//===-- SparcV9CodeEmitter.cpp --------------------------------------------===// // // FIXME: document // //===----------------------------------------------------------------------===// #include "llvm/Constants.h" #include "llvm/Function.h" #include "llvm/GlobalVariable.h" #include "llvm/PassManager.h" #include "llvm/CodeGen/MachineCodeEmitter.h" #include "llvm/CodeGen/MachineConstantPool.h" #include "llvm/CodeGen/MachineFunctionInfo.h" #include "llvm/CodeGen/MachineFunctionPass.h" #include "llvm/CodeGen/MachineInstr.h" #include "llvm/Target/TargetMachine.h" #include "llvm/Target/TargetData.h" #include "Support/Debug.h" #include "Support/hash_set" #include "SparcInternals.h" #include "SparcV9CodeEmitter.h" bool UltraSparc::addPassesToEmitMachineCode(FunctionPassManager &PM, MachineCodeEmitter &MCE) { MachineCodeEmitter *M = &MCE; DEBUG(M = MachineCodeEmitter::createFilePrinterEmitter(MCE)); PM.add(new SparcV9CodeEmitter(*this, *M)); PM.add(createMachineCodeDestructionPass()); // Free stuff no longer needed return false; } namespace { class JITResolver { SparcV9CodeEmitter &SparcV9; MachineCodeEmitter &MCE; /// LazyCodeGenMap - Keep track of call sites for functions that are to be /// lazily resolved. /// std::map LazyCodeGenMap; /// LazyResolverMap - Keep track of the lazy resolver created for a /// particular function so that we can reuse them if necessary. /// std::map LazyResolverMap; public: enum CallType { ShortCall, FarCall }; private: /// We need to keep track of whether we used a simple call or a far call /// (many instructions) in sequence. This means we need to keep track of /// what type of stub we generate. static std::map LazyCallFlavor; public: JITResolver(SparcV9CodeEmitter &V9, MachineCodeEmitter &mce) : SparcV9(V9), MCE(mce) {} uint64_t getLazyResolver(Function *F); uint64_t addFunctionReference(uint64_t Address, Function *F); void deleteFunctionReference(uint64_t Address); void addCallFlavor(uint64_t Address, CallType Flavor) { LazyCallFlavor[Address] = Flavor; } // Utility functions for accessing data from static callback uint64_t getCurrentPCValue() { return MCE.getCurrentPCValue(); } unsigned getBinaryCodeForInstr(MachineInstr &MI) { return SparcV9.getBinaryCodeForInstr(MI); } inline uint64_t insertFarJumpAtAddr(int64_t Value, uint64_t Addr); private: uint64_t emitStubForFunction(Function *F); static void SaveRestoreRegisters(); static uint64_t CompilationCallback(); uint64_t resolveFunctionReference(uint64_t RetAddr); }; JITResolver *TheJITResolver; std::map JITResolver::LazyCallFlavor; } /// addFunctionReference - This method is called when we need to emit the /// address of a function that has not yet been emitted, so we don't know the /// address. Instead, we emit a call to the CompilationCallback method, and /// keep track of where we are. /// uint64_t JITResolver::addFunctionReference(uint64_t Address, Function *F) { LazyCodeGenMap[Address] = F; return (intptr_t)&JITResolver::SaveRestoreRegisters; } /// deleteFunctionReference - If we are emitting a far call, we already added a /// reference to the function, but it is now incorrect, since the address to the /// JIT resolver is too far away to be a simple call instruction. This is used /// to remove the address from the map. /// void JITResolver::deleteFunctionReference(uint64_t Address) { std::map::iterator I = LazyCodeGenMap.find(Address); assert(I != LazyCodeGenMap.end() && "Not in map!"); LazyCodeGenMap.erase(I); } uint64_t JITResolver::resolveFunctionReference(uint64_t RetAddr) { std::map::iterator I = LazyCodeGenMap.find(RetAddr); assert(I != LazyCodeGenMap.end() && "Not in map!"); Function *F = I->second; LazyCodeGenMap.erase(I); return MCE.forceCompilationOf(F); } uint64_t JITResolver::getLazyResolver(Function *F) { std::map::iterator I = LazyResolverMap.lower_bound(F); if (I != LazyResolverMap.end() && I->first == F) return I->second; //std::cerr << "Getting lazy resolver for : " << ((Value*)F)->getName() << "\n"; uint64_t Stub = emitStubForFunction(F); LazyResolverMap.insert(I, std::make_pair(F, Stub)); return Stub; } uint64_t JITResolver::insertFarJumpAtAddr(int64_t Target, uint64_t Addr) { static const unsigned o6 = SparcIntRegClass::o6, g0 = SparcIntRegClass::g0, g1 = SparcIntRegClass::g1, g5 = SparcIntRegClass::g5; MachineInstr* BinaryCode[] = { // // Get address to branch into %g1, using %g5 as a temporary // // sethi %uhi(Target), %g5 ;; get upper 22 bits of Target into %g5 BuildMI(V9::SETHI, 2).addSImm(Target >> 42).addReg(g5), // or %g5, %ulo(Target), %g5 ;; get 10 lower bits of upper word into %g5 BuildMI(V9::ORi, 3).addReg(g5).addSImm((Target >> 32) & 0x03ff).addReg(g5), // sllx %g5, 32, %g5 ;; shift those 10 bits to the upper word BuildMI(V9::SLLXi6, 3).addReg(g5).addSImm(32).addReg(g5), // sethi %hi(Target), %g1 ;; extract bits 10-31 into the dest reg BuildMI(V9::SETHI, 2).addSImm((Target >> 10) & 0x03fffff).addReg(g1), // or %g5, %g1, %g1 ;; get upper word (in %g5) into %g1 BuildMI(V9::ORr, 3).addReg(g5).addReg(g1).addReg(g1), // or %g1, %lo(Target), %g1 ;; get lowest 10 bits of Target into %g1 BuildMI(V9::ORi, 3).addReg(g1).addSImm(Target & 0x03ff).addReg(g1), // jmpl %g1, %g0, %g0 ;; indirect branch on %g1 BuildMI(V9::JMPLRETr, 3).addReg(g1).addReg(g0).addReg(g0), // nop ;; delay slot BuildMI(V9::NOP, 0) }; for (unsigned i=0, e=sizeof(BinaryCode)/sizeof(BinaryCode[0]); i!=e; ++i) { *((unsigned*)(intptr_t)Addr) = getBinaryCodeForInstr(*BinaryCode[i]); delete BinaryCode[i]; Addr += 4; } return Addr; } void JITResolver::SaveRestoreRegisters() { uint32_t SingleFP[32]; uint64_t DoubleFP[16]; // FIXME: uint128_t QuadFloatRegs[..]; uint64_t CCR, FSR, FPRS, g1, g5; #if defined(sparc) || defined(__sparc__) || defined(__sparcv9) __asm__ __volatile__ (// Save g1 and g5 "stx %%g1, %0;\n\t" "stx %%g5, %1;\n\t" : "=m"(g1), "=m"(g5)); __asm__ __volatile__ (// Save condition-code registers "stx %%fsr, %0;\n\t" "rd %%fprs, %1;\n\t" "rd %%ccr, %2;\n\t" : "=m"(FSR), "=r"(FPRS), "=r"(CCR)); // GCC says: `asm' only allows up to thirty parameters! __asm__ __volatile__ (// Save Single FP registers, part 1 "st %%f0, %0;\n\t" "st %%f1, %1;\n\t" "st %%f2, %2;\n\t" "st %%f3, %3;\n\t" "st %%f4, %4;\n\t" "st %%f5, %5;\n\t" "st %%f6, %6;\n\t" "st %%f7, %7;\n\t" "st %%f8, %8;\n\t" "st %%f9, %9;\n\t" "st %%f10, %10;\n\t" "st %%f11, %11;\n\t" "st %%f12, %12;\n\t" "st %%f13, %13;\n\t" "st %%f14, %14;\n\t" "st %%f15, %15;\n\t" : "=m"(SingleFP[ 0]), "=m"(SingleFP[ 1]), "=m"(SingleFP[ 2]), "=m"(SingleFP[ 3]), "=m"(SingleFP[ 4]), "=m"(SingleFP[ 5]), "=m"(SingleFP[ 6]), "=m"(SingleFP[ 7]), "=m"(SingleFP[ 8]), "=m"(SingleFP[ 9]), "=m"(SingleFP[10]), "=m"(SingleFP[11]), "=m"(SingleFP[12]), "=m"(SingleFP[13]), "=m"(SingleFP[14]), "=m"(SingleFP[15])); __asm__ __volatile__ (// Save Single FP registers, part 2 "st %%f16, %0;\n\t" "st %%f17, %1;\n\t" "st %%f18, %2;\n\t" "st %%f19, %3;\n\t" "st %%f20, %4;\n\t" "st %%f21, %5;\n\t" "st %%f22, %6;\n\t" "st %%f23, %7;\n\t" "st %%f24, %8;\n\t" "st %%f25, %9;\n\t" "st %%f26, %10;\n\t" "st %%f27, %11;\n\t" "st %%f28, %12;\n\t" "st %%f29, %13;\n\t" "st %%f30, %14;\n\t" "st %%f31, %15;\n\t" : "=m"(SingleFP[16]), "=m"(SingleFP[17]), "=m"(SingleFP[18]), "=m"(SingleFP[19]), "=m"(SingleFP[20]), "=m"(SingleFP[21]), "=m"(SingleFP[22]), "=m"(SingleFP[23]), "=m"(SingleFP[24]), "=m"(SingleFP[25]), "=m"(SingleFP[26]), "=m"(SingleFP[27]), "=m"(SingleFP[28]), "=m"(SingleFP[29]), "=m"(SingleFP[30]), "=m"(SingleFP[31])); __asm__ __volatile__ (// Save Double FP registers "std %%f32, %0;\n\t" "std %%f34, %1;\n\t" "std %%f36, %2;\n\t" "std %%f38, %3;\n\t" "std %%f40, %4;\n\t" "std %%f42, %5;\n\t" "std %%f44, %6;\n\t" "std %%f46, %7;\n\t" "std %%f48, %8;\n\t" "std %%f50, %9;\n\t" "std %%f52, %10;\n\t" "std %%f54, %11;\n\t" "std %%f56, %12;\n\t" "std %%f58, %13;\n\t" "std %%f60, %14;\n\t" "std %%f62, %15;\n\t" : "=m"(DoubleFP[32/2-16]), "=m"(DoubleFP[34/2-16]), "=m"(DoubleFP[36/2-16]), "=m"(DoubleFP[38/2-16]), "=m"(DoubleFP[40/2-16]), "=m"(DoubleFP[42/2-16]), "=m"(DoubleFP[44/2-16]), "=m"(DoubleFP[46/2-16]), "=m"(DoubleFP[48/2-16]), "=m"(DoubleFP[50/2-16]), "=m"(DoubleFP[52/2-16]), "=m"(DoubleFP[54/2-16]), "=m"(DoubleFP[56/2-16]), "=m"(DoubleFP[58/2-16]), "=m"(DoubleFP[60/2-16]), "=m"(DoubleFP[62/2-16])); #endif // Resolve the function call register uint64_t restoreAddr = CompilationCallback(); #if defined(sparc) || defined(__sparc__) || defined(__sparcv9) // Set the return address to re-execute the `restore' instruction __asm__ __volatile__ ("or %%o0, %%g0, %%i7;\n\t" // Restore g1 and g5 "ldx %0, %%g1;\n\t" "ldx %1, %%g5;\n\t" :: "m"(g1), "m"(g5)); __asm__ __volatile__ (// Restore condition-code registers "ldx %0, %%fsr;\n\t" "wr %1, 0, %%fprs;\n\t" "wr %2, 0, %%ccr;\n\t" :: "m"(FSR), "r"(FPRS), "r"(CCR)); // GCC says: `asm' only allows up to thirty parameters! __asm__ __volatile__ (// Restore Single FP registers, part 1 "ld %0, %%f0;\n\t" "ld %1, %%f1;\n\t" "ld %2, %%f2;\n\t" "ld %3, %%f3;\n\t" "ld %4, %%f4;\n\t" "ld %5, %%f5;\n\t" "ld %6, %%f6;\n\t" "ld %7, %%f7;\n\t" "ld %8, %%f8;\n\t" "ld %9, %%f9;\n\t" "ld %10, %%f10;\n\t" "ld %11, %%f11;\n\t" "ld %12, %%f12;\n\t" "ld %13, %%f13;\n\t" "ld %14, %%f14;\n\t" "ld %15, %%f15;\n\t" :: "m"(SingleFP[0]), "m"(SingleFP[1]), "m"(SingleFP[2]), "m"(SingleFP[3]), "m"(SingleFP[4]), "m"(SingleFP[5]), "m"(SingleFP[6]), "m"(SingleFP[7]), "m"(SingleFP[8]), "m"(SingleFP[9]), "m"(SingleFP[10]), "m"(SingleFP[11]), "m"(SingleFP[12]), "m"(SingleFP[13]), "m"(SingleFP[14]), "m"(SingleFP[15])); __asm__ __volatile__ (// Restore Single FP registers, part 2 "ld %0, %%f16;\n\t" "ld %1, %%f17;\n\t" "ld %2, %%f18;\n\t" "ld %3, %%f19;\n\t" "ld %4, %%f20;\n\t" "ld %5, %%f21;\n\t" "ld %6, %%f22;\n\t" "ld %7, %%f23;\n\t" "ld %8, %%f24;\n\t" "ld %9, %%f25;\n\t" "ld %10, %%f26;\n\t" "ld %11, %%f27;\n\t" "ld %12, %%f28;\n\t" "ld %13, %%f29;\n\t" "ld %14, %%f30;\n\t" "ld %15, %%f31;\n\t" :: "m"(SingleFP[16]), "m"(SingleFP[17]), "m"(SingleFP[18]), "m"(SingleFP[19]), "m"(SingleFP[20]), "m"(SingleFP[21]), "m"(SingleFP[22]), "m"(SingleFP[23]), "m"(SingleFP[24]), "m"(SingleFP[25]), "m"(SingleFP[26]), "m"(SingleFP[27]), "m"(SingleFP[28]), "m"(SingleFP[29]), "m"(SingleFP[30]), "m"(SingleFP[31])); __asm__ __volatile__ (// Restore Double FP registers "ldd %0, %%f32;\n\t" "ldd %1, %%f34;\n\t" "ldd %2, %%f36;\n\t" "ldd %3, %%f38;\n\t" "ldd %4, %%f40;\n\t" "ldd %5, %%f42;\n\t" "ldd %6, %%f44;\n\t" "ldd %7, %%f46;\n\t" "ldd %8, %%f48;\n\t" "ldd %9, %%f50;\n\t" "ldd %10, %%f52;\n\t" "ldd %11, %%f54;\n\t" "ldd %12, %%f56;\n\t" "ldd %13, %%f58;\n\t" "ldd %14, %%f60;\n\t" "ldd %15, %%f62;\n\t" :: "m"(DoubleFP[32/2-16]), "m"(DoubleFP[34/2-16]), "m"(DoubleFP[36/2-16]), "m"(DoubleFP[38/2-16]), "m"(DoubleFP[40/2-16]), "m"(DoubleFP[42/2-16]), "m"(DoubleFP[44/2-16]), "m"(DoubleFP[46/2-16]), "m"(DoubleFP[48/2-16]), "m"(DoubleFP[50/2-16]), "m"(DoubleFP[52/2-16]), "m"(DoubleFP[54/2-16]), "m"(DoubleFP[56/2-16]), "m"(DoubleFP[58/2-16]), "m"(DoubleFP[60/2-16]), "m"(DoubleFP[62/2-16])); #endif } uint64_t JITResolver::CompilationCallback() { uint64_t CameFrom = (uint64_t)(intptr_t)__builtin_return_address(1); int64_t Target = (int64_t)TheJITResolver->resolveFunctionReference(CameFrom); DEBUG(std::cerr << "In callback! Addr=0x" << std::hex << CameFrom << "\n"); register int64_t returnAddr = 0; #if defined(sparc) || defined(__sparc__) || defined(__sparcv9) __asm__ __volatile__ ("add %%i7, %%g0, %0" : "=r" (returnAddr) : ); DEBUG(std::cerr << "Read i7 (return addr) = " << std::hex << returnAddr << ", value: " << std::hex << *(unsigned*)returnAddr << "\n"); #endif // Rewrite the call target so that we don't fault every time we execute it. // static const unsigned o6 = SparcIntRegClass::o6; // Subtract enough to overwrite up to the 'save' instruction // This depends on whether we made a short call (1 instruction) or the // farCall (7 instructions) uint64_t Offset = (LazyCallFlavor[CameFrom] == ShortCall) ? 4 : 28; uint64_t CodeBegin = CameFrom - Offset; // Make sure that what we're about to overwrite is indeed "save" MachineInstr *SV = BuildMI(V9::SAVEi, 3).addReg(o6).addSImm(-192).addReg(o6); unsigned SaveInst = TheJITResolver->getBinaryCodeForInstr(*SV); delete SV; unsigned CodeInMem = *(unsigned*)(intptr_t)CodeBegin; assert(CodeInMem == SaveInst && "About to overwrite smthg not a save instr!"); DEBUG(std::cerr << "Emitting a far jump to 0x" << std::hex << Target << "\n"); TheJITResolver->insertFarJumpAtAddr(Target, CodeBegin); // FIXME: if the target function is close enough to fit into the 19bit disp of // BA, we should use this version, as its much cheaper to generate. #if 0 uint64_t InstAddr = CodeBegin; // ba MachineInstr *MI = BuildMI(V9::BA, 1).addSImm(Target); *((unsigned*)(intptr_t)InstAddr)=TheJITResolver->getBinaryCodeForInstr(*MI); InstAddr += 4; delete MI; // nop MI = BuildMI(V9::NOP, 0); *((unsigned*)(intptr_t))=TheJITResolver->getBinaryCodeForInstr(*Nop); delete MI; #endif // Change the return address to reexecute the restore, then the jump However, // we can't just modify %i7 here, because we return to the function that will // restore the floating-point registers for us. Thus, we just return the value // we want it to be, and the parent will take care of setting %i7 correctly. DEBUG(std::cerr << "Callback returning the addr of restore inst: " << std::hex << (CameFrom-Offset-12) << "\n"); return CameFrom - Offset - 12; // 8 because of call+delay, 4 more to restore } /// emitStubForFunction - This method is used by the JIT when it needs to emit /// the address of a function for a function whose code has not yet been /// generated. In order to do this, it generates a stub which jumps to the lazy /// function compiler, which will eventually get fixed to call the function /// directly. /// uint64_t JITResolver::emitStubForFunction(Function *F) { // FIXME: 40 is not enough... but should be MCE.startFunctionStub(*F, 64); DEBUG(std::cerr << "Emitting stub at addr: 0x" << std::hex << MCE.getCurrentPCValue() << "\n"); unsigned o6 = SparcIntRegClass::o6, g0 = SparcIntRegClass::g0; // restore %g0, 0, %g0 MachineInstr *R = BuildMI(V9::RESTOREi, 3).addMReg(g0).addSImm(0) .addMReg(g0, MOTy::Def); SparcV9.emitWord(SparcV9.getBinaryCodeForInstr(*R)); delete R; // save %sp, -192, %sp MachineInstr *SV = BuildMI(V9::SAVEi, 3).addReg(o6).addSImm(-192).addReg(o6); SparcV9.emitWord(SparcV9.getBinaryCodeForInstr(*SV)); delete SV; int64_t CurrPC = MCE.getCurrentPCValue(); int64_t Addr = (int64_t)addFunctionReference(CurrPC, F); int64_t CallTarget = (Addr-CurrPC) >> 2; //if (CallTarget >= (1 << 29) || CallTarget <= -(1 << 29)) { // Since this is a far call, the actual address of the call is shifted // by the number of instructions it takes to calculate the exact address deleteFunctionReference(CurrPC); SparcV9.emitFarCall(Addr, F); #if 0 else { // call CallTarget ;; invoke the callback MachineInstr *Call = BuildMI(V9::CALL, 1).addSImm(CallTarget); SparcV9.emitWord(SparcV9.getBinaryCodeForInstr(*Call)); delete Call; // nop ;; call delay slot MachineInstr *Nop = BuildMI(V9::NOP, 0); SparcV9.emitWord(SparcV9.getBinaryCodeForInstr(*Nop)); delete Nop; addCallFlavor(CurrPC, ShortCall); } #endif SparcV9.emitWord(0xDEADBEEF); // marker so that we know it's really a stub return (intptr_t)MCE.finishFunctionStub(*F)+4; /* 1 instr past the restore */ } SparcV9CodeEmitter::SparcV9CodeEmitter(TargetMachine &tm, MachineCodeEmitter &M): TM(tm), MCE(M) { TheJITResolver = new JITResolver(*this, M); } SparcV9CodeEmitter::~SparcV9CodeEmitter() { delete TheJITResolver; } void SparcV9CodeEmitter::emitWord(unsigned Val) { // Output the constant in big endian byte order... unsigned byteVal; for (int i = 3; i >= 0; --i) { byteVal = Val >> 8*i; MCE.emitByte(byteVal & 255); } } unsigned SparcV9CodeEmitter::getRealRegNum(unsigned fakeReg, MachineInstr &MI) { const TargetRegInfo &RI = TM.getRegInfo(); unsigned regClass, regType = RI.getRegType(fakeReg); // At least map fakeReg into its class fakeReg = RI.getClassRegNum(fakeReg, regClass); switch (regClass) { case UltraSparcRegInfo::IntRegClassID: { // Sparc manual, p31 static const unsigned IntRegMap[] = { // "o0", "o1", "o2", "o3", "o4", "o5", "o7", 8, 9, 10, 11, 12, 13, 15, // "l0", "l1", "l2", "l3", "l4", "l5", "l6", "l7", 16, 17, 18, 19, 20, 21, 22, 23, // "i0", "i1", "i2", "i3", "i4", "i5", "i6", "i7", 24, 25, 26, 27, 28, 29, 30, 31, // "g0", "g1", "g2", "g3", "g4", "g5", "g6", "g7", 0, 1, 2, 3, 4, 5, 6, 7, // "o6" 14 }; return IntRegMap[fakeReg]; break; } case UltraSparcRegInfo::FloatRegClassID: { DEBUG(std::cerr << "FP reg: " << fakeReg << "\n"); if (regType == UltraSparcRegInfo::FPSingleRegType) { // only numbered 0-31, hence can already fit into 5 bits (and 6) DEBUG(std::cerr << "FP single reg, returning: " << fakeReg << "\n"); } else if (regType == UltraSparcRegInfo::FPDoubleRegType) { // FIXME: This assumes that we only have 5-bit register fiels! // From Sparc Manual, page 40. // The bit layout becomes: b[4], b[3], b[2], b[1], b[5] fakeReg |= (fakeReg >> 5) & 1; fakeReg &= 0x1f; DEBUG(std::cerr << "FP double reg, returning: " << fakeReg << "\n"); } return fakeReg; } case UltraSparcRegInfo::IntCCRegClassID: { /* xcc, icc, ccr */ static const unsigned IntCCReg[] = { 6, 4, 2 }; assert(fakeReg < sizeof(IntCCReg)/sizeof(IntCCReg[0]) && "CC register out of bounds for IntCCReg map"); DEBUG(std::cerr << "IntCC reg: " << IntCCReg[fakeReg] << "\n"); return IntCCReg[fakeReg]; } case UltraSparcRegInfo::FloatCCRegClassID: { /* These are laid out %fcc0 - %fcc3 => 0 - 3, so are correct */ DEBUG(std::cerr << "FP CC reg: " << fakeReg << "\n"); return fakeReg; } default: assert(0 && "Invalid unified register number in getRegType"); return fakeReg; } } // WARNING: if the call used the delay slot to do meaningful work, that's not // being accounted for, and the behavior will be incorrect!! inline void SparcV9CodeEmitter::emitFarCall(uint64_t Target, Function *F) { static const unsigned o6 = SparcIntRegClass::o6, o7 = SparcIntRegClass::o7, g0 = SparcIntRegClass::g0, g1 = SparcIntRegClass::g1, g5 = SparcIntRegClass::g5; MachineInstr* BinaryCode[] = { // // Get address to branch into %g1, using %g5 as a temporary // // sethi %uhi(Target), %g5 ;; get upper 22 bits of Target into %g5 BuildMI(V9::SETHI, 2).addSImm(Target >> 42).addReg(g5), // or %g5, %ulo(Target), %g5 ;; get 10 lower bits of upper word into %1 BuildMI(V9::ORi, 3).addReg(g5).addSImm((Target >> 32) & 0x03ff).addReg(g5), // sllx %g5, 32, %g5 ;; shift those 10 bits to the upper word BuildMI(V9::SLLXi6, 3).addReg(g5).addSImm(32).addReg(g5), // sethi %hi(Target), %g1 ;; extract bits 10-31 into the dest reg BuildMI(V9::SETHI, 2).addSImm((Target >> 10) & 0x03fffff).addReg(g1), // or %g5, %g1, %g1 ;; get upper word (in %g5) into %g1 BuildMI(V9::ORr, 3).addReg(g5).addReg(g1).addReg(g1), // or %g1, %lo(Target), %g1 ;; get lowest 10 bits of Target into %g1 BuildMI(V9::ORi, 3).addReg(g1).addSImm(Target & 0x03ff).addReg(g1), // jmpl %g1, %g0, %o7 ;; indirect call on %g1 BuildMI(V9::JMPLRETr, 3).addReg(g1).addReg(g0).addReg(o7), // nop ;; delay slot BuildMI(V9::NOP, 0) }; for (unsigned i=0, e=sizeof(BinaryCode)/sizeof(BinaryCode[0]); i!=e; ++i) { // This is where we save the return address in the LazyResolverMap!! if (i == 6 && F != 0) { // Do this right before the JMPL uint64_t CurrPC = MCE.getCurrentPCValue(); TheJITResolver->addFunctionReference(CurrPC, F); // Remember that this is a far call, to subtract appropriate offset later TheJITResolver->addCallFlavor(CurrPC, JITResolver::FarCall); } emitWord(getBinaryCodeForInstr(*BinaryCode[i])); delete BinaryCode[i]; } } int64_t SparcV9CodeEmitter::getMachineOpValue(MachineInstr &MI, MachineOperand &MO) { int64_t rv = 0; // Return value; defaults to 0 for unhandled cases // or things that get fixed up later by the JIT. if (MO.isVirtualRegister()) { std::cerr << "ERROR: virtual register found in machine code.\n"; abort(); } else if (MO.isPCRelativeDisp()) { DEBUG(std::cerr << "PCRelativeDisp: "); Value *V = MO.getVRegValue(); if (BasicBlock *BB = dyn_cast(V)) { DEBUG(std::cerr << "Saving reference to BB (VReg)\n"); unsigned* CurrPC = (unsigned*)(intptr_t)MCE.getCurrentPCValue(); BBRefs.push_back(std::make_pair(BB, std::make_pair(CurrPC, &MI))); } else if (const Constant *C = dyn_cast(V)) { if (ConstantMap.find(C) != ConstantMap.end()) { rv = (int64_t)MCE.getConstantPoolEntryAddress(ConstantMap[C]); DEBUG(std::cerr << "const: 0x" << std::hex << rv << "\n"); } else { std::cerr << "ERROR: constant not in map:" << MO << "\n"; abort(); } } else if (GlobalValue *GV = dyn_cast(V)) { // same as MO.isGlobalAddress() DEBUG(std::cerr << "GlobalValue: "); // external function calls, etc.? if (Function *F = dyn_cast(GV)) { DEBUG(std::cerr << "Function: "); if (F->isExternal()) { // Sparc backend broken: this MO should be `ExternalSymbol' rv = (int64_t)MCE.getGlobalValueAddress(F->getName()); } else { rv = (int64_t)MCE.getGlobalValueAddress(F); } if (rv == 0) { DEBUG(std::cerr << "not yet generated\n"); // Function has not yet been code generated! TheJITResolver->addFunctionReference(MCE.getCurrentPCValue(), F); // Delayed resolution... rv = TheJITResolver->getLazyResolver(F); } else { DEBUG(std::cerr << "already generated: 0x" << std::hex << rv << "\n"); } } else { rv = (int64_t)MCE.getGlobalValueAddress(GV); if (rv == 0) { if (Constant *C = ConstantPointerRef::get(GV)) { if (ConstantMap.find(C) != ConstantMap.end()) { rv = MCE.getConstantPoolEntryAddress(ConstantMap[C]); } else { std::cerr << "Constant: 0x" << std::hex << (intptr_t)C << ", " << *V << " not found in ConstantMap!\n"; abort(); } } } DEBUG(std::cerr << "Global addr: 0x" << std::hex << rv << "\n"); } // The real target of the call is Addr = PC + (rv * 4) // So undo that: give the instruction (Addr - PC) / 4 if (MI.getOpcode() == V9::CALL) { int64_t CurrPC = MCE.getCurrentPCValue(); DEBUG(std::cerr << "rv addr: 0x" << std::hex << rv << "\n" << "curr PC: 0x" << std::hex << CurrPC << "\n"); int64_t CallInstTarget = (rv - CurrPC) >> 2; if (CallInstTarget >= (1<<29) || CallInstTarget <= -(1<<29)) { DEBUG(std::cerr << "Making far call!\n"); // addresss is out of bounds for the 30-bit call, // make an indirect jump-and-link emitFarCall(rv); // this invalidates the instruction so that the call with an incorrect // address will not be emitted rv = 0; } else { // The call fits into 30 bits, so just return the corrected address rv = CallInstTarget; } DEBUG(std::cerr << "returning addr: 0x" << rv << "\n"); } } else { std::cerr << "ERROR: PC relative disp unhandled:" << MO << "\n"; abort(); } } else if (MO.isPhysicalRegister() || MO.getType() == MachineOperand::MO_CCRegister) { // This is necessary because the Sparc backend doesn't actually lay out // registers in the real fashion -- it skips those that it chooses not to // allocate, i.e. those that are the FP, SP, etc. unsigned fakeReg = MO.getAllocatedRegNum(); unsigned realRegByClass = getRealRegNum(fakeReg, MI); DEBUG(std::cerr << MO << ": Reg[" << std::dec << fakeReg << "] => " << realRegByClass << " (LLC: " << TM.getRegInfo().getUnifiedRegName(fakeReg) << ")\n"); rv = realRegByClass; } else if (MO.isImmediate()) { rv = MO.getImmedValue(); DEBUG(std::cerr << "immed: " << rv << "\n"); } else if (MO.isGlobalAddress()) { DEBUG(std::cerr << "GlobalAddress: not PC-relative\n"); rv = (int64_t) (intptr_t)getGlobalAddress(cast(MO.getVRegValue()), MI, MO.isPCRelative()); } else if (MO.isMachineBasicBlock()) { // Duplicate code of the above case for VirtualRegister, BasicBlock... // It should really hit this case, but Sparc backend uses VRegs instead DEBUG(std::cerr << "Saving reference to MBB\n"); const BasicBlock *BB = MO.getMachineBasicBlock()->getBasicBlock(); unsigned* CurrPC = (unsigned*)(intptr_t)MCE.getCurrentPCValue(); BBRefs.push_back(std::make_pair(BB, std::make_pair(CurrPC, &MI))); } else if (MO.isExternalSymbol()) { // Sparc backend doesn't generate this (yet...) std::cerr << "ERROR: External symbol unhandled: " << MO << "\n"; abort(); } else if (MO.isFrameIndex()) { // Sparc backend doesn't generate this (yet...) int FrameIndex = MO.getFrameIndex(); std::cerr << "ERROR: Frame index unhandled.\n"; abort(); } else if (MO.isConstantPoolIndex()) { // Sparc backend doesn't generate this (yet...) std::cerr << "ERROR: Constant Pool index unhandled.\n"; abort(); } else { std::cerr << "ERROR: Unknown type of MachineOperand: " << MO << "\n"; abort(); } // Finally, deal with the various bitfield-extracting functions that // are used in SPARC assembly. (Some of these make no sense in combination // with some of the above; we'll trust that the instruction selector // will not produce nonsense, and not check for valid combinations here.) if (MO.opLoBits32()) { // %lo(val) == %lo() in Sparc ABI doc return rv & 0x03ff; } else if (MO.opHiBits32()) { // %lm(val) == %hi() in Sparc ABI doc return (rv >> 10) & 0x03fffff; } else if (MO.opLoBits64()) { // %hm(val) == %ulo() in Sparc ABI doc return (rv >> 32) & 0x03ff; } else if (MO.opHiBits64()) { // %hh(val) == %uhi() in Sparc ABI doc return rv >> 42; } else { // (unadorned) val return rv; } } unsigned SparcV9CodeEmitter::getValueBit(int64_t Val, unsigned bit) { Val >>= bit; return (Val & 1); } bool SparcV9CodeEmitter::runOnMachineFunction(MachineFunction &MF) { MCE.startFunction(MF); DEBUG(std::cerr << "Starting function " << MF.getFunction()->getName() << ", address: " << "0x" << std::hex << (long)MCE.getCurrentPCValue() << "\n"); // The Sparc backend does not use MachineConstantPool; // instead, it has its own constant pool implementation. // We create a new MachineConstantPool here to be compatible with the emitter. MachineConstantPool MCP; const hash_set &pool = MF.getInfo()->getConstantPoolValues(); for (hash_set::const_iterator I = pool.begin(), E = pool.end(); I != E; ++I) { Constant *C = (Constant*)*I; unsigned idx = MCP.getConstantPoolIndex(C); DEBUG(std::cerr << "Constant[" << idx << "] = 0x" << (intptr_t)C << "\n"); ConstantMap[C] = idx; } MCE.emitConstantPool(&MCP); for (MachineFunction::iterator I = MF.begin(), E = MF.end(); I != E; ++I) emitBasicBlock(*I); MCE.finishFunction(MF); DEBUG(std::cerr << "Finishing fn " << MF.getFunction()->getName() << "\n"); ConstantMap.clear(); // Resolve branches to BasicBlocks for the entire function for (unsigned i = 0, e = BBRefs.size(); i != e; ++i) { long Location = BBLocations[BBRefs[i].first]; unsigned *Ref = BBRefs[i].second.first; MachineInstr *MI = BBRefs[i].second.second; DEBUG(std::cerr << "Fixup @ " << std::hex << Ref << " to 0x" << Location << " in instr: " << std::dec << *MI); for (unsigned ii = 0, ee = MI->getNumOperands(); ii != ee; ++ii) { MachineOperand &op = MI->getOperand(ii); if (op.isPCRelativeDisp()) { // the instruction's branch target is made such that it branches to // PC + (branchTarget * 4), so undo that arithmetic here: // Location is the target of the branch // Ref is the location of the instruction, and hence the PC int64_t branchTarget = (Location - (long)Ref) >> 2; // Save the flags. bool loBits32=false, hiBits32=false, loBits64=false, hiBits64=false; if (op.opLoBits32()) { loBits32=true; } if (op.opHiBits32()) { hiBits32=true; } if (op.opLoBits64()) { loBits64=true; } if (op.opHiBits64()) { hiBits64=true; } MI->SetMachineOperandConst(ii, MachineOperand::MO_SignExtendedImmed, branchTarget); if (loBits32) { MI->setOperandLo32(ii); } else if (hiBits32) { MI->setOperandHi32(ii); } else if (loBits64) { MI->setOperandLo64(ii); } else if (hiBits64) { MI->setOperandHi64(ii); } DEBUG(std::cerr << "Rewrote BB ref: "); unsigned fixedInstr = SparcV9CodeEmitter::getBinaryCodeForInstr(*MI); *Ref = fixedInstr; break; } } } BBRefs.clear(); BBLocations.clear(); return false; } void SparcV9CodeEmitter::emitBasicBlock(MachineBasicBlock &MBB) { currBB = MBB.getBasicBlock(); BBLocations[currBB] = MCE.getCurrentPCValue(); for (MachineBasicBlock::iterator I = MBB.begin(), E = MBB.end(); I != E; ++I){ unsigned binCode = getBinaryCodeForInstr(**I); if (binCode == (1 << 30)) { // this is an invalid call: the addr is out of bounds. that means a code // sequence has already been emitted, and this is a no-op DEBUG(std::cerr << "Call supressed: already emitted far call.\n"); } else { emitWord(binCode); } } } void* SparcV9CodeEmitter::getGlobalAddress(GlobalValue *V, MachineInstr &MI, bool isPCRelative) { if (isPCRelative) { // must be a call, this is a major hack! // Try looking up the function to see if it is already compiled! if (void *Addr = (void*)(intptr_t)MCE.getGlobalValueAddress(V)) { intptr_t CurByte = MCE.getCurrentPCValue(); // The real target of the call is Addr = PC + (target * 4) // CurByte is the PC, Addr we just received return (void*) (((long)Addr - (long)CurByte) >> 2); } else { if (Function *F = dyn_cast(V)) { // Function has not yet been code generated! TheJITResolver->addFunctionReference(MCE.getCurrentPCValue(), cast(V)); // Delayed resolution... return (void*)(intptr_t)TheJITResolver->getLazyResolver(cast(V)); } else if (Constant *C = ConstantPointerRef::get(V)) { if (ConstantMap.find(C) != ConstantMap.end()) { return (void*) (intptr_t)MCE.getConstantPoolEntryAddress(ConstantMap[C]); } else { std::cerr << "Constant: 0x" << std::hex << &*C << std::dec << ", " << *V << " not found in ConstantMap!\n"; abort(); } } else { std::cerr << "Unhandled global: " << *V << "\n"; abort(); } } } else { return (void*)(intptr_t)MCE.getGlobalValueAddress(V); } } #include "SparcV9CodeEmitter.inc"