//===- ChangeAllocations.cpp - Modify %malloc & %free calls -----------------=// // // This file defines two passes that convert malloc and free instructions to // calls to and from %malloc & %free function calls. The LowerAllocations // transformation is a target dependant tranformation because it depends on the // size of data types and alignment constraints. // //===----------------------------------------------------------------------===// #include "llvm/Transforms/ChangeAllocations.h" #include "llvm/Target/TargetData.h" #include "llvm/Module.h" #include "llvm/DerivedTypes.h" #include "llvm/iMemory.h" #include "llvm/iOther.h" #include "llvm/SymbolTable.h" #include "llvm/ConstantVals.h" #include "TransformInternals.h" using std::vector; // doInitialization - For the lower allocations pass, this ensures that a // module contains a declaration for a malloc and a free function. // // This function is always successful. // bool LowerAllocations::doInitialization(Module *M) { bool Changed = false; const MethodType *MallocType = MethodType::get(PointerType::get(Type::SByteTy), vector(1, Type::UIntTy), false); SymbolTable *SymTab = M->getSymbolTableSure(); // Check for a definition of malloc if (Value *V = SymTab->lookup(PointerType::get(MallocType), "malloc")) { MallocMeth = cast(V); // Yup, got it } else { // Nope, add one M->getMethodList().push_back(MallocMeth = new Method(MallocType, false, "malloc")); Changed = true; } const MethodType *FreeType = MethodType::get(Type::VoidTy, vector(1, PointerType::get(Type::SByteTy)), false); // Check for a definition of free if (Value *V = SymTab->lookup(PointerType::get(FreeType), "free")) { FreeMeth = cast(V); // Yup, got it } else { // Nope, add one M->getMethodList().push_back(FreeMeth = new Method(FreeType, false,"free")); Changed = true; } return Changed; } // runOnBasicBlock - This method does the actual work of converting // instructions over, assuming that the pass has already been initialized. // bool LowerAllocations::runOnBasicBlock(BasicBlock *BB) { bool Changed = false; assert(MallocMeth && FreeMeth && BB && "Pass not initialized!"); // Loop over all of the instructions, looking for malloc or free instructions for (unsigned i = 0; i < BB->size(); ++i) { BasicBlock::InstListType &BBIL = BB->getInstList(); if (MallocInst *MI = dyn_cast(*(BBIL.begin()+i))) { BBIL.remove(BBIL.begin()+i); // remove the malloc instr... const Type *AllocTy =cast(MI->getType())->getElementType(); // Get the number of bytes to be allocated for one element of the // requested type... unsigned Size = DataLayout.getTypeSize(AllocTy); // malloc(type) becomes sbyte *malloc(constint) Value *MallocArg = ConstantUInt::get(Type::UIntTy, Size); if (MI->getNumOperands() && Size == 1) { MallocArg = MI->getOperand(0); // Operand * 1 = Operand } else if (MI->getNumOperands()) { // Multiply it by the array size if neccesary... MallocArg = BinaryOperator::create(Instruction::Mul,MI->getOperand(0), MallocArg); BBIL.insert(BBIL.begin()+i++, cast(MallocArg)); } // Create the call to Malloc... CallInst *MCall = new CallInst(MallocMeth, vector(1, MallocArg)); BBIL.insert(BBIL.begin()+i, MCall); // Create a cast instruction to convert to the right type... CastInst *MCast = new CastInst(MCall, MI->getType()); BBIL.insert(BBIL.begin()+i+1, MCast); // Replace all uses of the old malloc inst with the cast inst MI->replaceAllUsesWith(MCast); delete MI; // Delete the malloc inst Changed = true; } else if (FreeInst *FI = dyn_cast(*(BBIL.begin()+i))) { BBIL.remove(BB->getInstList().begin()+i); // Cast the argument to free into a ubyte*... CastInst *MCast = new CastInst(FI->getOperand(0), PointerType::get(Type::UByteTy)); BBIL.insert(BBIL.begin()+i, MCast); // Insert a call to the free function... CallInst *FCall = new CallInst(FreeMeth, vector(1, MCast)); BBIL.insert(BBIL.begin()+i+1, FCall); // Delete the old free instruction delete FI; Changed = true; } } return Changed; } bool RaiseAllocations::doInitialization(Module *M) { SymbolTable *ST = M->getSymbolTable(); if (!ST) return false; // If the module has a symbol table, they might be referring to the malloc // and free functions. If this is the case, grab the method pointers that // the module is using. // // Lookup %malloc and %free in the symbol table, for later use. If they // don't exist, or are not external, we do not worry about converting calls // to that function into the appropriate instruction. // const PointerType *MallocType = // Get the type for malloc PointerType::get(MethodType::get(PointerType::get(Type::SByteTy), vector(1, Type::UIntTy), false)); MallocMeth = cast_or_null(ST->lookup(MallocType, "malloc")); if (MallocMeth && !MallocMeth->isExternal()) MallocMeth = 0; // Don't mess with locally defined versions of the fn const PointerType *FreeType = // Get the type for free PointerType::get(MethodType::get(Type::VoidTy, vector(1, PointerType::get(Type::SByteTy)), false)); FreeMeth = cast_or_null(ST->lookup(FreeType, "free")); if (FreeMeth && !FreeMeth->isExternal()) FreeMeth = 0; // Don't mess with locally defined versions of the fn return false; } // doOneCleanupPass - Do one pass over the input method, fixing stuff up. // bool RaiseAllocations::runOnBasicBlock(BasicBlock *BB) { bool Changed = false; BasicBlock::InstListType &BIL = BB->getInstList(); for (BasicBlock::iterator BI = BB->begin(); BI != BB->end();) { Instruction *I = *BI; if (CallInst *CI = dyn_cast(I)) { if (CI->getCalledValue() == MallocMeth) { // Replace call to malloc? const Type *PtrSByte = PointerType::get(Type::SByteTy); MallocInst *MallocI = new MallocInst(PtrSByte, CI->getOperand(1), CI->getName()); CI->setName(""); ReplaceInstWithInst(BIL, BI, MallocI); Changed = true; continue; // Skip the ++BI } else if (CI->getCalledValue() == FreeMeth) { // Replace call to free? ReplaceInstWithInst(BIL, BI, new FreeInst(CI->getOperand(1))); Changed = true; continue; // Skip the ++BI } } ++BI; } return Changed; }