//===- CorrelatedExprs.cpp - Pass to detect and eliminated c.e.'s ---------===// // // The LLVM Compiler Infrastructure // // This file was developed by the LLVM research group and is distributed under // the University of Illinois Open Source License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// // // Correlated Expression Elimination propagates information from conditional // branches to blocks dominated by destinations of the branch. It propagates // information from the condition check itself into the body of the branch, // allowing transformations like these for example: // // if (i == 7) // ... 4*i; // constant propagation // // M = i+1; N = j+1; // if (i == j) // X = M-N; // = M-M == 0; // // This is called Correlated Expression Elimination because we eliminate or // simplify expressions that are correlated with the direction of a branch. In // this way we use static information to give us some information about the // dynamic value of a variable. // //===----------------------------------------------------------------------===// #include "llvm/Transforms/Scalar.h" #include "llvm/Constants.h" #include "llvm/Pass.h" #include "llvm/Function.h" #include "llvm/Instructions.h" #include "llvm/Type.h" #include "llvm/Analysis/Dominators.h" #include "llvm/Assembly/Writer.h" #include "llvm/Transforms/Utils/Local.h" #include "llvm/Transforms/Utils/BasicBlockUtils.h" #include "llvm/Support/ConstantRange.h" #include "llvm/Support/CFG.h" #include "llvm/Support/Debug.h" #include "llvm/ADT/PostOrderIterator.h" #include "llvm/ADT/Statistic.h" #include #include using namespace llvm; namespace { Statistic<> NumSetCCRemoved("cee", "Number of setcc instruction eliminated"); Statistic<> NumOperandsCann("cee", "Number of operands canonicalized"); Statistic<> BranchRevectors("cee", "Number of branches revectored"); class ValueInfo; class Relation { Value *Val; // Relation to what value? Instruction::BinaryOps Rel; // SetCC relation, or Add if no information public: Relation(Value *V) : Val(V), Rel(Instruction::Add) {} bool operator<(const Relation &R) const { return Val < R.Val; } Value *getValue() const { return Val; } Instruction::BinaryOps getRelation() const { return Rel; } // contradicts - Return true if the relationship specified by the operand // contradicts already known information. // bool contradicts(Instruction::BinaryOps Rel, const ValueInfo &VI) const; // incorporate - Incorporate information in the argument into this relation // entry. This assumes that the information doesn't contradict itself. If // any new information is gained, true is returned, otherwise false is // returned to indicate that nothing was updated. // bool incorporate(Instruction::BinaryOps Rel, ValueInfo &VI); // KnownResult - Whether or not this condition determines the result of a // setcc in the program. False & True are intentionally 0 & 1 so we can // convert to bool by casting after checking for unknown. // enum KnownResult { KnownFalse = 0, KnownTrue = 1, Unknown = 2 }; // getImpliedResult - If this relationship between two values implies that // the specified relationship is true or false, return that. If we cannot // determine the result required, return Unknown. // KnownResult getImpliedResult(Instruction::BinaryOps Rel) const; // print - Output this relation to the specified stream void print(std::ostream &OS) const; void dump() const; }; // ValueInfo - One instance of this record exists for every value with // relationships between other values. It keeps track of all of the // relationships to other values in the program (specified with Relation) that // are known to be valid in a region. // class ValueInfo { // RelationShips - this value is know to have the specified relationships to // other values. There can only be one entry per value, and this list is // kept sorted by the Val field. std::vector Relationships; // If information about this value is known or propagated from constant // expressions, this range contains the possible values this value may hold. ConstantRange Bounds; // If we find that this value is equal to another value that has a lower // rank, this value is used as it's replacement. // Value *Replacement; public: ValueInfo(const Type *Ty) : Bounds(Ty->isIntegral() ? Ty : Type::IntTy), Replacement(0) {} // getBounds() - Return the constant bounds of the value... const ConstantRange &getBounds() const { return Bounds; } ConstantRange &getBounds() { return Bounds; } const std::vector &getRelationships() { return Relationships; } // getReplacement - Return the value this value is to be replaced with if it // exists, otherwise return null. // Value *getReplacement() const { return Replacement; } // setReplacement - Used by the replacement calculation pass to figure out // what to replace this value with, if anything. // void setReplacement(Value *Repl) { Replacement = Repl; } // getRelation - return the relationship entry for the specified value. // This can invalidate references to other Relations, so use it carefully. // Relation &getRelation(Value *V) { // Binary search for V's entry... std::vector::iterator I = std::lower_bound(Relationships.begin(), Relationships.end(), Relation(V)); // If we found the entry, return it... if (I != Relationships.end() && I->getValue() == V) return *I; // Insert and return the new relationship... return *Relationships.insert(I, V); } const Relation *requestRelation(Value *V) const { // Binary search for V's entry... std::vector::const_iterator I = std::lower_bound(Relationships.begin(), Relationships.end(), Relation(V)); if (I != Relationships.end() && I->getValue() == V) return &*I; return 0; } // print - Output information about this value relation... void print(std::ostream &OS, Value *V) const; void dump() const; }; // RegionInfo - Keeps track of all of the value relationships for a region. A // region is the are dominated by a basic block. RegionInfo's keep track of // the RegionInfo for their dominator, because anything known in a dominator // is known to be true in a dominated block as well. // class RegionInfo { BasicBlock *BB; // ValueMap - Tracks the ValueInformation known for this region typedef std::map ValueMapTy; ValueMapTy ValueMap; public: RegionInfo(BasicBlock *bb) : BB(bb) {} // getEntryBlock - Return the block that dominates all of the members of // this region. BasicBlock *getEntryBlock() const { return BB; } // empty - return true if this region has no information known about it. bool empty() const { return ValueMap.empty(); } const RegionInfo &operator=(const RegionInfo &RI) { ValueMap = RI.ValueMap; return *this; } // print - Output information about this region... void print(std::ostream &OS) const; void dump() const; // Allow external access. typedef ValueMapTy::iterator iterator; iterator begin() { return ValueMap.begin(); } iterator end() { return ValueMap.end(); } ValueInfo &getValueInfo(Value *V) { ValueMapTy::iterator I = ValueMap.lower_bound(V); if (I != ValueMap.end() && I->first == V) return I->second; return ValueMap.insert(I, std::make_pair(V, V->getType()))->second; } const ValueInfo *requestValueInfo(Value *V) const { ValueMapTy::const_iterator I = ValueMap.find(V); if (I != ValueMap.end()) return &I->second; return 0; } /// removeValueInfo - Remove anything known about V from our records. This /// works whether or not we know anything about V. /// void removeValueInfo(Value *V) { ValueMap.erase(V); } }; /// CEE - Correlated Expression Elimination class CEE : public FunctionPass { std::map RankMap; std::map RegionInfoMap; ETForest *EF; DominatorTree *DT; public: virtual bool runOnFunction(Function &F); // We don't modify the program, so we preserve all analyses virtual void getAnalysisUsage(AnalysisUsage &AU) const { AU.addRequired(); AU.addRequired(); AU.addRequiredID(BreakCriticalEdgesID); }; // print - Implement the standard print form to print out analysis // information. virtual void print(std::ostream &O, const Module *M) const; private: RegionInfo &getRegionInfo(BasicBlock *BB) { std::map::iterator I = RegionInfoMap.lower_bound(BB); if (I != RegionInfoMap.end() && I->first == BB) return I->second; return RegionInfoMap.insert(I, std::make_pair(BB, BB))->second; } void BuildRankMap(Function &F); unsigned getRank(Value *V) const { if (isa(V)) return 0; std::map::const_iterator I = RankMap.find(V); if (I != RankMap.end()) return I->second; return 0; // Must be some other global thing } bool TransformRegion(BasicBlock *BB, std::set &VisitedBlocks); bool ForwardCorrelatedEdgeDestination(TerminatorInst *TI, unsigned SuccNo, RegionInfo &RI); void ForwardSuccessorTo(TerminatorInst *TI, unsigned Succ, BasicBlock *D, RegionInfo &RI); void ReplaceUsesOfValueInRegion(Value *Orig, Value *New, BasicBlock *RegionDominator); void CalculateRegionExitBlocks(BasicBlock *BB, BasicBlock *OldSucc, std::vector &RegionExitBlocks); void InsertRegionExitMerges(PHINode *NewPHI, Instruction *OldVal, const std::vector &RegionExitBlocks); void PropagateBranchInfo(BranchInst *BI); void PropagateSwitchInfo(SwitchInst *SI); void PropagateEquality(Value *Op0, Value *Op1, RegionInfo &RI); void PropagateRelation(Instruction::BinaryOps Opcode, Value *Op0, Value *Op1, RegionInfo &RI); void UpdateUsersOfValue(Value *V, RegionInfo &RI); void IncorporateInstruction(Instruction *Inst, RegionInfo &RI); void ComputeReplacements(RegionInfo &RI); // getSetCCResult - Given a setcc instruction, determine if the result is // determined by facts we already know about the region under analysis. // Return KnownTrue, KnownFalse, or Unknown based on what we can determine. // Relation::KnownResult getSetCCResult(SetCondInst *SC, const RegionInfo &RI); bool SimplifyBasicBlock(BasicBlock &BB, const RegionInfo &RI); bool SimplifyInstruction(Instruction *Inst, const RegionInfo &RI); }; RegisterPass X("cee", "Correlated Expression Elimination"); } FunctionPass *llvm::createCorrelatedExpressionEliminationPass() { return new CEE(); } bool CEE::runOnFunction(Function &F) { // Build a rank map for the function... BuildRankMap(F); // Traverse the dominator tree, computing information for each node in the // tree. Note that our traversal will not even touch unreachable basic // blocks. EF = &getAnalysis(); DT = &getAnalysis(); std::set VisitedBlocks; bool Changed = TransformRegion(&F.getEntryBlock(), VisitedBlocks); RegionInfoMap.clear(); RankMap.clear(); return Changed; } // TransformRegion - Transform the region starting with BB according to the // calculated region information for the block. Transforming the region // involves analyzing any information this block provides to successors, // propagating the information to successors, and finally transforming // successors. // // This method processes the function in depth first order, which guarantees // that we process the immediate dominator of a block before the block itself. // Because we are passing information from immediate dominators down to // dominatees, we obviously have to process the information source before the // information consumer. // bool CEE::TransformRegion(BasicBlock *BB, std::set &VisitedBlocks){ // Prevent infinite recursion... if (VisitedBlocks.count(BB)) return false; VisitedBlocks.insert(BB); // Get the computed region information for this block... RegionInfo &RI = getRegionInfo(BB); // Compute the replacement information for this block... ComputeReplacements(RI); // If debugging, print computed region information... DEBUG(RI.print(std::cerr)); // Simplify the contents of this block... bool Changed = SimplifyBasicBlock(*BB, RI); // Get the terminator of this basic block... TerminatorInst *TI = BB->getTerminator(); // Loop over all of the blocks that this block is the immediate dominator for. // Because all information known in this region is also known in all of the // blocks that are dominated by this one, we can safely propagate the // information down now. // DominatorTree::Node *BBN = (*DT)[BB]; if (!RI.empty()) // Time opt: only propagate if we can change something for (unsigned i = 0, e = BBN->getChildren().size(); i != e; ++i) { BasicBlock *Dominated = BBN->getChildren()[i]->getBlock(); assert(RegionInfoMap.find(Dominated) == RegionInfoMap.end() && "RegionInfo should be calculated in dominanace order!"); getRegionInfo(Dominated) = RI; } // Now that all of our successors have information if they deserve it, // propagate any information our terminator instruction finds to our // successors. if (BranchInst *BI = dyn_cast(TI)) { if (BI->isConditional()) PropagateBranchInfo(BI); } else if (SwitchInst *SI = dyn_cast(TI)) { PropagateSwitchInfo(SI); } // If this is a branch to a block outside our region that simply performs // another conditional branch, one whose outcome is known inside of this // region, then vector this outgoing edge directly to the known destination. // for (unsigned i = 0, e = TI->getNumSuccessors(); i != e; ++i) while (ForwardCorrelatedEdgeDestination(TI, i, RI)) { ++BranchRevectors; Changed = true; } // Now that all of our successors have information, recursively process them. for (unsigned i = 0, e = BBN->getChildren().size(); i != e; ++i) Changed |= TransformRegion(BBN->getChildren()[i]->getBlock(),VisitedBlocks); return Changed; } // isBlockSimpleEnoughForCheck to see if the block is simple enough for us to // revector the conditional branch in the bottom of the block, do so now. // static bool isBlockSimpleEnough(BasicBlock *BB) { assert(isa(BB->getTerminator())); BranchInst *BI = cast(BB->getTerminator()); assert(BI->isConditional()); // Check the common case first: empty block, or block with just a setcc. if (BB->size() == 1 || (BB->size() == 2 && &BB->front() == BI->getCondition() && BI->getCondition()->hasOneUse())) return true; // Check the more complex case now... BasicBlock::iterator I = BB->begin(); // FIXME: This should be reenabled once the regression with SIM is fixed! #if 0 // PHI Nodes are ok, just skip over them... while (isa(*I)) ++I; #endif // Accept the setcc instruction... if (&*I == BI->getCondition()) ++I; // Nothing else is acceptable here yet. We must not revector... unless we are // at the terminator instruction. if (&*I == BI) return true; return false; } bool CEE::ForwardCorrelatedEdgeDestination(TerminatorInst *TI, unsigned SuccNo, RegionInfo &RI) { // If this successor is a simple block not in the current region, which // contains only a conditional branch, we decide if the outcome of the branch // can be determined from information inside of the region. Instead of going // to this block, we can instead go to the destination we know is the right // target. // // Check to see if we dominate the block. If so, this block will get the // condition turned to a constant anyway. // //if (EF->dominates(RI.getEntryBlock(), BB)) // return 0; BasicBlock *BB = TI->getParent(); // Get the destination block of this edge... BasicBlock *OldSucc = TI->getSuccessor(SuccNo); // Make sure that the block ends with a conditional branch and is simple // enough for use to be able to revector over. BranchInst *BI = dyn_cast(OldSucc->getTerminator()); if (BI == 0 || !BI->isConditional() || !isBlockSimpleEnough(OldSucc)) return false; // We can only forward the branch over the block if the block ends with a // setcc we can determine the outcome for. // // FIXME: we can make this more generic. Code below already handles more // generic case. SetCondInst *SCI = dyn_cast(BI->getCondition()); if (SCI == 0) return false; // Make a new RegionInfo structure so that we can simulate the effect of the // PHI nodes in the block we are skipping over... // RegionInfo NewRI(RI); // Remove value information for all of the values we are simulating... to make // sure we don't have any stale information. for (BasicBlock::iterator I = OldSucc->begin(), E = OldSucc->end(); I!=E; ++I) if (I->getType() != Type::VoidTy) NewRI.removeValueInfo(I); // Put the newly discovered information into the RegionInfo... for (BasicBlock::iterator I = OldSucc->begin(), E = OldSucc->end(); I!=E; ++I) if (PHINode *PN = dyn_cast(I)) { int OpNum = PN->getBasicBlockIndex(BB); assert(OpNum != -1 && "PHI doesn't have incoming edge for predecessor!?"); PropagateEquality(PN, PN->getIncomingValue(OpNum), NewRI); } else if (SetCondInst *SCI = dyn_cast(I)) { Relation::KnownResult Res = getSetCCResult(SCI, NewRI); if (Res == Relation::Unknown) return false; PropagateEquality(SCI, ConstantBool::get(Res), NewRI); } else { assert(isa(*I) && "Unexpected instruction type!"); } // Compute the facts implied by what we have discovered... ComputeReplacements(NewRI); ValueInfo &PredicateVI = NewRI.getValueInfo(BI->getCondition()); if (PredicateVI.getReplacement() && isa(PredicateVI.getReplacement()) && !isa(PredicateVI.getReplacement())) { ConstantBool *CB = cast(PredicateVI.getReplacement()); // Forward to the successor that corresponds to the branch we will take. ForwardSuccessorTo(TI, SuccNo, BI->getSuccessor(!CB->getValue()), NewRI); return true; } return false; } static Value *getReplacementOrValue(Value *V, RegionInfo &RI) { if (const ValueInfo *VI = RI.requestValueInfo(V)) if (Value *Repl = VI->getReplacement()) return Repl; return V; } /// ForwardSuccessorTo - We have found that we can forward successor # 'SuccNo' /// of Terminator 'TI' to the 'Dest' BasicBlock. This method performs the /// mechanics of updating SSA information and revectoring the branch. /// void CEE::ForwardSuccessorTo(TerminatorInst *TI, unsigned SuccNo, BasicBlock *Dest, RegionInfo &RI) { // If there are any PHI nodes in the Dest BB, we must duplicate the entry // in the PHI node for the old successor to now include an entry from the // current basic block. // BasicBlock *OldSucc = TI->getSuccessor(SuccNo); BasicBlock *BB = TI->getParent(); DEBUG(std::cerr << "Forwarding branch in basic block %" << BB->getName() << " from block %" << OldSucc->getName() << " to block %" << Dest->getName() << "\n"); DEBUG(std::cerr << "Before forwarding: " << *BB->getParent()); // Because we know that there cannot be critical edges in the flow graph, and // that OldSucc has multiple outgoing edges, this means that Dest cannot have // multiple incoming edges. // #ifndef NDEBUG pred_iterator DPI = pred_begin(Dest); ++DPI; assert(DPI == pred_end(Dest) && "Critical edge found!!"); #endif // Loop over any PHI nodes in the destination, eliminating them, because they // may only have one input. // while (PHINode *PN = dyn_cast(&Dest->front())) { assert(PN->getNumIncomingValues() == 1 && "Crit edge found!"); // Eliminate the PHI node PN->replaceAllUsesWith(PN->getIncomingValue(0)); Dest->getInstList().erase(PN); } // If there are values defined in the "OldSucc" basic block, we need to insert // PHI nodes in the regions we are dealing with to emulate them. This can // insert dead phi nodes, but it is more trouble to see if they are used than // to just blindly insert them. // if (EF->dominates(OldSucc, Dest)) { // RegionExitBlocks - Find all of the blocks that are not dominated by Dest, // but have predecessors that are. Additionally, prune down the set to only // include blocks that are dominated by OldSucc as well. // std::vector RegionExitBlocks; CalculateRegionExitBlocks(Dest, OldSucc, RegionExitBlocks); for (BasicBlock::iterator I = OldSucc->begin(), E = OldSucc->end(); I != E; ++I) if (I->getType() != Type::VoidTy) { // Create and insert the PHI node into the top of Dest. PHINode *NewPN = new PHINode(I->getType(), I->getName()+".fw_merge", Dest->begin()); // There is definitely an edge from OldSucc... add the edge now NewPN->addIncoming(I, OldSucc); // There is also an edge from BB now, add the edge with the calculated // value from the RI. NewPN->addIncoming(getReplacementOrValue(I, RI), BB); // Make everything in the Dest region use the new PHI node now... ReplaceUsesOfValueInRegion(I, NewPN, Dest); // Make sure that exits out of the region dominated by NewPN get PHI // nodes that merge the values as appropriate. InsertRegionExitMerges(NewPN, I, RegionExitBlocks); } } // If there were PHI nodes in OldSucc, we need to remove the entry for this // edge from the PHI node, and we need to replace any references to the PHI // node with a new value. // for (BasicBlock::iterator I = OldSucc->begin(); isa(I); ) { PHINode *PN = cast(I); // Get the value flowing across the old edge and remove the PHI node entry // for this edge: we are about to remove the edge! Don't remove the PHI // node yet though if this is the last edge into it. Value *EdgeValue = PN->removeIncomingValue(BB, false); // Make sure that anything that used to use PN now refers to EdgeValue ReplaceUsesOfValueInRegion(PN, EdgeValue, Dest); // If there is only one value left coming into the PHI node, replace the PHI // node itself with the one incoming value left. // if (PN->getNumIncomingValues() == 1) { assert(PN->getNumIncomingValues() == 1); PN->replaceAllUsesWith(PN->getIncomingValue(0)); PN->getParent()->getInstList().erase(PN); I = OldSucc->begin(); } else if (PN->getNumIncomingValues() == 0) { // Nuke the PHI // If we removed the last incoming value to this PHI, nuke the PHI node // now. PN->replaceAllUsesWith(Constant::getNullValue(PN->getType())); PN->getParent()->getInstList().erase(PN); I = OldSucc->begin(); } else { ++I; // Otherwise, move on to the next PHI node } } // Actually revector the branch now... TI->setSuccessor(SuccNo, Dest); // If we just introduced a critical edge in the flow graph, make sure to break // it right away... SplitCriticalEdge(TI, SuccNo, this); // Make sure that we don't introduce critical edges from oldsucc now! for (unsigned i = 0, e = OldSucc->getTerminator()->getNumSuccessors(); i != e; ++i) SplitCriticalEdge(OldSucc->getTerminator(), i, this); // Since we invalidated the CFG, recalculate the dominator set so that it is // useful for later processing! // FIXME: This is much worse than it really should be! //EF->recalculate(); DEBUG(std::cerr << "After forwarding: " << *BB->getParent()); } /// ReplaceUsesOfValueInRegion - This method replaces all uses of Orig with uses /// of New. It only affects instructions that are defined in basic blocks that /// are dominated by Head. /// void CEE::ReplaceUsesOfValueInRegion(Value *Orig, Value *New, BasicBlock *RegionDominator) { assert(Orig != New && "Cannot replace value with itself"); std::vector InstsToChange; std::vector PHIsToChange; InstsToChange.reserve(Orig->getNumUses()); // Loop over instructions adding them to InstsToChange vector, this allows us // an easy way to avoid invalidating the use_iterator at a bad time. for (Value::use_iterator I = Orig->use_begin(), E = Orig->use_end(); I != E; ++I) if (Instruction *User = dyn_cast(*I)) if (EF->dominates(RegionDominator, User->getParent())) InstsToChange.push_back(User); else if (PHINode *PN = dyn_cast(User)) { PHIsToChange.push_back(PN); } // PHIsToChange contains PHI nodes that use Orig that do not live in blocks // dominated by orig. If the block the value flows in from is dominated by // RegionDominator, then we rewrite the PHI for (unsigned i = 0, e = PHIsToChange.size(); i != e; ++i) { PHINode *PN = PHIsToChange[i]; for (unsigned j = 0, e = PN->getNumIncomingValues(); j != e; ++j) if (PN->getIncomingValue(j) == Orig && EF->dominates(RegionDominator, PN->getIncomingBlock(j))) PN->setIncomingValue(j, New); } // Loop over the InstsToChange list, replacing all uses of Orig with uses of // New. This list contains all of the instructions in our region that use // Orig. for (unsigned i = 0, e = InstsToChange.size(); i != e; ++i) if (PHINode *PN = dyn_cast(InstsToChange[i])) { // PHINodes must be handled carefully. If the PHI node itself is in the // region, we have to make sure to only do the replacement for incoming // values that correspond to basic blocks in the region. for (unsigned j = 0, e = PN->getNumIncomingValues(); j != e; ++j) if (PN->getIncomingValue(j) == Orig && EF->dominates(RegionDominator, PN->getIncomingBlock(j))) PN->setIncomingValue(j, New); } else { InstsToChange[i]->replaceUsesOfWith(Orig, New); } } static void CalcRegionExitBlocks(BasicBlock *Header, BasicBlock *BB, std::set &Visited, ETForest &EF, std::vector &RegionExitBlocks) { if (Visited.count(BB)) return; Visited.insert(BB); if (EF.dominates(Header, BB)) { // Block in the region, recursively traverse for (succ_iterator I = succ_begin(BB), E = succ_end(BB); I != E; ++I) CalcRegionExitBlocks(Header, *I, Visited, EF, RegionExitBlocks); } else { // Header does not dominate this block, but we have a predecessor that does // dominate us. Add ourself to the list. RegionExitBlocks.push_back(BB); } } /// CalculateRegionExitBlocks - Find all of the blocks that are not dominated by /// BB, but have predecessors that are. Additionally, prune down the set to /// only include blocks that are dominated by OldSucc as well. /// void CEE::CalculateRegionExitBlocks(BasicBlock *BB, BasicBlock *OldSucc, std::vector &RegionExitBlocks){ std::set Visited; // Don't infinite loop // Recursively calculate blocks we are interested in... CalcRegionExitBlocks(BB, BB, Visited, *EF, RegionExitBlocks); // Filter out blocks that are not dominated by OldSucc... for (unsigned i = 0; i != RegionExitBlocks.size(); ) { if (EF->dominates(OldSucc, RegionExitBlocks[i])) ++i; // Block is ok, keep it. else { // Move to end of list... std::swap(RegionExitBlocks[i], RegionExitBlocks.back()); RegionExitBlocks.pop_back(); // Nuke the end } } } void CEE::InsertRegionExitMerges(PHINode *BBVal, Instruction *OldVal, const std::vector &RegionExitBlocks) { assert(BBVal->getType() == OldVal->getType() && "Should be derived values!"); BasicBlock *BB = BBVal->getParent(); BasicBlock *OldSucc = OldVal->getParent(); // Loop over all of the blocks we have to place PHIs in, doing it. for (unsigned i = 0, e = RegionExitBlocks.size(); i != e; ++i) { BasicBlock *FBlock = RegionExitBlocks[i]; // Block on the frontier // Create the new PHI node PHINode *NewPN = new PHINode(BBVal->getType(), OldVal->getName()+".fw_frontier", FBlock->begin()); // Add an incoming value for every predecessor of the block... for (pred_iterator PI = pred_begin(FBlock), PE = pred_end(FBlock); PI != PE; ++PI) { // If the incoming edge is from the region dominated by BB, use BBVal, // otherwise use OldVal. NewPN->addIncoming(EF->dominates(BB, *PI) ? BBVal : OldVal, *PI); } // Now make everyone dominated by this block use this new value! ReplaceUsesOfValueInRegion(OldVal, NewPN, FBlock); } } // BuildRankMap - This method builds the rank map data structure which gives // each instruction/value in the function a value based on how early it appears // in the function. We give constants and globals rank 0, arguments are // numbered starting at one, and instructions are numbered in reverse post-order // from where the arguments leave off. This gives instructions in loops higher // values than instructions not in loops. // void CEE::BuildRankMap(Function &F) { unsigned Rank = 1; // Skip rank zero. // Number the arguments... for (Function::arg_iterator I = F.arg_begin(), E = F.arg_end(); I != E; ++I) RankMap[I] = Rank++; // Number the instructions in reverse post order... ReversePostOrderTraversal RPOT(&F); for (ReversePostOrderTraversal::rpo_iterator I = RPOT.begin(), E = RPOT.end(); I != E; ++I) for (BasicBlock::iterator BBI = (*I)->begin(), E = (*I)->end(); BBI != E; ++BBI) if (BBI->getType() != Type::VoidTy) RankMap[BBI] = Rank++; } // PropagateBranchInfo - When this method is invoked, we need to propagate // information derived from the branch condition into the true and false // branches of BI. Since we know that there aren't any critical edges in the // flow graph, this can proceed unconditionally. // void CEE::PropagateBranchInfo(BranchInst *BI) { assert(BI->isConditional() && "Must be a conditional branch!"); // Propagate information into the true block... // PropagateEquality(BI->getCondition(), ConstantBool::getTrue(), getRegionInfo(BI->getSuccessor(0))); // Propagate information into the false block... // PropagateEquality(BI->getCondition(), ConstantBool::getFalse(), getRegionInfo(BI->getSuccessor(1))); } // PropagateSwitchInfo - We need to propagate the value tested by the // switch statement through each case block. // void CEE::PropagateSwitchInfo(SwitchInst *SI) { // Propagate information down each of our non-default case labels. We // don't yet propagate information down the default label, because a // potentially large number of inequality constraints provide less // benefit per unit work than a single equality constraint. // Value *cond = SI->getCondition(); for (unsigned i = 1; i < SI->getNumSuccessors(); ++i) PropagateEquality(cond, SI->getSuccessorValue(i), getRegionInfo(SI->getSuccessor(i))); } // PropagateEquality - If we discover that two values are equal to each other in // a specified region, propagate this knowledge recursively. // void CEE::PropagateEquality(Value *Op0, Value *Op1, RegionInfo &RI) { if (Op0 == Op1) return; // Gee whiz. Are these really equal each other? if (isa(Op0)) // Make sure the constant is always Op1 std::swap(Op0, Op1); // Make sure we don't already know these are equal, to avoid infinite loops... ValueInfo &VI = RI.getValueInfo(Op0); // Get information about the known relationship between Op0 & Op1 Relation &KnownRelation = VI.getRelation(Op1); // If we already know they're equal, don't reprocess... if (KnownRelation.getRelation() == Instruction::SetEQ) return; // If this is boolean, check to see if one of the operands is a constant. If // it's a constant, then see if the other one is one of a setcc instruction, // an AND, OR, or XOR instruction. // if (ConstantBool *CB = dyn_cast(Op1)) { if (Instruction *Inst = dyn_cast(Op0)) { // If we know that this instruction is an AND instruction, and the result // is true, this means that both operands to the OR are known to be true // as well. // if (CB->getValue() && Inst->getOpcode() == Instruction::And) { PropagateEquality(Inst->getOperand(0), CB, RI); PropagateEquality(Inst->getOperand(1), CB, RI); } // If we know that this instruction is an OR instruction, and the result // is false, this means that both operands to the OR are know to be false // as well. // if (!CB->getValue() && Inst->getOpcode() == Instruction::Or) { PropagateEquality(Inst->getOperand(0), CB, RI); PropagateEquality(Inst->getOperand(1), CB, RI); } // If we know that this instruction is a NOT instruction, we know that the // operand is known to be the inverse of whatever the current value is. // if (BinaryOperator *BOp = dyn_cast(Inst)) if (BinaryOperator::isNot(BOp)) PropagateEquality(BinaryOperator::getNotArgument(BOp), ConstantBool::get(!CB->getValue()), RI); // If we know the value of a SetCC instruction, propagate the information // about the relation into this region as well. // if (SetCondInst *SCI = dyn_cast(Inst)) { if (CB->getValue()) { // If we know the condition is true... // Propagate info about the LHS to the RHS & RHS to LHS PropagateRelation(SCI->getOpcode(), SCI->getOperand(0), SCI->getOperand(1), RI); PropagateRelation(SCI->getSwappedCondition(), SCI->getOperand(1), SCI->getOperand(0), RI); } else { // If we know the condition is false... // We know the opposite of the condition is true... Instruction::BinaryOps C = SCI->getInverseCondition(); PropagateRelation(C, SCI->getOperand(0), SCI->getOperand(1), RI); PropagateRelation(SetCondInst::getSwappedCondition(C), SCI->getOperand(1), SCI->getOperand(0), RI); } } } } // Propagate information about Op0 to Op1 & visa versa PropagateRelation(Instruction::SetEQ, Op0, Op1, RI); PropagateRelation(Instruction::SetEQ, Op1, Op0, RI); } // PropagateRelation - We know that the specified relation is true in all of the // blocks in the specified region. Propagate the information about Op0 and // anything derived from it into this region. // void CEE::PropagateRelation(Instruction::BinaryOps Opcode, Value *Op0, Value *Op1, RegionInfo &RI) { assert(Op0->getType() == Op1->getType() && "Equal types expected!"); // Constants are already pretty well understood. We will apply information // about the constant to Op1 in another call to PropagateRelation. // if (isa(Op0)) return; // Get the region information for this block to update... ValueInfo &VI = RI.getValueInfo(Op0); // Get information about the known relationship between Op0 & Op1 Relation &Op1R = VI.getRelation(Op1); // Quick bailout for common case if we are reprocessing an instruction... if (Op1R.getRelation() == Opcode) return; // If we already have information that contradicts the current information we // are propagating, ignore this info. Something bad must have happened! // if (Op1R.contradicts(Opcode, VI)) { Op1R.contradicts(Opcode, VI); std::cerr << "Contradiction found for opcode: " << Instruction::getOpcodeName(Opcode) << "\n"; Op1R.print(std::cerr); return; } // If the information propagated is new, then we want process the uses of this // instruction to propagate the information down to them. // if (Op1R.incorporate(Opcode, VI)) UpdateUsersOfValue(Op0, RI); } // UpdateUsersOfValue - The information about V in this region has been updated. // Propagate this to all consumers of the value. // void CEE::UpdateUsersOfValue(Value *V, RegionInfo &RI) { for (Value::use_iterator I = V->use_begin(), E = V->use_end(); I != E; ++I) if (Instruction *Inst = dyn_cast(*I)) { // If this is an instruction using a value that we know something about, // try to propagate information to the value produced by the // instruction. We can only do this if it is an instruction we can // propagate information for (a setcc for example), and we only WANT to // do this if the instruction dominates this region. // // If the instruction doesn't dominate this region, then it cannot be // used in this region and we don't care about it. If the instruction // is IN this region, then we will simplify the instruction before we // get to uses of it anyway, so there is no reason to bother with it // here. This check is also effectively checking to make sure that Inst // is in the same function as our region (in case V is a global f.e.). // if (EF->properlyDominates(Inst->getParent(), RI.getEntryBlock())) IncorporateInstruction(Inst, RI); } } // IncorporateInstruction - We just updated the information about one of the // operands to the specified instruction. Update the information about the // value produced by this instruction // void CEE::IncorporateInstruction(Instruction *Inst, RegionInfo &RI) { if (SetCondInst *SCI = dyn_cast(Inst)) { // See if we can figure out a result for this instruction... Relation::KnownResult Result = getSetCCResult(SCI, RI); if (Result != Relation::Unknown) { PropagateEquality(SCI, ConstantBool::get(Result != 0), RI); } } } // ComputeReplacements - Some values are known to be equal to other values in a // region. For example if there is a comparison of equality between a variable // X and a constant C, we can replace all uses of X with C in the region we are // interested in. We generalize this replacement to replace variables with // other variables if they are equal and there is a variable with lower rank // than the current one. This offers a canonicalizing property that exposes // more redundancies for later transformations to take advantage of. // void CEE::ComputeReplacements(RegionInfo &RI) { // Loop over all of the values in the region info map... for (RegionInfo::iterator I = RI.begin(), E = RI.end(); I != E; ++I) { ValueInfo &VI = I->second; // If we know that this value is a particular constant, set Replacement to // the constant... Value *Replacement = VI.getBounds().getSingleElement(); // If this value is not known to be some constant, figure out the lowest // rank value that it is known to be equal to (if anything). // if (Replacement == 0) { // Find out if there are any equality relationships with values of lower // rank than VI itself... unsigned MinRank = getRank(I->first); // Loop over the relationships known about Op0. const std::vector &Relationships = VI.getRelationships(); for (unsigned i = 0, e = Relationships.size(); i != e; ++i) if (Relationships[i].getRelation() == Instruction::SetEQ) { unsigned R = getRank(Relationships[i].getValue()); if (R < MinRank) { MinRank = R; Replacement = Relationships[i].getValue(); } } } // If we found something to replace this value with, keep track of it. if (Replacement) VI.setReplacement(Replacement); } } // SimplifyBasicBlock - Given information about values in region RI, simplify // the instructions in the specified basic block. // bool CEE::SimplifyBasicBlock(BasicBlock &BB, const RegionInfo &RI) { bool Changed = false; for (BasicBlock::iterator I = BB.begin(), E = BB.end(); I != E; ) { Instruction *Inst = I++; // Convert instruction arguments to canonical forms... Changed |= SimplifyInstruction(Inst, RI); if (SetCondInst *SCI = dyn_cast(Inst)) { // Try to simplify a setcc instruction based on inherited information Relation::KnownResult Result = getSetCCResult(SCI, RI); if (Result != Relation::Unknown) { DEBUG(std::cerr << "Replacing setcc with " << Result << " constant: " << *SCI); SCI->replaceAllUsesWith(ConstantBool::get((bool)Result)); // The instruction is now dead, remove it from the program. SCI->getParent()->getInstList().erase(SCI); ++NumSetCCRemoved; Changed = true; } } } return Changed; } // SimplifyInstruction - Inspect the operands of the instruction, converting // them to their canonical form if possible. This takes care of, for example, // replacing a value 'X' with a constant 'C' if the instruction in question is // dominated by a true seteq 'X', 'C'. // bool CEE::SimplifyInstruction(Instruction *I, const RegionInfo &RI) { bool Changed = false; for (unsigned i = 0, e = I->getNumOperands(); i != e; ++i) if (const ValueInfo *VI = RI.requestValueInfo(I->getOperand(i))) if (Value *Repl = VI->getReplacement()) { // If we know if a replacement with lower rank than Op0, make the // replacement now. DEBUG(std::cerr << "In Inst: " << *I << " Replacing operand #" << i << " with " << *Repl << "\n"); I->setOperand(i, Repl); Changed = true; ++NumOperandsCann; } return Changed; } // getSetCCResult - Try to simplify a setcc instruction based on information // inherited from a dominating setcc instruction. V is one of the operands to // the setcc instruction, and VI is the set of information known about it. We // take two cases into consideration here. If the comparison is against a // constant value, we can use the constant range to see if the comparison is // possible to succeed. If it is not a comparison against a constant, we check // to see if there is a known relationship between the two values. If so, we // may be able to eliminate the check. // Relation::KnownResult CEE::getSetCCResult(SetCondInst *SCI, const RegionInfo &RI) { Value *Op0 = SCI->getOperand(0), *Op1 = SCI->getOperand(1); Instruction::BinaryOps Opcode = SCI->getOpcode(); if (isa(Op0)) { if (isa(Op1)) { if (Constant *Result = ConstantFoldInstruction(SCI)) { // Wow, this is easy, directly eliminate the SetCondInst. DEBUG(std::cerr << "Replacing setcc with constant fold: " << *SCI); return cast(Result)->getValue() ? Relation::KnownTrue : Relation::KnownFalse; } } else { // We want to swap this instruction so that operand #0 is the constant. std::swap(Op0, Op1); Opcode = SCI->getSwappedCondition(); } } // Try to figure out what the result of this comparison will be... Relation::KnownResult Result = Relation::Unknown; // We have to know something about the relationship to prove anything... if (const ValueInfo *Op0VI = RI.requestValueInfo(Op0)) { // At this point, we know that if we have a constant argument that it is in // Op1. Check to see if we know anything about comparing value with a // constant, and if we can use this info to fold the setcc. // if (ConstantIntegral *C = dyn_cast(Op1)) { // Check to see if we already know the result of this comparison... ConstantRange R = ConstantRange(Opcode, C); ConstantRange Int = R.intersectWith(Op0VI->getBounds()); // If the intersection of the two ranges is empty, then the condition // could never be true! // if (Int.isEmptySet()) { Result = Relation::KnownFalse; // Otherwise, if VI.getBounds() (the possible values) is a subset of R // (the allowed values) then we know that the condition must always be // true! // } else if (Int == Op0VI->getBounds()) { Result = Relation::KnownTrue; } } else { // If we are here, we know that the second argument is not a constant // integral. See if we know anything about Op0 & Op1 that allows us to // fold this anyway. // // Do we have value information about Op0 and a relation to Op1? if (const Relation *Op2R = Op0VI->requestRelation(Op1)) Result = Op2R->getImpliedResult(Opcode); } } return Result; } //===----------------------------------------------------------------------===// // Relation Implementation //===----------------------------------------------------------------------===// // CheckCondition - Return true if the specified condition is false. Bound may // be null. static bool CheckCondition(Constant *Bound, Constant *C, Instruction::BinaryOps BO) { assert(C != 0 && "C is not specified!"); if (Bound == 0) return false; Constant *Val = ConstantExpr::get(BO, Bound, C); if (ConstantBool *CB = dyn_cast(Val)) return !CB->getValue(); // Return true if the condition is false... return false; } // contradicts - Return true if the relationship specified by the operand // contradicts already known information. // bool Relation::contradicts(Instruction::BinaryOps Op, const ValueInfo &VI) const { assert (Op != Instruction::Add && "Invalid relation argument!"); // If this is a relationship with a constant, make sure that this relationship // does not contradict properties known about the bounds of the constant. // if (ConstantIntegral *C = dyn_cast(Val)) if (ConstantRange(Op, C).intersectWith(VI.getBounds()).isEmptySet()) return true; switch (Rel) { default: assert(0 && "Unknown Relationship code!"); case Instruction::Add: return false; // Nothing known, nothing contradicts case Instruction::SetEQ: return Op == Instruction::SetLT || Op == Instruction::SetGT || Op == Instruction::SetNE; case Instruction::SetNE: return Op == Instruction::SetEQ; case Instruction::SetLE: return Op == Instruction::SetGT; case Instruction::SetGE: return Op == Instruction::SetLT; case Instruction::SetLT: return Op == Instruction::SetEQ || Op == Instruction::SetGT || Op == Instruction::SetGE; case Instruction::SetGT: return Op == Instruction::SetEQ || Op == Instruction::SetLT || Op == Instruction::SetLE; } } // incorporate - Incorporate information in the argument into this relation // entry. This assumes that the information doesn't contradict itself. If any // new information is gained, true is returned, otherwise false is returned to // indicate that nothing was updated. // bool Relation::incorporate(Instruction::BinaryOps Op, ValueInfo &VI) { assert(!contradicts(Op, VI) && "Cannot incorporate contradictory information!"); // If this is a relationship with a constant, make sure that we update the // range that is possible for the value to have... // if (ConstantIntegral *C = dyn_cast(Val)) VI.getBounds() = ConstantRange(Op, C).intersectWith(VI.getBounds()); switch (Rel) { default: assert(0 && "Unknown prior value!"); case Instruction::Add: Rel = Op; return true; case Instruction::SetEQ: return false; // Nothing is more precise case Instruction::SetNE: return false; // Nothing is more precise case Instruction::SetLT: return false; // Nothing is more precise case Instruction::SetGT: return false; // Nothing is more precise case Instruction::SetLE: if (Op == Instruction::SetEQ || Op == Instruction::SetLT) { Rel = Op; return true; } else if (Op == Instruction::SetNE) { Rel = Instruction::SetLT; return true; } return false; case Instruction::SetGE: return Op == Instruction::SetLT; if (Op == Instruction::SetEQ || Op == Instruction::SetGT) { Rel = Op; return true; } else if (Op == Instruction::SetNE) { Rel = Instruction::SetGT; return true; } return false; } } // getImpliedResult - If this relationship between two values implies that // the specified relationship is true or false, return that. If we cannot // determine the result required, return Unknown. // Relation::KnownResult Relation::getImpliedResult(Instruction::BinaryOps Op) const { if (Rel == Op) return KnownTrue; if (Rel == SetCondInst::getInverseCondition(Op)) return KnownFalse; switch (Rel) { default: assert(0 && "Unknown prior value!"); case Instruction::SetEQ: if (Op == Instruction::SetLE || Op == Instruction::SetGE) return KnownTrue; if (Op == Instruction::SetLT || Op == Instruction::SetGT) return KnownFalse; break; case Instruction::SetLT: if (Op == Instruction::SetNE || Op == Instruction::SetLE) return KnownTrue; if (Op == Instruction::SetEQ) return KnownFalse; break; case Instruction::SetGT: if (Op == Instruction::SetNE || Op == Instruction::SetGE) return KnownTrue; if (Op == Instruction::SetEQ) return KnownFalse; break; case Instruction::SetNE: case Instruction::SetLE: case Instruction::SetGE: case Instruction::Add: break; } return Unknown; } //===----------------------------------------------------------------------===// // Printing Support... //===----------------------------------------------------------------------===// // print - Implement the standard print form to print out analysis information. void CEE::print(std::ostream &O, const Module *M) const { O << "\nPrinting Correlated Expression Info:\n"; for (std::map::const_iterator I = RegionInfoMap.begin(), E = RegionInfoMap.end(); I != E; ++I) I->second.print(O); } // print - Output information about this region... void RegionInfo::print(std::ostream &OS) const { if (ValueMap.empty()) return; OS << " RegionInfo for basic block: " << BB->getName() << "\n"; for (std::map::const_iterator I = ValueMap.begin(), E = ValueMap.end(); I != E; ++I) I->second.print(OS, I->first); OS << "\n"; } // print - Output information about this value relation... void ValueInfo::print(std::ostream &OS, Value *V) const { if (Relationships.empty()) return; if (V) { OS << " ValueInfo for: "; WriteAsOperand(OS, V); } OS << "\n Bounds = " << Bounds << "\n"; if (Replacement) { OS << " Replacement = "; WriteAsOperand(OS, Replacement); OS << "\n"; } for (unsigned i = 0, e = Relationships.size(); i != e; ++i) Relationships[i].print(OS); } // print - Output this relation to the specified stream void Relation::print(std::ostream &OS) const { OS << " is "; switch (Rel) { default: OS << "*UNKNOWN*"; break; case Instruction::SetEQ: OS << "== "; break; case Instruction::SetNE: OS << "!= "; break; case Instruction::SetLT: OS << "< "; break; case Instruction::SetGT: OS << "> "; break; case Instruction::SetLE: OS << "<= "; break; case Instruction::SetGE: OS << ">= "; break; } WriteAsOperand(OS, Val); OS << "\n"; } // Don't inline these methods or else we won't be able to call them from GDB! void Relation::dump() const { print(std::cerr); } void ValueInfo::dump() const { print(std::cerr, 0); } void RegionInfo::dump() const { print(std::cerr); }