//===- SjLjEHPrepare.cpp - Eliminate Invoke & Unwind instructions ---------===// // // The LLVM Compiler Infrastructure // // This file is distributed under the University of Illinois Open Source // License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// // // This transformation is designed for use by code generators which use SjLj // based exception handling. // //===----------------------------------------------------------------------===// #define DEBUG_TYPE "sjljehprepare" #include "llvm/Transforms/Scalar.h" #include "llvm/Constants.h" #include "llvm/DerivedTypes.h" #include "llvm/Instructions.h" #include "llvm/Intrinsics.h" #include "llvm/LLVMContext.h" #include "llvm/Module.h" #include "llvm/Pass.h" #include "llvm/Analysis/Verifier.h" #include "llvm/CodeGen/Passes.h" #include "llvm/Target/TargetData.h" #include "llvm/Target/TargetLowering.h" #include "llvm/Transforms/Utils/BasicBlockUtils.h" #include "llvm/Transforms/Utils/Local.h" #include "llvm/Support/CommandLine.h" #include "llvm/Support/Debug.h" #include "llvm/Support/IRBuilder.h" #include "llvm/Support/raw_ostream.h" #include "llvm/ADT/DenseMap.h" #include "llvm/ADT/SetVector.h" #include "llvm/ADT/SmallPtrSet.h" #include "llvm/ADT/SmallVector.h" #include "llvm/ADT/Statistic.h" #include using namespace llvm; STATISTIC(NumInvokes, "Number of invokes replaced"); STATISTIC(NumSpilled, "Number of registers live across unwind edges"); namespace { class SjLjEHPrepare : public FunctionPass { const TargetLowering *TLI; Type *FunctionContextTy; Constant *RegisterFn; Constant *UnregisterFn; Constant *BuiltinSetjmpFn; Constant *FrameAddrFn; Constant *StackAddrFn; Constant *StackRestoreFn; Constant *LSDAAddrFn; Value *PersonalityFn; Constant *CallSiteFn; Constant *FuncCtxFn; AllocaInst *FuncCtx; public: static char ID; // Pass identification, replacement for typeid explicit SjLjEHPrepare(const TargetLowering *tli = NULL) : FunctionPass(ID), TLI(tli) {} bool doInitialization(Module &M); bool runOnFunction(Function &F); virtual void getAnalysisUsage(AnalysisUsage &AU) const { FunctionPass::getAnalysisUsage(AU); } const char *getPassName() const { return "SJLJ Exception Handling preparation"; } private: bool setupEntryBlockAndCallSites(Function &F); void substituteLPadValues(LandingPadInst *LPI, Value *ExnVal, Value *SelVal); Value *setupFunctionContext(Function &F, ArrayRef LPads); void lowerIncomingArguments(Function &F); void lowerAcrossUnwindEdges(Function &F, ArrayRef Invokes); void insertCallSiteStore(Instruction *I, int Number); }; } // end anonymous namespace char SjLjEHPrepare::ID = 0; // Public Interface To the SjLjEHPrepare pass. FunctionPass *llvm::createSjLjEHPreparePass(const TargetLowering *TLI) { return new SjLjEHPrepare(TLI); } // doInitialization - Set up decalarations and types needed to process // exceptions. bool SjLjEHPrepare::doInitialization(Module &M) { // Build the function context structure. // builtin_setjmp uses a five word jbuf Type *VoidPtrTy = Type::getInt8PtrTy(M.getContext()); Type *Int32Ty = Type::getInt32Ty(M.getContext()); FunctionContextTy = StructType::get(VoidPtrTy, // __prev Int32Ty, // call_site ArrayType::get(Int32Ty, 4), // __data VoidPtrTy, // __personality VoidPtrTy, // __lsda ArrayType::get(VoidPtrTy, 5), // __jbuf NULL); RegisterFn = M.getOrInsertFunction("_Unwind_SjLj_Register", Type::getVoidTy(M.getContext()), PointerType::getUnqual(FunctionContextTy), (Type *)0); UnregisterFn = M.getOrInsertFunction("_Unwind_SjLj_Unregister", Type::getVoidTy(M.getContext()), PointerType::getUnqual(FunctionContextTy), (Type *)0); FrameAddrFn = Intrinsic::getDeclaration(&M, Intrinsic::frameaddress); StackAddrFn = Intrinsic::getDeclaration(&M, Intrinsic::stacksave); StackRestoreFn = Intrinsic::getDeclaration(&M, Intrinsic::stackrestore); BuiltinSetjmpFn = Intrinsic::getDeclaration(&M, Intrinsic::eh_sjlj_setjmp); LSDAAddrFn = Intrinsic::getDeclaration(&M, Intrinsic::eh_sjlj_lsda); CallSiteFn = Intrinsic::getDeclaration(&M, Intrinsic::eh_sjlj_callsite); FuncCtxFn = Intrinsic::getDeclaration(&M, Intrinsic::eh_sjlj_functioncontext); PersonalityFn = 0; return true; } /// insertCallSiteStore - Insert a store of the call-site value to the /// function context void SjLjEHPrepare::insertCallSiteStore(Instruction *I, int Number) { IRBuilder<> Builder(I); // Get a reference to the call_site field. Type *Int32Ty = Type::getInt32Ty(I->getContext()); Value *Zero = ConstantInt::get(Int32Ty, 0); Value *One = ConstantInt::get(Int32Ty, 1); Value *Idxs[2] = { Zero, One }; Value *CallSite = Builder.CreateGEP(FuncCtx, Idxs, "call_site"); // Insert a store of the call-site number ConstantInt *CallSiteNoC = ConstantInt::get(Type::getInt32Ty(I->getContext()), Number); Builder.CreateStore(CallSiteNoC, CallSite, true/*volatile*/); } /// markBlocksLiveIn - Insert BB and all of its predescessors into LiveBBs until /// we reach blocks we've already seen. static void markBlocksLiveIn(BasicBlock *BB, Instruction *Inst, SmallPtrSet &LiveBBs, SmallPtrSet &InvokesCrossed, bool &FoundDef) { if (!LiveBBs.insert(BB)) return; // Already been here. if (BB == Inst->getParent()) { FoundDef = true; return; } for (pred_iterator PI = pred_begin(BB), E = pred_end(BB); PI != E; ++PI) { BasicBlock *Pred = *PI; if (BB->isLandingPad() && BB != Inst->getParent()) { InvokesCrossed.insert(Pred); continue; } markBlocksLiveIn(Pred, Inst, LiveBBs, InvokesCrossed, FoundDef); } } /// substituteLPadValues - Substitute the values returned by the landingpad /// instruction with those returned by the personality function. void SjLjEHPrepare::substituteLPadValues(LandingPadInst *LPI, Value *ExnVal, Value *SelVal) { SmallVector UseWorkList(LPI->use_begin(), LPI->use_end()); while (!UseWorkList.empty()) { Value *Val = UseWorkList.pop_back_val(); ExtractValueInst *EVI = dyn_cast(Val); if (!EVI) continue; if (EVI->getNumIndices() != 1) continue; if (*EVI->idx_begin() == 0) EVI->replaceAllUsesWith(ExnVal); else if (*EVI->idx_begin() == 1) EVI->replaceAllUsesWith(SelVal); if (EVI->getNumUses() == 0) EVI->eraseFromParent(); } if (LPI->getNumUses() == 0) return; // There are still some uses of LPI. Construct an aggregate with the exception // values and replace the LPI with that aggregate. Type *LPadType = LPI->getType(); Value *LPadVal = UndefValue::get(LPadType); IRBuilder<> Builder(llvm::next(BasicBlock::iterator(cast(SelVal)))); LPadVal = Builder.CreateInsertValue(LPadVal, ExnVal, 0, "lpad.val"); LPadVal = Builder.CreateInsertValue(LPadVal, SelVal, 1, "lpad.val"); LPI->replaceAllUsesWith(LPadVal); } /// setupFunctionContext - Allocate the function context on the stack and fill /// it with all of the data that we know at this point. Value *SjLjEHPrepare:: setupFunctionContext(Function &F, ArrayRef LPads) { BasicBlock *EntryBB = F.begin(); // Create an alloca for the incoming jump buffer ptr and the new jump buffer // that needs to be restored on all exits from the function. This is an alloca // because the value needs to be added to the global context list. unsigned Align = TLI->getTargetData()->getPrefTypeAlignment(FunctionContextTy); FuncCtx = new AllocaInst(FunctionContextTy, 0, Align, "fn_context", EntryBB->begin()); // Fill in the function context structure. Type *Int32Ty = Type::getInt32Ty(F.getContext()); Value *Zero = ConstantInt::get(Int32Ty, 0); Value *One = ConstantInt::get(Int32Ty, 1); Value *Two = ConstantInt::get(Int32Ty, 2); Value *Three = ConstantInt::get(Int32Ty, 3); Value *Four = ConstantInt::get(Int32Ty, 4); Value *Idxs[2] = { Zero, 0 }; for (unsigned I = 0, E = LPads.size(); I != E; ++I) { LandingPadInst *LPI = LPads[I]; IRBuilder<> Builder(LPI->getParent()->getFirstInsertionPt()); // Reference the __data field. Idxs[1] = Two; Value *FCData = Builder.CreateGEP(FuncCtx, Idxs, "__data"); // The exception values come back in context->__data[0]. Idxs[1] = Zero; Value *ExceptionAddr = Builder.CreateGEP(FCData, Idxs, "exception_gep"); Value *ExnVal = Builder.CreateLoad(ExceptionAddr, true, "exn_val"); ExnVal = Builder.CreateIntToPtr(ExnVal, Type::getInt8PtrTy(F.getContext())); Idxs[1] = One; Value *SelectorAddr = Builder.CreateGEP(FCData, Idxs, "exn_selector_gep"); Value *SelVal = Builder.CreateLoad(SelectorAddr, true, "exn_selector_val"); substituteLPadValues(LPI, ExnVal, SelVal); } // Personality function Idxs[1] = Three; if (!PersonalityFn) PersonalityFn = LPads[0]->getPersonalityFn(); Value *PersonalityFieldPtr = GetElementPtrInst::Create(FuncCtx, Idxs, "pers_fn_gep", EntryBB->getTerminator()); new StoreInst(PersonalityFn, PersonalityFieldPtr, true, EntryBB->getTerminator()); // LSDA address Value *LSDA = CallInst::Create(LSDAAddrFn, "lsda_addr", EntryBB->getTerminator()); Idxs[1] = Four; Value *LSDAFieldPtr = GetElementPtrInst::Create(FuncCtx, Idxs, "lsda_gep", EntryBB->getTerminator()); new StoreInst(LSDA, LSDAFieldPtr, true, EntryBB->getTerminator()); return FuncCtx; } /// lowerIncomingArguments - To avoid having to handle incoming arguments /// specially, we lower each arg to a copy instruction in the entry block. This /// ensures that the argument value itself cannot be live out of the entry /// block. void SjLjEHPrepare::lowerIncomingArguments(Function &F) { BasicBlock::iterator AfterAllocaInsPt = F.begin()->begin(); while (isa(AfterAllocaInsPt) && isa(cast(AfterAllocaInsPt)->getArraySize())) ++AfterAllocaInsPt; for (Function::arg_iterator AI = F.arg_begin(), AE = F.arg_end(); AI != AE; ++AI) { Type *Ty = AI->getType(); // Aggregate types can't be cast, but are legal argument types, so we have // to handle them differently. We use an extract/insert pair as a // lightweight method to achieve the same goal. if (isa(Ty) || isa(Ty) || isa(Ty)) { Instruction *EI = ExtractValueInst::Create(AI, 0, "", AfterAllocaInsPt); Instruction *NI = InsertValueInst::Create(AI, EI, 0); NI->insertAfter(EI); AI->replaceAllUsesWith(NI); // Set the operand of the instructions back to the AllocaInst. EI->setOperand(0, AI); NI->setOperand(0, AI); } else { // This is always a no-op cast because we're casting AI to AI->getType() // so src and destination types are identical. BitCast is the only // possibility. CastInst *NC = new BitCastInst(AI, AI->getType(), AI->getName() + ".tmp", AfterAllocaInsPt); AI->replaceAllUsesWith(NC); // Set the operand of the cast instruction back to the AllocaInst. // Normally it's forbidden to replace a CastInst's operand because it // could cause the opcode to reflect an illegal conversion. However, we're // replacing it here with the same value it was constructed with. We do // this because the above replaceAllUsesWith() clobbered the operand, but // we want this one to remain. NC->setOperand(0, AI); } } } /// lowerAcrossUnwindEdges - Find all variables which are alive across an unwind /// edge and spill them. void SjLjEHPrepare::lowerAcrossUnwindEdges(Function &F, ArrayRef Invokes) { SmallVector, 32> ReloadUsers; DenseMap, AllocaInst*> AllocaMap; // Finally, scan the code looking for instructions with bad live ranges. for (Function::iterator BB = F.begin(), BBE = F.end(); BB != BBE; ++BB) { for (BasicBlock::iterator II = BB->begin(), IIE = BB->end(); II != IIE; ++II) { // Ignore obvious cases we don't have to handle. In particular, most // instructions either have no uses or only have a single use inside the // current block. Ignore them quickly. Instruction *Inst = II; if (Inst->use_empty()) continue; if (Inst->hasOneUse() && cast(Inst->use_back())->getParent() == BB && !isa(Inst->use_back())) continue; // If this is an alloca in the entry block, it's not a real register // value. if (AllocaInst *AI = dyn_cast(Inst)) if (isa(AI->getArraySize()) && BB == F.begin()) continue; // Avoid iterator invalidation by copying users to a temporary vector. SmallVector Users; for (Value::use_iterator UI = Inst->use_begin(), E = Inst->use_end(); UI != E; ++UI) { Instruction *User = cast(*UI); if (User->getParent() != BB || isa(User)) Users.push_back(User); } // Find all of the blocks that this value is live in. std::map > InvokesCrossed; std::map > LiveBBs; bool FoundDef = false; while (!Users.empty()) { Instruction *U = Users.pop_back_val(); if (PHINode *PN = dyn_cast(U)) { // Uses for a PHI node occur in their predecessor block. for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) if (PN->getIncomingValue(i) == Inst) markBlocksLiveIn(PN->getIncomingBlock(i), Inst, LiveBBs[U], InvokesCrossed[U], FoundDef); } else { markBlocksLiveIn(U->getParent(), Inst, LiveBBs[U], InvokesCrossed[U], FoundDef); } } // If we hit the definition, resort to the dump-this-value-everywhere // method. if (FoundDef) { // Now that we know all of the blocks that this thing is live in, see if // it includes any of the unwind locations. bool NeedsSpill = false; for (unsigned i = 0, e = Invokes.size(); i != e; ++i) { BasicBlock *UnwindBlock = Invokes[i]->getUnwindDest(); if (UnwindBlock == BB) continue; for (std::map >::iterator MI = LiveBBs.begin(), ME = LiveBBs.end(); MI != ME; ++MI) { if (MI->second.count(UnwindBlock)) { DEBUG({ dbgs() << "SJLJ Spill: " << *Inst << " around " << UnwindBlock->getName() << "\n"; }); NeedsSpill = true; break; } } // If we decided we need a spill, do it. if (NeedsSpill) { DemoteRegToStack(*Inst, true); ++NumSpilled; } } // We don't need this map anymore. InvokesCrossed.clear(); } // Go through the invokes the value crosses and insert a spill right // before the invoke. for (std::map >::iterator MI = InvokesCrossed.begin(), ME = InvokesCrossed.end(); MI != ME; ++MI) { Instruction *User = MI->first; SmallPtrSet &Crossings = MI->second; if (Crossings.empty()) continue; ReloadUsers.push_back(std::make_pair(Inst, User)); AllocaInst *&Slot = AllocaMap[std::make_pair(Inst, User)]; if (!Slot) Slot = new AllocaInst(Inst->getType(), 0, Inst->getName() + ".reg2mem", F.getEntryBlock().begin()); for (SmallPtrSet::iterator CI = Crossings.begin(), CE = Crossings.end(); CI != CE; ++CI) { new StoreInst(Inst, Slot, (*CI)->getTerminator()); ++NumSpilled; } } } } // Now go through the instructions which were spilled and replace their uses // after a crossed invoke with a reload instruction. for (SmallVectorImpl >::iterator I = ReloadUsers.begin(), E = ReloadUsers.end(); I != E; ++I) { Instruction *User = I->second; AllocaInst *Slot = AllocaMap[*I]; assert(Slot && "A spill slot hasn't been allocated yet!"); if (PHINode *PN = dyn_cast(User)) { // If this is a PHI node, we can't insert a load of the value before the // use. Instead insert the load in the predecessor block corresponding to // the incoming value. // // Note that if there are multiple edges from a basic block to this PHI // node that we cannot have multiple loads. The problem is that the // resulting PHI node will have multiple values (from each load) coming in // from the same block, which is illegal SSA form. For this reason, we // keep track of and reuse loads we insert. DenseMap Loads; for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) if (PN->getIncomingValue(i) == I->first) { Value *&V = Loads[PN->getIncomingBlock(i)]; if (V == 0) // Insert the load into the predecessor block V = new LoadInst(Slot, I->first->getName() + ".reload", true, PN->getIncomingBlock(i)->getTerminator()); PN->setIncomingValue(i, V); } } else { LoadInst *Reload = new LoadInst(Slot, Slot->getName() + ".reload", User); User->replaceUsesOfWith(I->first, Reload); } } // Go through the landing pads and remove any PHIs there. for (unsigned i = 0, e = Invokes.size(); i != e; ++i) { BasicBlock *UnwindBlock = Invokes[i]->getUnwindDest(); LandingPadInst *LPI = UnwindBlock->getLandingPadInst(); // Place PHIs into a set to avoid invalidating the iterator. SmallPtrSet PHIsToDemote; for (BasicBlock::iterator PN = UnwindBlock->begin(); isa(PN); ++PN) PHIsToDemote.insert(cast(PN)); if (PHIsToDemote.empty()) continue; // Demote the PHIs to the stack. for (SmallPtrSet::iterator I = PHIsToDemote.begin(), E = PHIsToDemote.end(); I != E; ++I) DemotePHIToStack(*I); // Move the landingpad instruction back to the top of the landing pad block. LPI->moveBefore(UnwindBlock->begin()); } } /// setupEntryBlockAndCallSites - Setup the entry block by creating and filling /// the function context and marking the call sites with the appropriate /// values. These values are used by the DWARF EH emitter. bool SjLjEHPrepare::setupEntryBlockAndCallSites(Function &F) { SmallVector Returns; SmallVector Invokes; SmallSetVector LPads; // Look through the terminators of the basic blocks to find invokes. for (Function::iterator BB = F.begin(), E = F.end(); BB != E; ++BB) if (InvokeInst *II = dyn_cast(BB->getTerminator())) { Invokes.push_back(II); LPads.insert(II->getUnwindDest()->getLandingPadInst()); } else if (ReturnInst *RI = dyn_cast(BB->getTerminator())) { Returns.push_back(RI); } if (Invokes.empty()) return false; NumInvokes += Invokes.size(); lowerIncomingArguments(F); lowerAcrossUnwindEdges(F, Invokes); Value *FuncCtx = setupFunctionContext(F, makeArrayRef(LPads.begin(), LPads.end())); BasicBlock *EntryBB = F.begin(); Type *Int32Ty = Type::getInt32Ty(F.getContext()); Value *Idxs[2] = { ConstantInt::get(Int32Ty, 0), 0 }; // Get a reference to the jump buffer. Idxs[1] = ConstantInt::get(Int32Ty, 5); Value *JBufPtr = GetElementPtrInst::Create(FuncCtx, Idxs, "jbuf_gep", EntryBB->getTerminator()); // Save the frame pointer. Idxs[1] = ConstantInt::get(Int32Ty, 0); Value *FramePtr = GetElementPtrInst::Create(JBufPtr, Idxs, "jbuf_fp_gep", EntryBB->getTerminator()); Value *Val = CallInst::Create(FrameAddrFn, ConstantInt::get(Int32Ty, 0), "fp", EntryBB->getTerminator()); new StoreInst(Val, FramePtr, true, EntryBB->getTerminator()); // Save the stack pointer. Idxs[1] = ConstantInt::get(Int32Ty, 2); Value *StackPtr = GetElementPtrInst::Create(JBufPtr, Idxs, "jbuf_sp_gep", EntryBB->getTerminator()); Val = CallInst::Create(StackAddrFn, "sp", EntryBB->getTerminator()); new StoreInst(Val, StackPtr, true, EntryBB->getTerminator()); // Call the setjmp instrinsic. It fills in the rest of the jmpbuf. Value *SetjmpArg = CastInst::Create(Instruction::BitCast, JBufPtr, Type::getInt8PtrTy(F.getContext()), "", EntryBB->getTerminator()); CallInst::Create(BuiltinSetjmpFn, SetjmpArg, "", EntryBB->getTerminator()); // Store a pointer to the function context so that the back-end will know // where to look for it. Value *FuncCtxArg = CastInst::Create(Instruction::BitCast, FuncCtx, Type::getInt8PtrTy(F.getContext()), "", EntryBB->getTerminator()); CallInst::Create(FuncCtxFn, FuncCtxArg, "", EntryBB->getTerminator()); // At this point, we are all set up, update the invoke instructions to mark // their call_site values. for (unsigned I = 0, E = Invokes.size(); I != E; ++I) { insertCallSiteStore(Invokes[I], I + 1); ConstantInt *CallSiteNum = ConstantInt::get(Type::getInt32Ty(F.getContext()), I + 1); // Record the call site value for the back end so it stays associated with // the invoke. CallInst::Create(CallSiteFn, CallSiteNum, "", Invokes[I]); } // Mark call instructions that aren't nounwind as no-action (call_site == // -1). Skip the entry block, as prior to then, no function context has been // created for this function and any unexpected exceptions thrown will go // directly to the caller's context, which is what we want anyway, so no need // to do anything here. for (Function::iterator BB = F.begin(), E = F.end(); ++BB != E;) for (BasicBlock::iterator I = BB->begin(), end = BB->end(); I != end; ++I) if (CallInst *CI = dyn_cast(I)) { if (!CI->doesNotThrow()) insertCallSiteStore(CI, -1); } else if (ResumeInst *RI = dyn_cast(I)) { insertCallSiteStore(RI, -1); } // Register the function context and make sure it's known to not throw CallInst *Register = CallInst::Create(RegisterFn, FuncCtx, "", EntryBB->getTerminator()); Register->setDoesNotThrow(); // Following any allocas not in the entry block, update the saved SP in the // jmpbuf to the new value. for (Function::iterator BB = F.begin(), E = F.end(); BB != E; ++BB) { if (BB == F.begin()) continue; for (BasicBlock::iterator I = BB->begin(), E = BB->end(); I != E; ++I) { if (CallInst *CI = dyn_cast(I)) { if (CI->getCalledFunction() != StackRestoreFn) continue; } else if (!isa(I)) { continue; } Instruction *StackAddr = CallInst::Create(StackAddrFn, "sp"); StackAddr->insertAfter(I); Instruction *StoreStackAddr = new StoreInst(StackAddr, StackPtr, true); StoreStackAddr->insertAfter(StackAddr); } } // Finally, for any returns from this function, if this function contains an // invoke, add a call to unregister the function context. for (unsigned I = 0, E = Returns.size(); I != E; ++I) CallInst::Create(UnregisterFn, FuncCtx, "", Returns[I]); return true; } bool SjLjEHPrepare::runOnFunction(Function &F) { bool Res = setupEntryBlockAndCallSites(F); DEBUG({ if (verifyFunction(F)) report_fatal_error("verifyFunction failed!"); }); return Res; }