantStruct::replaceUsesOfWithOnConstant(Value *From, Value *To) { assert(isa(To) && "Cannot make Constant refer to non-constant!"); std::vector Values; Values.reserve(getValues().size()); for (unsigned i = 0, e = getValues().size(); i != e; ++i) { Constant *Val = cast(getValues()[i]); if (Val == From) Val = cast(To); Values.push_back(Val); } ConstantStruct *Replacement = ConstantStruct::get(getType(), Values); assert(Replacement != this && "I didn't contain From!"); // Everyone using this now uses the replacement... replaceAllUsesWith(Replacement); // Delete the old constant! destroyConstant(); } void ConstantPointerRef::replaceUsesOfWithOnConstant(Value *From, Value *To) { if (isa(To)) { assert(From == getOperand(0) && "Doesn't contain from!"); ConstantPointerRef *Replacement = ConstantPointerRef::get(cast(To)); // Everyone using this now uses the replacement... replaceAllUsesWith(Replacement); // Delete the old constant! destroyConstant(); } else { // Just replace ourselves with the To value specified. replaceAllUsesWith(To); // Delete the old constant! destroyConstant(); } } void ConstantExpr::replaceUsesOfWithOnConstant(Value *From, Value *ToV) { assert(isa(ToV) && "Cannot make Constant refer to non-constant!"); Constant *To = cast(ToV); Constant *Replacement = 0; if (getOpcode() == Instruction::GetElementPtr) { std::vector Indices; Constant *Pointer = getOperand(0); Indices.reserve(getNumOperands()-1); if (Pointer == From) Pointer = To; for (unsigned i = 1, e = getNumOperands(); i != e; ++i) { Constant *Val = getOperand(i); if (Val == From) Val = To; Indices.push_back(Val); } Replacement = ConstantExpr::getGetElementPtr(Pointer, Indices); } else if (getOpcode() == Instruction::Cast) { assert(getOperand(0) == From && "Cast only has one use!"); Replacement = ConstantExpr::getCast(To, getType()); } else if (getNumOperands() == 2) { Constant *C1 = getOperand(0); Constant *C2 = getOperand(1); if (C1 == From) C1 = To; if (C2 == From) C2 = To; Replacement = ConstantExpr::get(getOpcode(), C1, C2); } else { assert(0 && "Unknown ConstantExpr type!"); return; } assert(Replacement != this && "I didn't contain From!"); // Everyone using this now uses the replacement... replaceAllUsesWith(Replacement); // Delete the old constant! destroyConstant(); } //===----------------------------------------------------------------------===// // Factory Function Implementation // ConstantCreator - A class that is used to create constants by // ValueMap*. This class should be partially specialized if there is // something strange that needs to be done to interface to the ctor for the // constant. // template struct ConstantCreator { static ConstantClass *create(const TypeClass *Ty, const ValType &V) { return new ConstantClass(Ty, V); } }; namespace { template class ValueMap { protected: typedef std::pair ConstHashKey; std::map Map; public: // getOrCreate - Return the specified constant from the map, creating it if // necessary. ConstantClass *getOrCreate(const TypeClass *Ty, const ValType &V) { ConstHashKey Lookup(Ty, V); typename std::map::iterator I = Map.lower_bound(Lookup); if (I != Map.end() && I->first == Lookup) return I->second; // Is it in the map? // If no preexisting value, create one now... ConstantClass *Result = ConstantCreator::create(Ty, V); Map.insert(I, std::make_pair(ConstHashKey(Ty, V), Result)); return Result; } void remove(ConstantClass *CP) { // FIXME: This could be sped up a LOT. If this gets to be a performance // problem, someone should look at this. for (typename std::map::iterator I = Map.begin(), E = Map.end(); I != E; ++I) if (I->second == CP) { Map.erase(I); return; } assert(0 && "Constant not found in constant table!"); } }; } //---- ConstantUInt::get() and ConstantSInt::get() implementations... // static ValueMap< int64_t, Type, ConstantSInt> SIntConstants; static ValueMap UIntConstants; ConstantSInt *ConstantSInt::get(const Type *Ty, int64_t V) { return SIntConstants.getOrCreate(Ty, V); } ConstantUInt *ConstantUInt::get(const Type *Ty, uint64_t V) { return UIntConstants.getOrCreate(Ty, V); } ConstantInt *ConstantInt::get(const Type *Ty, unsigned char V) { assert(V <= 127 && "Can only be used with very small positive constants!"); if (Ty->isSigned()) return ConstantSInt::get(Ty, V); return ConstantUInt::get(Ty, V); } //---- ConstantFP::get() implementation... // static ValueMap FPConstants; ConstantFP *ConstantFP::get(const Type *Ty, double V) { return FPConstants.getOrCreate(Ty, V); } //---- ConstantArray::get() implementation... // static ValueMap, ArrayType, ConstantArray> ArrayConstants; ConstantArray *ConstantArray::get(const ArrayType *Ty, const std::vector &V) { return ArrayConstants.getOrCreate(Ty, V); } // destroyConstant - Remove the constant from the constant table... // void ConstantArray::destroyConstant() { ArrayConstants.remove(this); destroyConstantImpl(); } /// refineAbstractType - If this callback is invoked, then this constant is of a /// derived type, change all users to use a concrete constant of the new type. /// void ConstantArray::refineAbstractType(const DerivedType *OldTy, const Type *NewTy) { Value::refineAbstractType(OldTy, NewTy); if (OldTy == NewTy) return; // Make everyone now use a constant of the new type... std::vector C; for (unsigned i = 0, e = getNumOperands(); i != e; ++i) C.push_back(cast(getOperand(i))); Constant *New = ConstantArray::get(cast(NewTy), C); if (New != this) { replaceAllUsesWith(New); destroyConstant(); // This constant is now dead, destroy it. } } // ConstantArray::get(const string&) - Return an array that is initialized to // contain the specified string. A null terminator is added to the specified // string so that it may be used in a natural way... // ConstantArray *ConstantArray::get(const std::string &Str) { std::vector ElementVals; for (unsigned i = 0; i < Str.length(); ++i) ElementVals.push_back(ConstantSInt::get(Type::SByteTy, Str[i])); // Add a null terminator to the string... ElementVals.push_back(ConstantSInt::get(Type::SByteTy, 0)); ArrayType *ATy = ArrayType::get(Type::SByteTy, Str.length()+1); return ConstantArray::get(ATy, ElementVals); } // getAsString - If the sub-element type of this array is either sbyte or ubyte, // then this method converts the array to an std::string and returns it. // Otherwise, it asserts out. // std::string ConstantArray::getAsString() const { std::string Result; if (getType()->getElementType() == Type::SByteTy) for (unsigned i = 0, e = getNumOperands(); i != e; ++i) Result += (char)cast(getOperand(i))->getValue(); else { assert(getType()->getElementType() == Type::UByteTy && "Not a string!"); for (unsigned i = 0, e = getNumOperands(); i != e; ++i) Result += (char)cast(getOperand(i))->getValue(); } return Result; } //---- ConstantStruct::get() implementation... // static ValueMap, StructType, ConstantStruct> StructConstants; ConstantStruct *ConstantStruct::get(const StructType *Ty, const std::vector &V) { return StructConstants.getOrCreate(Ty, V); } // destroyConstant - Remove the constant from the constant table... // void ConstantStruct::destroyConstant() { StructConstants.remove(this); destroyConstantImpl(); } /// refineAbstractType - If this callback is invoked, then this constant is of a /// derived type, change all users to use a concrete constant of the new type. /// void ConstantStruct::refineAbstractType(const DerivedType *OldTy, const Type *NewTy) { Value::refineAbstractType(OldTy, NewTy); if (OldTy == NewTy) return; // Make everyone now use a constant of the new type... std::vector C; for (unsigned i = 0, e = getNumOperands(); i != e; ++i) C.push_back(cast(getOperand(i))); Constant *New = ConstantStruct::get(cast(NewTy), C); if (New != this) { replaceAllUsesWith(New); destroyConstant(); // This constant is now dead, destroy it. } } //---- ConstantPointerNull::get() implementation... // // ConstantPointerNull does not take extra "value" argument... template struct ConstantCreator { static ConstantPointerNull *create(const PointerType *Ty, const ValType &V){ return new ConstantPointerNull(Ty); } }; static ValueMap NullPtrConstants; ConstantPointerNull *ConstantPointerNull::get(const PointerType *Ty) { return NullPtrConstants.getOrCreate(Ty, 0); } // destroyConstant - Remove the constant from the constant table... // void ConstantPointerNull::destroyConstant() { NullPtrConstants.remove(this); destroyConstantImpl(); } /// refineAbstractType - If this callback is invoked, then this constant is of a /// derived type, change all users to use a concrete constant of the new type. /// void ConstantPointerNull::refineAbstractType(const DerivedType *OldTy, const Type *NewTy) { Value::refineAbstractType(OldTy, NewTy); if (OldTy == NewTy) return; // Make everyone now use a constant of the new type... Constant *New = ConstantPointerNull::get(cast(NewTy)); if (New != this) { replaceAllUsesWith(New); // This constant is now dead, destroy it. destroyConstant(); } } //---- ConstantPointerRef::get() implementation... // ConstantPointerRef *ConstantPointerRef::get(GlobalValue *GV) { assert(GV->getParent() && "Global Value must be attached to a module!"); // The Module handles the pointer reference sharing... return GV->getParent()->getConstantPointerRef(GV); } // destroyConstant - Remove the constant from the constant table... // void ConstantPointerRef::destroyConstant() { getValue()->getParent()->destroyConstantPointerRef(this); destroyConstantImpl(); } //---- ConstantExpr::get() implementations... // typedef std::pair > ExprMapKeyType; template<> struct ConstantCreator { static ConstantExpr *create(const Type *Ty, const ExprMapKeyType &V) { if (V.first == Instruction::Cast) return new ConstantExpr(Instruction::Cast, V.second[0], Ty); if ((V.first >= Instruction::BinaryOpsBegin && V.first < Instruction::BinaryOpsEnd) || V.first == Instruction::Shl || V.first == Instruction::Shr) return new ConstantExpr(V.first, V.second[0], V.second[1]); assert(V.first == Instruction::GetElementPtr && "Invalid ConstantExpr!"); // Check that the indices list is valid... std::vector ValIdxList(V.second.begin()+1, V.second.end()); const Type *DestTy = GetElementPtrInst::getIndexedType(Ty, ValIdxList, true); assert(DestTy && "Invalid index list for GetElementPtr expression"); std::vector IdxList(V.second.begin()+1, V.second.end()); return new ConstantExpr(V.second[0], IdxList, PointerType::get(DestTy)); } }; static ValueMap ExprConstants; Constant *ConstantExpr::getCast(Constant *C, const Type *Ty) { if (Constant *FC = ConstantFoldCastInstruction(C, Ty)) return FC; // Fold a few common cases... // Look up the constant in the table first to ensure uniqueness std::vector argVec(1, C); ExprMapKeyType Key = std::make_pair(Instruction::Cast, argVec); return ExprConstants.getOrCreate(Ty, Key); } Constant *ConstantExpr::get(unsigned Opcode, Constant *C1, Constant *C2) { // Check the operands for consistency first assert((Opcode >= Instruction::BinaryOpsBegin && Opcode < Instruction::BinaryOpsEnd) && "Invalid opcode in binary constant expression"); assert(C1->getType() == C2->getType() && "Operand types in binary constant expression should match"); if (Constant *FC = ConstantFoldBinaryInstruction(Opcode, C1, C2)) return FC; // Fold a few common cases... std::vector argVec(1, C1); argVec.push_back(C2); ExprMapKeyType Key = std::make_pair(Opcode, argVec); return ExprConstants.getOrCreate(C1->getType(), Key); } /// getShift - Return a shift left or shift right constant expr Constant *ConstantExpr::getShift(unsigned Opcode, Constant *C1, Constant *C2) { // Check the operands for consistency first assert((Opcode == Instruction::Shl || Opcode == Instruction::Shr) && "Invalid opcode in binary constant expression"); assert(C1->getType()->isIntegral() && C2->getType() == Type::UByteTy && "Invalid operand types for Shift constant expr!"); if (Constant *FC = ConstantFoldShiftInstruction(Opcode, C1, C2)) return FC; // Fold a few common cases... // Look up the constant in the table first to ensure uniqueness std::vector argVec(1, C1); argVec.push_back(C2); ExprMapKeyType Key = std::make_pair(Opcode, argVec); return ExprConstants.getOrCreate(C1->getType(), Key); } Constant *ConstantExpr::getGetElementPtr(Constant *C, const std::vector &IdxList){ if (Constant *FC = ConstantFoldGetElementPtr(C, IdxList)) return FC; // Fold a few common cases... const Type *Ty = C->getType(); assert(isa(Ty) && "Non-pointer type for constant GetElementPtr expression"); // Look up the constant in the table first to ensure uniqueness std::vector argVec(1, C); argVec.insert(argVec.end(), IdxList.begin(), IdxList.end()); const ExprMapKeyType &Key = std::make_pair(Instruction::GetElementPtr,argVec); return ExprConstants.getOrCreate(Ty, Key); } // destroyConstant - Remove the constant from the constant table... // void ConstantExpr::destroyConstant() { ExprConstants.remove(this); destroyConstantImpl(); } /// refineAbstractType - If this callback is invoked, then this constant is of a /// derived type, change all users to use a concrete constant of the new type. /// void ConstantExpr::refineAbstractType(const DerivedType *OldTy, const Type *NewTy) { Value::refineAbstractType(OldTy, NewTy); if (OldTy == NewTy) return; // FIXME: These need to use a lower-level implementation method, because the // ::get methods intuit the type of the result based on the types of the // operands. The operand types may not have had their types resolved yet. // Constant *New; if (getOpcode() == Instruction::Cast) { New = getCast(getOperand(0), NewTy); } else if (getOpcode() >= Instruction::BinaryOpsBegin && getOpcode() < Instruction::BinaryOpsEnd) { New = get(getOpcode(), getOperand(0), getOperand(0)); } else if (getOpcode() == Instruction::Shl || getOpcode() ==Instruction::Shr){ New = getShift(getOpcode(), getOperand(0), getOperand(0)); } else { assert(getOpcode() == Instruction::GetElementPtr); // Make everyone now use a constant of the new type... std::vector C; for (unsigned i = 1, e = getNumOperands(); i != e; ++i) C.push_back(cast(getOperand(i))); New = ConstantExpr::getGetElementPtr(getOperand(0), C); } if (New != this) { replaceAllUsesWith(New); destroyConstant(); // This constant is now dead, destroy it. } } const char *ConstantExpr::getOpcodeName() const { return Instruction::getOpcodeName(getOpcode()); } unsigned Constant::mutateReferences(Value *OldV, Value *NewV) { // Uses of constant pointer refs are global values, not constants! if (ConstantPointerRef *CPR = dyn_cast(this)) { GlobalValue *NewGV = cast(NewV); GlobalValue *OldGV = CPR->getValue(); assert(OldGV == OldV && "Cannot mutate old value if I'm not using it!"); Operands[0] = NewGV; OldGV->getParent()->mutateConstantPointerRef(OldGV, NewGV); return 1; } else { Constant *NewC = cast(NewV); unsigned NumReplaced = 0; for (unsigned i = 0, N = getNumOperands(); i != N; ++i) if (Operands[i] == OldV) { ++NumReplaced; Operands[i] = NewC; } return NumReplaced; } }