//===-- ARMAsmPrinter.cpp - Print machine code to an ARM .s file ----------===// // // The LLVM Compiler Infrastructure // // This file is distributed under the University of Illinois Open Source // License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// // // This file contains a printer that converts from our internal representation // of machine-dependent LLVM code to GAS-format ARM assembly language. // //===----------------------------------------------------------------------===// #define DEBUG_TYPE "asm-printer" #include "ARMAsmPrinter.h" #include "ARM.h" #include "ARMConstantPoolValue.h" #include "ARMFPUName.h" #include "ARMMachineFunctionInfo.h" #include "ARMTargetMachine.h" #include "ARMTargetObjectFile.h" #include "InstPrinter/ARMInstPrinter.h" #include "MCTargetDesc/ARMAddressingModes.h" #include "MCTargetDesc/ARMMCExpr.h" #include "llvm/ADT/SetVector.h" #include "llvm/ADT/SmallString.h" #include "llvm/CodeGen/MachineFunctionPass.h" #include "llvm/CodeGen/MachineJumpTableInfo.h" #include "llvm/CodeGen/MachineModuleInfoImpls.h" #include "llvm/DebugInfo.h" #include "llvm/IR/Constants.h" #include "llvm/IR/DataLayout.h" #include "llvm/IR/Mangler.h" #include "llvm/IR/Module.h" #include "llvm/IR/Type.h" #include "llvm/MC/MCAsmInfo.h" #include "llvm/MC/MCAssembler.h" #include "llvm/MC/MCContext.h" #include "llvm/MC/MCELFStreamer.h" #include "llvm/MC/MCInst.h" #include "llvm/MC/MCInstBuilder.h" #include "llvm/MC/MCObjectStreamer.h" #include "llvm/MC/MCSectionMachO.h" #include "llvm/MC/MCStreamer.h" #include "llvm/MC/MCSymbol.h" #include "llvm/Support/ARMBuildAttributes.h" #include "llvm/Support/CommandLine.h" #include "llvm/Support/Debug.h" #include "llvm/Support/ELF.h" #include "llvm/Support/ErrorHandling.h" #include "llvm/Support/TargetRegistry.h" #include "llvm/Support/raw_ostream.h" #include "llvm/Target/TargetMachine.h" #include using namespace llvm; /// EmitDwarfRegOp - Emit dwarf register operation. void ARMAsmPrinter::EmitDwarfRegOp(const MachineLocation &MLoc, bool Indirect) const { const TargetRegisterInfo *RI = TM.getRegisterInfo(); if (RI->getDwarfRegNum(MLoc.getReg(), false) != -1) { AsmPrinter::EmitDwarfRegOp(MLoc, Indirect); return; } assert(MLoc.isReg() && !Indirect && "This doesn't support offset/indirection - implement it if needed"); unsigned Reg = MLoc.getReg(); if (Reg >= ARM::S0 && Reg <= ARM::S31) { assert(ARM::S0 + 31 == ARM::S31 && "Unexpected ARM S register numbering"); // S registers are described as bit-pieces of a register // S[2x] = DW_OP_regx(256 + (x>>1)) DW_OP_bit_piece(32, 0) // S[2x+1] = DW_OP_regx(256 + (x>>1)) DW_OP_bit_piece(32, 32) unsigned SReg = Reg - ARM::S0; bool odd = SReg & 0x1; unsigned Rx = 256 + (SReg >> 1); OutStreamer.AddComment("DW_OP_regx for S register"); EmitInt8(dwarf::DW_OP_regx); OutStreamer.AddComment(Twine(SReg)); EmitULEB128(Rx); if (odd) { OutStreamer.AddComment("DW_OP_bit_piece 32 32"); EmitInt8(dwarf::DW_OP_bit_piece); EmitULEB128(32); EmitULEB128(32); } else { OutStreamer.AddComment("DW_OP_bit_piece 32 0"); EmitInt8(dwarf::DW_OP_bit_piece); EmitULEB128(32); EmitULEB128(0); } } else if (Reg >= ARM::Q0 && Reg <= ARM::Q15) { assert(ARM::Q0 + 15 == ARM::Q15 && "Unexpected ARM Q register numbering"); // Q registers Q0-Q15 are described by composing two D registers together. // Qx = DW_OP_regx(256+2x) DW_OP_piece(8) DW_OP_regx(256+2x+1) // DW_OP_piece(8) unsigned QReg = Reg - ARM::Q0; unsigned D1 = 256 + 2 * QReg; unsigned D2 = D1 + 1; OutStreamer.AddComment("DW_OP_regx for Q register: D1"); EmitInt8(dwarf::DW_OP_regx); EmitULEB128(D1); OutStreamer.AddComment("DW_OP_piece 8"); EmitInt8(dwarf::DW_OP_piece); EmitULEB128(8); OutStreamer.AddComment("DW_OP_regx for Q register: D2"); EmitInt8(dwarf::DW_OP_regx); EmitULEB128(D2); OutStreamer.AddComment("DW_OP_piece 8"); EmitInt8(dwarf::DW_OP_piece); EmitULEB128(8); } } void ARMAsmPrinter::EmitFunctionBodyEnd() { // Make sure to terminate any constant pools that were at the end // of the function. if (!InConstantPool) return; InConstantPool = false; OutStreamer.EmitDataRegion(MCDR_DataRegionEnd); } void ARMAsmPrinter::EmitFunctionEntryLabel() { if (AFI->isThumbFunction()) { OutStreamer.EmitAssemblerFlag(MCAF_Code16); OutStreamer.EmitThumbFunc(CurrentFnSym); } OutStreamer.EmitLabel(CurrentFnSym); } void ARMAsmPrinter::EmitXXStructor(const Constant *CV) { uint64_t Size = TM.getDataLayout()->getTypeAllocSize(CV->getType()); assert(Size && "C++ constructor pointer had zero size!"); const GlobalValue *GV = dyn_cast(CV->stripPointerCasts()); assert(GV && "C++ constructor pointer was not a GlobalValue!"); const MCExpr *E = MCSymbolRefExpr::Create(getSymbol(GV), (Subtarget->isTargetELF() ? MCSymbolRefExpr::VK_ARM_TARGET1 : MCSymbolRefExpr::VK_None), OutContext); OutStreamer.EmitValue(E, Size); } /// runOnMachineFunction - This uses the EmitInstruction() /// method to print assembly for each instruction. /// bool ARMAsmPrinter::runOnMachineFunction(MachineFunction &MF) { AFI = MF.getInfo(); MCP = MF.getConstantPool(); return AsmPrinter::runOnMachineFunction(MF); } void ARMAsmPrinter::printOperand(const MachineInstr *MI, int OpNum, raw_ostream &O, const char *Modifier) { const MachineOperand &MO = MI->getOperand(OpNum); unsigned TF = MO.getTargetFlags(); switch (MO.getType()) { default: llvm_unreachable(""); case MachineOperand::MO_Register: { unsigned Reg = MO.getReg(); assert(TargetRegisterInfo::isPhysicalRegister(Reg)); assert(!MO.getSubReg() && "Subregs should be eliminated!"); if(ARM::GPRPairRegClass.contains(Reg)) { const MachineFunction &MF = *MI->getParent()->getParent(); const TargetRegisterInfo *TRI = MF.getTarget().getRegisterInfo(); Reg = TRI->getSubReg(Reg, ARM::gsub_0); } O << ARMInstPrinter::getRegisterName(Reg); break; } case MachineOperand::MO_Immediate: { int64_t Imm = MO.getImm(); O << '#'; if ((Modifier && strcmp(Modifier, "lo16") == 0) || (TF == ARMII::MO_LO16)) O << ":lower16:"; else if ((Modifier && strcmp(Modifier, "hi16") == 0) || (TF == ARMII::MO_HI16)) O << ":upper16:"; O << Imm; break; } case MachineOperand::MO_MachineBasicBlock: O << *MO.getMBB()->getSymbol(); return; case MachineOperand::MO_GlobalAddress: { const GlobalValue *GV = MO.getGlobal(); if ((Modifier && strcmp(Modifier, "lo16") == 0) || (TF & ARMII::MO_LO16)) O << ":lower16:"; else if ((Modifier && strcmp(Modifier, "hi16") == 0) || (TF & ARMII::MO_HI16)) O << ":upper16:"; O << *getSymbol(GV); printOffset(MO.getOffset(), O); if (TF == ARMII::MO_PLT) O << "(PLT)"; break; } case MachineOperand::MO_ConstantPoolIndex: O << *GetCPISymbol(MO.getIndex()); break; } } //===--------------------------------------------------------------------===// MCSymbol *ARMAsmPrinter:: GetARMJTIPICJumpTableLabel2(unsigned uid, unsigned uid2) const { const DataLayout *DL = TM.getDataLayout(); SmallString<60> Name; raw_svector_ostream(Name) << DL->getPrivateGlobalPrefix() << "JTI" << getFunctionNumber() << '_' << uid << '_' << uid2; return OutContext.GetOrCreateSymbol(Name.str()); } MCSymbol *ARMAsmPrinter::GetARMSJLJEHLabel() const { const DataLayout *DL = TM.getDataLayout(); SmallString<60> Name; raw_svector_ostream(Name) << DL->getPrivateGlobalPrefix() << "SJLJEH" << getFunctionNumber(); return OutContext.GetOrCreateSymbol(Name.str()); } bool ARMAsmPrinter::PrintAsmOperand(const MachineInstr *MI, unsigned OpNum, unsigned AsmVariant, const char *ExtraCode, raw_ostream &O) { // Does this asm operand have a single letter operand modifier? if (ExtraCode && ExtraCode[0]) { if (ExtraCode[1] != 0) return true; // Unknown modifier. switch (ExtraCode[0]) { default: // See if this is a generic print operand return AsmPrinter::PrintAsmOperand(MI, OpNum, AsmVariant, ExtraCode, O); case 'a': // Print as a memory address. if (MI->getOperand(OpNum).isReg()) { O << "[" << ARMInstPrinter::getRegisterName(MI->getOperand(OpNum).getReg()) << "]"; return false; } // Fallthrough case 'c': // Don't print "#" before an immediate operand. if (!MI->getOperand(OpNum).isImm()) return true; O << MI->getOperand(OpNum).getImm(); return false; case 'P': // Print a VFP double precision register. case 'q': // Print a NEON quad precision register. printOperand(MI, OpNum, O); return false; case 'y': // Print a VFP single precision register as indexed double. if (MI->getOperand(OpNum).isReg()) { unsigned Reg = MI->getOperand(OpNum).getReg(); const TargetRegisterInfo *TRI = MF->getTarget().getRegisterInfo(); // Find the 'd' register that has this 's' register as a sub-register, // and determine the lane number. for (MCSuperRegIterator SR(Reg, TRI); SR.isValid(); ++SR) { if (!ARM::DPRRegClass.contains(*SR)) continue; bool Lane0 = TRI->getSubReg(*SR, ARM::ssub_0) == Reg; O << ARMInstPrinter::getRegisterName(*SR) << (Lane0 ? "[0]" : "[1]"); return false; } } return true; case 'B': // Bitwise inverse of integer or symbol without a preceding #. if (!MI->getOperand(OpNum).isImm()) return true; O << ~(MI->getOperand(OpNum).getImm()); return false; case 'L': // The low 16 bits of an immediate constant. if (!MI->getOperand(OpNum).isImm()) return true; O << (MI->getOperand(OpNum).getImm() & 0xffff); return false; case 'M': { // A register range suitable for LDM/STM. if (!MI->getOperand(OpNum).isReg()) return true; const MachineOperand &MO = MI->getOperand(OpNum); unsigned RegBegin = MO.getReg(); // This takes advantage of the 2 operand-ness of ldm/stm and that we've // already got the operands in registers that are operands to the // inline asm statement. O << "{"; if (ARM::GPRPairRegClass.contains(RegBegin)) { const TargetRegisterInfo *TRI = MF->getTarget().getRegisterInfo(); unsigned Reg0 = TRI->getSubReg(RegBegin, ARM::gsub_0); O << ARMInstPrinter::getRegisterName(Reg0) << ", ";; RegBegin = TRI->getSubReg(RegBegin, ARM::gsub_1); } O << ARMInstPrinter::getRegisterName(RegBegin); // FIXME: The register allocator not only may not have given us the // registers in sequence, but may not be in ascending registers. This // will require changes in the register allocator that'll need to be // propagated down here if the operands change. unsigned RegOps = OpNum + 1; while (MI->getOperand(RegOps).isReg()) { O << ", " << ARMInstPrinter::getRegisterName(MI->getOperand(RegOps).getReg()); RegOps++; } O << "}"; return false; } case 'R': // The most significant register of a pair. case 'Q': { // The least significant register of a pair. if (OpNum == 0) return true; const MachineOperand &FlagsOP = MI->getOperand(OpNum - 1); if (!FlagsOP.isImm()) return true; unsigned Flags = FlagsOP.getImm(); // This operand may not be the one that actually provides the register. If // it's tied to a previous one then we should refer instead to that one // for registers and their classes. unsigned TiedIdx; if (InlineAsm::isUseOperandTiedToDef(Flags, TiedIdx)) { for (OpNum = InlineAsm::MIOp_FirstOperand; TiedIdx; --TiedIdx) { unsigned OpFlags = MI->getOperand(OpNum).getImm(); OpNum += InlineAsm::getNumOperandRegisters(OpFlags) + 1; } Flags = MI->getOperand(OpNum).getImm(); // Later code expects OpNum to be pointing at the register rather than // the flags. OpNum += 1; } unsigned NumVals = InlineAsm::getNumOperandRegisters(Flags); unsigned RC; InlineAsm::hasRegClassConstraint(Flags, RC); if (RC == ARM::GPRPairRegClassID) { if (NumVals != 1) return true; const MachineOperand &MO = MI->getOperand(OpNum); if (!MO.isReg()) return true; const TargetRegisterInfo *TRI = MF->getTarget().getRegisterInfo(); unsigned Reg = TRI->getSubReg(MO.getReg(), ExtraCode[0] == 'Q' ? ARM::gsub_0 : ARM::gsub_1); O << ARMInstPrinter::getRegisterName(Reg); return false; } if (NumVals != 2) return true; unsigned RegOp = ExtraCode[0] == 'Q' ? OpNum : OpNum + 1; if (RegOp >= MI->getNumOperands()) return true; const MachineOperand &MO = MI->getOperand(RegOp); if (!MO.isReg()) return true; unsigned Reg = MO.getReg(); O << ARMInstPrinter::getRegisterName(Reg); return false; } case 'e': // The low doubleword register of a NEON quad register. case 'f': { // The high doubleword register of a NEON quad register. if (!MI->getOperand(OpNum).isReg()) return true; unsigned Reg = MI->getOperand(OpNum).getReg(); if (!ARM::QPRRegClass.contains(Reg)) return true; const TargetRegisterInfo *TRI = MF->getTarget().getRegisterInfo(); unsigned SubReg = TRI->getSubReg(Reg, ExtraCode[0] == 'e' ? ARM::dsub_0 : ARM::dsub_1); O << ARMInstPrinter::getRegisterName(SubReg); return false; } // This modifier is not yet supported. case 'h': // A range of VFP/NEON registers suitable for VLD1/VST1. return true; case 'H': { // The highest-numbered register of a pair. const MachineOperand &MO = MI->getOperand(OpNum); if (!MO.isReg()) return true; const MachineFunction &MF = *MI->getParent()->getParent(); const TargetRegisterInfo *TRI = MF.getTarget().getRegisterInfo(); unsigned Reg = MO.getReg(); if(!ARM::GPRPairRegClass.contains(Reg)) return false; Reg = TRI->getSubReg(Reg, ARM::gsub_1); O << ARMInstPrinter::getRegisterName(Reg); return false; } } } printOperand(MI, OpNum, O); return false; } bool ARMAsmPrinter::PrintAsmMemoryOperand(const MachineInstr *MI, unsigned OpNum, unsigned AsmVariant, const char *ExtraCode, raw_ostream &O) { // Does this asm operand have a single letter operand modifier? if (ExtraCode && ExtraCode[0]) { if (ExtraCode[1] != 0) return true; // Unknown modifier. switch (ExtraCode[0]) { case 'A': // A memory operand for a VLD1/VST1 instruction. default: return true; // Unknown modifier. case 'm': // The base register of a memory operand. if (!MI->getOperand(OpNum).isReg()) return true; O << ARMInstPrinter::getRegisterName(MI->getOperand(OpNum).getReg()); return false; } } const MachineOperand &MO = MI->getOperand(OpNum); assert(MO.isReg() && "unexpected inline asm memory operand"); O << "[" << ARMInstPrinter::getRegisterName(MO.getReg()) << "]"; return false; } static bool isThumb(const MCSubtargetInfo& STI) { return (STI.getFeatureBits() & ARM::ModeThumb) != 0; } void ARMAsmPrinter::emitInlineAsmEnd(const MCSubtargetInfo &StartInfo, MCSubtargetInfo *EndInfo) const { // If either end mode is unknown (EndInfo == NULL) or different than // the start mode, then restore the start mode. const bool WasThumb = isThumb(StartInfo); if (EndInfo == NULL || WasThumb != isThumb(*EndInfo)) { OutStreamer.EmitAssemblerFlag(WasThumb ? MCAF_Code16 : MCAF_Code32); if (EndInfo) EndInfo->ToggleFeature(ARM::ModeThumb); } } void ARMAsmPrinter::EmitStartOfAsmFile(Module &M) { if (Subtarget->isTargetMachO()) { Reloc::Model RelocM = TM.getRelocationModel(); if (RelocM == Reloc::PIC_ || RelocM == Reloc::DynamicNoPIC) { // Declare all the text sections up front (before the DWARF sections // emitted by AsmPrinter::doInitialization) so the assembler will keep // them together at the beginning of the object file. This helps // avoid out-of-range branches that are due a fundamental limitation of // the way symbol offsets are encoded with the current Darwin ARM // relocations. const TargetLoweringObjectFileMachO &TLOFMacho = static_cast( getObjFileLowering()); // Collect the set of sections our functions will go into. SetVector, SmallPtrSet > TextSections; // Default text section comes first. TextSections.insert(TLOFMacho.getTextSection()); // Now any user defined text sections from function attributes. for (Module::iterator F = M.begin(), e = M.end(); F != e; ++F) if (!F->isDeclaration() && !F->hasAvailableExternallyLinkage()) TextSections.insert(TLOFMacho.SectionForGlobal(F, Mang, TM)); // Now the coalescable sections. TextSections.insert(TLOFMacho.getTextCoalSection()); TextSections.insert(TLOFMacho.getConstTextCoalSection()); // Emit the sections in the .s file header to fix the order. for (unsigned i = 0, e = TextSections.size(); i != e; ++i) OutStreamer.SwitchSection(TextSections[i]); if (RelocM == Reloc::DynamicNoPIC) { const MCSection *sect = OutContext.getMachOSection("__TEXT", "__symbol_stub4", MCSectionMachO::S_SYMBOL_STUBS, 12, SectionKind::getText()); OutStreamer.SwitchSection(sect); } else { const MCSection *sect = OutContext.getMachOSection("__TEXT", "__picsymbolstub4", MCSectionMachO::S_SYMBOL_STUBS, 16, SectionKind::getText()); OutStreamer.SwitchSection(sect); } const MCSection *StaticInitSect = OutContext.getMachOSection("__TEXT", "__StaticInit", MCSectionMachO::S_REGULAR | MCSectionMachO::S_ATTR_PURE_INSTRUCTIONS, SectionKind::getText()); OutStreamer.SwitchSection(StaticInitSect); } // Compiling with debug info should not affect the code // generation. Ensure the cstring section comes before the // optional __DWARF secion. Otherwise, PC-relative loads would // have to use different instruction sequences at "-g" in order to // reach global data in the same object file. OutStreamer.SwitchSection(getObjFileLowering().getCStringSection()); } // Use unified assembler syntax. OutStreamer.EmitAssemblerFlag(MCAF_SyntaxUnified); // Emit ARM Build Attributes if (Subtarget->isTargetELF()) emitAttributes(); } void ARMAsmPrinter::EmitEndOfAsmFile(Module &M) { if (Subtarget->isTargetMachO()) { // All darwin targets use mach-o. const TargetLoweringObjectFileMachO &TLOFMacho = static_cast(getObjFileLowering()); MachineModuleInfoMachO &MMIMacho = MMI->getObjFileInfo(); // Output non-lazy-pointers for external and common global variables. MachineModuleInfoMachO::SymbolListTy Stubs = MMIMacho.GetGVStubList(); if (!Stubs.empty()) { // Switch with ".non_lazy_symbol_pointer" directive. OutStreamer.SwitchSection(TLOFMacho.getNonLazySymbolPointerSection()); EmitAlignment(2); for (unsigned i = 0, e = Stubs.size(); i != e; ++i) { // L_foo$stub: OutStreamer.EmitLabel(Stubs[i].first); // .indirect_symbol _foo MachineModuleInfoImpl::StubValueTy &MCSym = Stubs[i].second; OutStreamer.EmitSymbolAttribute(MCSym.getPointer(),MCSA_IndirectSymbol); if (MCSym.getInt()) // External to current translation unit. OutStreamer.EmitIntValue(0, 4/*size*/); else // Internal to current translation unit. // // When we place the LSDA into the TEXT section, the type info // pointers need to be indirect and pc-rel. We accomplish this by // using NLPs; however, sometimes the types are local to the file. // We need to fill in the value for the NLP in those cases. OutStreamer.EmitValue(MCSymbolRefExpr::Create(MCSym.getPointer(), OutContext), 4/*size*/); } Stubs.clear(); OutStreamer.AddBlankLine(); } Stubs = MMIMacho.GetHiddenGVStubList(); if (!Stubs.empty()) { OutStreamer.SwitchSection(getObjFileLowering().getDataSection()); EmitAlignment(2); for (unsigned i = 0, e = Stubs.size(); i != e; ++i) { // L_foo$stub: OutStreamer.EmitLabel(Stubs[i].first); // .long _foo OutStreamer.EmitValue(MCSymbolRefExpr:: Create(Stubs[i].second.getPointer(), OutContext), 4/*size*/); } Stubs.clear(); OutStreamer.AddBlankLine(); } // Funny Darwin hack: This flag tells the linker that no global symbols // contain code that falls through to other global symbols (e.g. the obvious // implementation of multiple entry points). If this doesn't occur, the // linker can safely perform dead code stripping. Since LLVM never // generates code that does this, it is always safe to set. OutStreamer.EmitAssemblerFlag(MCAF_SubsectionsViaSymbols); } } //===----------------------------------------------------------------------===// // Helper routines for EmitStartOfAsmFile() and EmitEndOfAsmFile() // FIXME: // The following seem like one-off assembler flags, but they actually need // to appear in the .ARM.attributes section in ELF. // Instead of subclassing the MCELFStreamer, we do the work here. static ARMBuildAttrs::CPUArch getArchForCPU(StringRef CPU, const ARMSubtarget *Subtarget) { if (CPU == "xscale") return ARMBuildAttrs::v5TEJ; if (Subtarget->hasV8Ops()) return ARMBuildAttrs::v8; else if (Subtarget->hasV7Ops()) { if (Subtarget->isMClass() && Subtarget->hasThumb2DSP()) return ARMBuildAttrs::v7E_M; return ARMBuildAttrs::v7; } else if (Subtarget->hasV6T2Ops()) return ARMBuildAttrs::v6T2; else if (Subtarget->hasV6MOps()) return ARMBuildAttrs::v6S_M; else if (Subtarget->hasV6Ops()) return ARMBuildAttrs::v6; else if (Subtarget->hasV5TEOps()) return ARMBuildAttrs::v5TE; else if (Subtarget->hasV5TOps()) return ARMBuildAttrs::v5T; else if (Subtarget->hasV4TOps()) return ARMBuildAttrs::v4T; else return ARMBuildAttrs::v4; } void ARMAsmPrinter::emitAttributes() { MCTargetStreamer &TS = *OutStreamer.getTargetStreamer(); ARMTargetStreamer &ATS = static_cast(TS); ATS.switchVendor("aeabi"); std::string CPUString = Subtarget->getCPUString(); // FIXME: remove krait check when GNU tools support krait cpu if (CPUString != "generic" && CPUString != "krait") ATS.emitTextAttribute(ARMBuildAttrs::CPU_name, CPUString); ATS.emitAttribute(ARMBuildAttrs::CPU_arch, getArchForCPU(CPUString, Subtarget)); // Tag_CPU_arch_profile must have the default value of 0 when "Architecture // profile is not applicable (e.g. pre v7, or cross-profile code)". if (Subtarget->hasV7Ops()) { if (Subtarget->isAClass()) { ATS.emitAttribute(ARMBuildAttrs::CPU_arch_profile, ARMBuildAttrs::ApplicationProfile); } else if (Subtarget->isRClass()) { ATS.emitAttribute(ARMBuildAttrs::CPU_arch_profile, ARMBuildAttrs::RealTimeProfile); } else if (Subtarget->isMClass()) { ATS.emitAttribute(ARMBuildAttrs::CPU_arch_profile, ARMBuildAttrs::MicroControllerProfile); } } ATS.emitAttribute(ARMBuildAttrs::ARM_ISA_use, Subtarget->hasARMOps() ? ARMBuildAttrs::Allowed : ARMBuildAttrs::Not_Allowed); if (Subtarget->isThumb1Only()) { ATS.emitAttribute(ARMBuildAttrs::THUMB_ISA_use, ARMBuildAttrs::Allowed); } else if (Subtarget->hasThumb2()) { ATS.emitAttribute(ARMBuildAttrs::THUMB_ISA_use, ARMBuildAttrs::AllowThumb32); } if (Subtarget->hasNEON()) { /* NEON is not exactly a VFP architecture, but GAS emit one of * neon/neon-fp-armv8/neon-vfpv4/vfpv3/vfpv2 for .fpu parameters */ if (Subtarget->hasFPARMv8()) { if (Subtarget->hasCrypto()) ATS.emitFPU(ARM::CRYPTO_NEON_FP_ARMV8); else ATS.emitFPU(ARM::NEON_FP_ARMV8); } else if (Subtarget->hasVFP4()) ATS.emitFPU(ARM::NEON_VFPV4); else ATS.emitFPU(ARM::NEON); // Emit Tag_Advanced_SIMD_arch for ARMv8 architecture if (Subtarget->hasV8Ops()) ATS.emitAttribute(ARMBuildAttrs::Advanced_SIMD_arch, ARMBuildAttrs::AllowNeonARMv8); } else { if (Subtarget->hasFPARMv8()) ATS.emitFPU(ARM::FP_ARMV8); else if (Subtarget->hasVFP4()) ATS.emitFPU(Subtarget->hasD16() ? ARM::VFPV4_D16 : ARM::VFPV4); else if (Subtarget->hasVFP3()) ATS.emitFPU(Subtarget->hasD16() ? ARM::VFPV3_D16 : ARM::VFPV3); else if (Subtarget->hasVFP2()) ATS.emitFPU(ARM::VFPV2); } // Signal various FP modes. if (!TM.Options.UnsafeFPMath) { ATS.emitAttribute(ARMBuildAttrs::ABI_FP_denormal, ARMBuildAttrs::Allowed); ATS.emitAttribute(ARMBuildAttrs::ABI_FP_exceptions, ARMBuildAttrs::Allowed); } if (TM.Options.NoInfsFPMath && TM.Options.NoNaNsFPMath) ATS.emitAttribute(ARMBuildAttrs::ABI_FP_number_model, ARMBuildAttrs::Allowed); else ATS.emitAttribute(ARMBuildAttrs::ABI_FP_number_model, ARMBuildAttrs::AllowIEE754); // FIXME: add more flags to ARMBuildAttributes.h // 8-bytes alignment stuff. ATS.emitAttribute(ARMBuildAttrs::ABI_align_needed, 1); ATS.emitAttribute(ARMBuildAttrs::ABI_align_preserved, 1); // ABI_HardFP_use attribute to indicate single precision FP. if (Subtarget->isFPOnlySP()) ATS.emitAttribute(ARMBuildAttrs::ABI_HardFP_use, ARMBuildAttrs::HardFPSinglePrecision); // Hard float. Use both S and D registers and conform to AAPCS-VFP. if (Subtarget->isAAPCS_ABI() && TM.Options.FloatABIType == FloatABI::Hard) ATS.emitAttribute(ARMBuildAttrs::ABI_VFP_args, ARMBuildAttrs::HardFPAAPCS); // FIXME: Should we signal R9 usage? if (Subtarget->hasFP16()) ATS.emitAttribute(ARMBuildAttrs::FP_HP_extension, ARMBuildAttrs::AllowHPFP); if (Subtarget->hasMPExtension()) ATS.emitAttribute(ARMBuildAttrs::MPextension_use, ARMBuildAttrs::AllowMP); // Hardware divide in ARM mode is part of base arch, starting from ARMv8. // If only Thumb hwdiv is present, it must also be in base arch (ARMv7-R/M). // It is not possible to produce DisallowDIV: if hwdiv is present in the base // arch, supplying -hwdiv downgrades the effective arch, via ClearImpliedBits. // AllowDIVExt is only emitted if hwdiv isn't available in the base arch; // otherwise, the default value (AllowDIVIfExists) applies. if (Subtarget->hasDivideInARMMode() && !Subtarget->hasV8Ops()) ATS.emitAttribute(ARMBuildAttrs::DIV_use, ARMBuildAttrs::AllowDIVExt); if (Subtarget->hasTrustZone() && Subtarget->hasVirtualization()) ATS.emitAttribute(ARMBuildAttrs::Virtualization_use, ARMBuildAttrs::AllowTZVirtualization); else if (Subtarget->hasTrustZone()) ATS.emitAttribute(ARMBuildAttrs::Virtualization_use, ARMBuildAttrs::AllowTZ); else if (Subtarget->hasVirtualization()) ATS.emitAttribute(ARMBuildAttrs::Virtualization_use, ARMBuildAttrs::AllowVirtualization); ATS.finishAttributeSection(); } //===----------------------------------------------------------------------===// static MCSymbol *getPICLabel(const char *Prefix, unsigned FunctionNumber, unsigned LabelId, MCContext &Ctx) { MCSymbol *Label = Ctx.GetOrCreateSymbol(Twine(Prefix) + "PC" + Twine(FunctionNumber) + "_" + Twine(LabelId)); return Label; } static MCSymbolRefExpr::VariantKind getModifierVariantKind(ARMCP::ARMCPModifier Modifier) { switch (Modifier) { case ARMCP::no_modifier: return MCSymbolRefExpr::VK_None; case ARMCP::TLSGD: return MCSymbolRefExpr::VK_TLSGD; case ARMCP::TPOFF: return MCSymbolRefExpr::VK_TPOFF; case ARMCP::GOTTPOFF: return MCSymbolRefExpr::VK_GOTTPOFF; case ARMCP::GOT: return MCSymbolRefExpr::VK_GOT; case ARMCP::GOTOFF: return MCSymbolRefExpr::VK_GOTOFF; } llvm_unreachable("Invalid ARMCPModifier!"); } MCSymbol *ARMAsmPrinter::GetARMGVSymbol(const GlobalValue *GV, unsigned char TargetFlags) { bool isIndirect = Subtarget->isTargetMachO() && (TargetFlags & ARMII::MO_NONLAZY) && Subtarget->GVIsIndirectSymbol(GV, TM.getRelocationModel()); if (!isIndirect) return getSymbol(GV); // FIXME: Remove this when Darwin transition to @GOT like syntax. MCSymbol *MCSym = getSymbolWithGlobalValueBase(GV, "$non_lazy_ptr"); MachineModuleInfoMachO &MMIMachO = MMI->getObjFileInfo(); MachineModuleInfoImpl::StubValueTy &StubSym = GV->hasHiddenVisibility() ? MMIMachO.getHiddenGVStubEntry(MCSym) : MMIMachO.getGVStubEntry(MCSym); if (StubSym.getPointer() == 0) StubSym = MachineModuleInfoImpl:: StubValueTy(getSymbol(GV), !GV->hasInternalLinkage()); return MCSym; } void ARMAsmPrinter:: EmitMachineConstantPoolValue(MachineConstantPoolValue *MCPV) { const DataLayout *DL = TM.getDataLayout(); int Size = TM.getDataLayout()->getTypeAllocSize(MCPV->getType()); ARMConstantPoolValue *ACPV = static_cast(MCPV); MCSymbol *MCSym; if (ACPV->isLSDA()) { SmallString<128> Str; raw_svector_ostream OS(Str); OS << DL->getPrivateGlobalPrefix() << "_LSDA_" << getFunctionNumber(); MCSym = OutContext.GetOrCreateSymbol(OS.str()); } else if (ACPV->isBlockAddress()) { const BlockAddress *BA = cast(ACPV)->getBlockAddress(); MCSym = GetBlockAddressSymbol(BA); } else if (ACPV->isGlobalValue()) { const GlobalValue *GV = cast(ACPV)->getGV(); // On Darwin, const-pool entries may get the "FOO$non_lazy_ptr" mangling, so // flag the global as MO_NONLAZY. unsigned char TF = Subtarget->isTargetMachO() ? ARMII::MO_NONLAZY : 0; MCSym = GetARMGVSymbol(GV, TF); } else if (ACPV->isMachineBasicBlock()) { const MachineBasicBlock *MBB = cast(ACPV)->getMBB(); MCSym = MBB->getSymbol(); } else { assert(ACPV->isExtSymbol() && "unrecognized constant pool value"); const char *Sym = cast(ACPV)->getSymbol(); MCSym = GetExternalSymbolSymbol(Sym); } // Create an MCSymbol for the reference. const MCExpr *Expr = MCSymbolRefExpr::Create(MCSym, getModifierVariantKind(ACPV->getModifier()), OutContext); if (ACPV->getPCAdjustment()) { MCSymbol *PCLabel = getPICLabel(DL->getPrivateGlobalPrefix(), getFunctionNumber(), ACPV->getLabelId(), OutContext); const MCExpr *PCRelExpr = MCSymbolRefExpr::Create(PCLabel, OutContext); PCRelExpr = MCBinaryExpr::CreateAdd(PCRelExpr, MCConstantExpr::Create(ACPV->getPCAdjustment(), OutContext), OutContext); if (ACPV->mustAddCurrentAddress()) { // We want "( - .)", but MC doesn't have a concept of the '.' // label, so just emit a local label end reference that instead. MCSymbol *DotSym = OutContext.CreateTempSymbol(); OutStreamer.EmitLabel(DotSym); const MCExpr *DotExpr = MCSymbolRefExpr::Create(DotSym, OutContext); PCRelExpr = MCBinaryExpr::CreateSub(PCRelExpr, DotExpr, OutContext); } Expr = MCBinaryExpr::CreateSub(Expr, PCRelExpr, OutContext); } OutStreamer.EmitValue(Expr, Size); } void ARMAsmPrinter::EmitJumpTable(const MachineInstr *MI) { unsigned Opcode = MI->getOpcode(); int OpNum = 1; if (Opcode == ARM::BR_JTadd) OpNum = 2; else if (Opcode == ARM::BR_JTm) OpNum = 3; const MachineOperand &MO1 = MI->getOperand(OpNum); const MachineOperand &MO2 = MI->getOperand(OpNum+1); // Unique Id unsigned JTI = MO1.getIndex(); // Emit a label for the jump table. MCSymbol *JTISymbol = GetARMJTIPICJumpTableLabel2(JTI, MO2.getImm()); OutStreamer.EmitLabel(JTISymbol); // Mark the jump table as data-in-code. OutStreamer.EmitDataRegion(MCDR_DataRegionJT32); // Emit each entry of the table. const MachineJumpTableInfo *MJTI = MF->getJumpTableInfo(); const std::vector &JT = MJTI->getJumpTables(); const std::vector &JTBBs = JT[JTI].MBBs; for (unsigned i = 0, e = JTBBs.size(); i != e; ++i) { MachineBasicBlock *MBB = JTBBs[i]; // Construct an MCExpr for the entry. We want a value of the form: // (BasicBlockAddr - TableBeginAddr) // // For example, a table with entries jumping to basic blocks BB0 and BB1 // would look like: // LJTI_0_0: // .word (LBB0 - LJTI_0_0) // .word (LBB1 - LJTI_0_0) const MCExpr *Expr = MCSymbolRefExpr::Create(MBB->getSymbol(), OutContext); if (TM.getRelocationModel() == Reloc::PIC_) Expr = MCBinaryExpr::CreateSub(Expr, MCSymbolRefExpr::Create(JTISymbol, OutContext), OutContext); // If we're generating a table of Thumb addresses in static relocation // model, we need to add one to keep interworking correctly. else if (AFI->isThumbFunction()) Expr = MCBinaryExpr::CreateAdd(Expr, MCConstantExpr::Create(1,OutContext), OutContext); OutStreamer.EmitValue(Expr, 4); } // Mark the end of jump table data-in-code region. OutStreamer.EmitDataRegion(MCDR_DataRegionEnd); } void ARMAsmPrinter::EmitJump2Table(const MachineInstr *MI) { unsigned Opcode = MI->getOpcode(); int OpNum = (Opcode == ARM::t2BR_JT) ? 2 : 1; const MachineOperand &MO1 = MI->getOperand(OpNum); const MachineOperand &MO2 = MI->getOperand(OpNum+1); // Unique Id unsigned JTI = MO1.getIndex(); MCSymbol *JTISymbol = GetARMJTIPICJumpTableLabel2(JTI, MO2.getImm()); OutStreamer.EmitLabel(JTISymbol); // Emit each entry of the table. const MachineJumpTableInfo *MJTI = MF->getJumpTableInfo(); const std::vector &JT = MJTI->getJumpTables(); const std::vector &JTBBs = JT[JTI].MBBs; unsigned OffsetWidth = 4; if (MI->getOpcode() == ARM::t2TBB_JT) { OffsetWidth = 1; // Mark the jump table as data-in-code. OutStreamer.EmitDataRegion(MCDR_DataRegionJT8); } else if (MI->getOpcode() == ARM::t2TBH_JT) { OffsetWidth = 2; // Mark the jump table as data-in-code. OutStreamer.EmitDataRegion(MCDR_DataRegionJT16); } for (unsigned i = 0, e = JTBBs.size(); i != e; ++i) { MachineBasicBlock *MBB = JTBBs[i]; const MCExpr *MBBSymbolExpr = MCSymbolRefExpr::Create(MBB->getSymbol(), OutContext); // If this isn't a TBB or TBH, the entries are direct branch instructions. if (OffsetWidth == 4) { EmitToStreamer(OutStreamer, MCInstBuilder(ARM::t2B) .addExpr(MBBSymbolExpr) .addImm(ARMCC::AL) .addReg(0)); continue; } // Otherwise it's an offset from the dispatch instruction. Construct an // MCExpr for the entry. We want a value of the form: // (BasicBlockAddr - TableBeginAddr) / 2 // // For example, a TBB table with entries jumping to basic blocks BB0 and BB1 // would look like: // LJTI_0_0: // .byte (LBB0 - LJTI_0_0) / 2 // .byte (LBB1 - LJTI_0_0) / 2 const MCExpr *Expr = MCBinaryExpr::CreateSub(MBBSymbolExpr, MCSymbolRefExpr::Create(JTISymbol, OutContext), OutContext); Expr = MCBinaryExpr::CreateDiv(Expr, MCConstantExpr::Create(2, OutContext), OutContext); OutStreamer.EmitValue(Expr, OffsetWidth); } // Mark the end of jump table data-in-code region. 32-bit offsets use // actual branch instructions here, so we don't mark those as a data-region // at all. if (OffsetWidth != 4) OutStreamer.EmitDataRegion(MCDR_DataRegionEnd); } void ARMAsmPrinter::EmitUnwindingInstruction(const MachineInstr *MI) { assert(MI->getFlag(MachineInstr::FrameSetup) && "Only instruction which are involved into frame setup code are allowed"); MCTargetStreamer &TS = *OutStreamer.getTargetStreamer(); ARMTargetStreamer &ATS = static_cast(TS); const MachineFunction &MF = *MI->getParent()->getParent(); const TargetRegisterInfo *RegInfo = MF.getTarget().getRegisterInfo(); const ARMFunctionInfo &AFI = *MF.getInfo(); unsigned FramePtr = RegInfo->getFrameRegister(MF); unsigned Opc = MI->getOpcode(); unsigned SrcReg, DstReg; if (Opc == ARM::tPUSH || Opc == ARM::tLDRpci) { // Two special cases: // 1) tPUSH does not have src/dst regs. // 2) for Thumb1 code we sometimes materialize the constant via constpool // load. Yes, this is pretty fragile, but for now I don't see better // way... :( SrcReg = DstReg = ARM::SP; } else { SrcReg = MI->getOperand(1).getReg(); DstReg = MI->getOperand(0).getReg(); } // Try to figure out the unwinding opcode out of src / dst regs. if (MI->mayStore()) { // Register saves. assert(DstReg == ARM::SP && "Only stack pointer as a destination reg is supported"); SmallVector RegList; // Skip src & dst reg, and pred ops. unsigned StartOp = 2 + 2; // Use all the operands. unsigned NumOffset = 0; switch (Opc) { default: MI->dump(); llvm_unreachable("Unsupported opcode for unwinding information"); case ARM::tPUSH: // Special case here: no src & dst reg, but two extra imp ops. StartOp = 2; NumOffset = 2; case ARM::STMDB_UPD: case ARM::t2STMDB_UPD: case ARM::VSTMDDB_UPD: assert(SrcReg == ARM::SP && "Only stack pointer as a source reg is supported"); for (unsigned i = StartOp, NumOps = MI->getNumOperands() - NumOffset; i != NumOps; ++i) { const MachineOperand &MO = MI->getOperand(i); // Actually, there should never be any impdef stuff here. Skip it // temporary to workaround PR11902. if (MO.isImplicit()) continue; RegList.push_back(MO.getReg()); } break; case ARM::STR_PRE_IMM: case ARM::STR_PRE_REG: case ARM::t2STR_PRE: assert(MI->getOperand(2).getReg() == ARM::SP && "Only stack pointer as a source reg is supported"); RegList.push_back(SrcReg); break; } ATS.emitRegSave(RegList, Opc == ARM::VSTMDDB_UPD); } else { // Changes of stack / frame pointer. if (SrcReg == ARM::SP) { int64_t Offset = 0; switch (Opc) { default: MI->dump(); llvm_unreachable("Unsupported opcode for unwinding information"); case ARM::MOVr: case ARM::tMOVr: Offset = 0; break; case ARM::ADDri: Offset = -MI->getOperand(2).getImm(); break; case ARM::SUBri: case ARM::t2SUBri: Offset = MI->getOperand(2).getImm(); break; case ARM::tSUBspi: Offset = MI->getOperand(2).getImm()*4; break; case ARM::tADDspi: case ARM::tADDrSPi: Offset = -MI->getOperand(2).getImm()*4; break; case ARM::tLDRpci: { // Grab the constpool index and check, whether it corresponds to // original or cloned constpool entry. unsigned CPI = MI->getOperand(1).getIndex(); const MachineConstantPool *MCP = MF.getConstantPool(); if (CPI >= MCP->getConstants().size()) CPI = AFI.getOriginalCPIdx(CPI); assert(CPI != -1U && "Invalid constpool index"); // Derive the actual offset. const MachineConstantPoolEntry &CPE = MCP->getConstants()[CPI]; assert(!CPE.isMachineConstantPoolEntry() && "Invalid constpool entry"); // FIXME: Check for user, it should be "add" instruction! Offset = -cast(CPE.Val.ConstVal)->getSExtValue(); break; } } if (DstReg == FramePtr && FramePtr != ARM::SP) // Set-up of the frame pointer. Positive values correspond to "add" // instruction. ATS.emitSetFP(FramePtr, ARM::SP, -Offset); else if (DstReg == ARM::SP) { // Change of SP by an offset. Positive values correspond to "sub" // instruction. ATS.emitPad(Offset); } else { // Move of SP to a register. Positive values correspond to an "add" // instruction. ATS.emitMovSP(DstReg, -Offset); } } else if (DstReg == ARM::SP) { MI->dump(); llvm_unreachable("Unsupported opcode for unwinding information"); } else { MI->dump(); llvm_unreachable("Unsupported opcode for unwinding information"); } } } extern cl::opt DisableARMEHABI; // Simple pseudo-instructions have their lowering (with expansion to real // instructions) auto-generated. #include "ARMGenMCPseudoLowering.inc" void ARMAsmPrinter::EmitInstruction(const MachineInstr *MI) { const DataLayout *DL = TM.getDataLayout(); // If we just ended a constant pool, mark it as such. if (InConstantPool && MI->getOpcode() != ARM::CONSTPOOL_ENTRY) { OutStreamer.EmitDataRegion(MCDR_DataRegionEnd); InConstantPool = false; } // Emit unwinding stuff for frame-related instructions if (Subtarget->isTargetEHABICompatible() && !DisableARMEHABI && MI->getFlag(MachineInstr::FrameSetup)) EmitUnwindingInstruction(MI); // Do any auto-generated pseudo lowerings. if (emitPseudoExpansionLowering(OutStreamer, MI)) return; assert(!convertAddSubFlagsOpcode(MI->getOpcode()) && "Pseudo flag setting opcode should be expanded early"); // Check for manual lowerings. unsigned Opc = MI->getOpcode(); switch (Opc) { case ARM::t2MOVi32imm: llvm_unreachable("Should be lowered by thumb2it pass"); case ARM::DBG_VALUE: llvm_unreachable("Should be handled by generic printing"); case ARM::LEApcrel: case ARM::tLEApcrel: case ARM::t2LEApcrel: { // FIXME: Need to also handle globals and externals MCSymbol *CPISymbol = GetCPISymbol(MI->getOperand(1).getIndex()); EmitToStreamer(OutStreamer, MCInstBuilder(MI->getOpcode() == ARM::t2LEApcrel ? ARM::t2ADR : (MI->getOpcode() == ARM::tLEApcrel ? ARM::tADR : ARM::ADR)) .addReg(MI->getOperand(0).getReg()) .addExpr(MCSymbolRefExpr::Create(CPISymbol, OutContext)) // Add predicate operands. .addImm(MI->getOperand(2).getImm()) .addReg(MI->getOperand(3).getReg())); return; } case ARM::LEApcrelJT: case ARM::tLEApcrelJT: case ARM::t2LEApcrelJT: { MCSymbol *JTIPICSymbol = GetARMJTIPICJumpTableLabel2(MI->getOperand(1).getIndex(), MI->getOperand(2).getImm()); EmitToStreamer(OutStreamer, MCInstBuilder(MI->getOpcode() == ARM::t2LEApcrelJT ? ARM::t2ADR : (MI->getOpcode() == ARM::tLEApcrelJT ? ARM::tADR : ARM::ADR)) .addReg(MI->getOperand(0).getReg()) .addExpr(MCSymbolRefExpr::Create(JTIPICSymbol, OutContext)) // Add predicate operands. .addImm(MI->getOperand(3).getImm()) .addReg(MI->getOperand(4).getReg())); return; } // Darwin call instructions are just normal call instructions with different // clobber semantics (they clobber R9). case ARM::BX_CALL: { EmitToStreamer(OutStreamer, MCInstBuilder(ARM::MOVr) .addReg(ARM::LR) .addReg(ARM::PC) // Add predicate operands. .addImm(ARMCC::AL) .addReg(0) // Add 's' bit operand (always reg0 for this) .addReg(0)); EmitToStreamer(OutStreamer, MCInstBuilder(ARM::BX) .addReg(MI->getOperand(0).getReg())); return; } case ARM::tBX_CALL: { EmitToStreamer(OutStreamer, MCInstBuilder(ARM::tMOVr) .addReg(ARM::LR) .addReg(ARM::PC) // Add predicate operands. .addImm(ARMCC::AL) .addReg(0)); EmitToStreamer(OutStreamer, MCInstBuilder(ARM::tBX) .addReg(MI->getOperand(0).getReg()) // Add predicate operands. .addImm(ARMCC::AL) .addReg(0)); return; } case ARM::BMOVPCRX_CALL: { EmitToStreamer(OutStreamer, MCInstBuilder(ARM::MOVr) .addReg(ARM::LR) .addReg(ARM::PC) // Add predicate operands. .addImm(ARMCC::AL) .addReg(0) // Add 's' bit operand (always reg0 for this) .addReg(0)); EmitToStreamer(OutStreamer, MCInstBuilder(ARM::MOVr) .addReg(ARM::PC) .addReg(MI->getOperand(0).getReg()) // Add predicate operands. .addImm(ARMCC::AL) .addReg(0) // Add 's' bit operand (always reg0 for this) .addReg(0)); return; } case ARM::BMOVPCB_CALL: { EmitToStreamer(OutStreamer, MCInstBuilder(ARM::MOVr) .addReg(ARM::LR) .addReg(ARM::PC) // Add predicate operands. .addImm(ARMCC::AL) .addReg(0) // Add 's' bit operand (always reg0 for this) .addReg(0)); const GlobalValue *GV = MI->getOperand(0).getGlobal(); MCSymbol *GVSym = getSymbol(GV); const MCExpr *GVSymExpr = MCSymbolRefExpr::Create(GVSym, OutContext); EmitToStreamer(OutStreamer, MCInstBuilder(ARM::Bcc) .addExpr(GVSymExpr) // Add predicate operands. .addImm(ARMCC::AL) .addReg(0)); return; } case ARM::MOVi16_ga_pcrel: case ARM::t2MOVi16_ga_pcrel: { MCInst TmpInst; TmpInst.setOpcode(Opc == ARM::MOVi16_ga_pcrel? ARM::MOVi16 : ARM::t2MOVi16); TmpInst.addOperand(MCOperand::CreateReg(MI->getOperand(0).getReg())); unsigned TF = MI->getOperand(1).getTargetFlags(); const GlobalValue *GV = MI->getOperand(1).getGlobal(); MCSymbol *GVSym = GetARMGVSymbol(GV, TF); const MCExpr *GVSymExpr = MCSymbolRefExpr::Create(GVSym, OutContext); MCSymbol *LabelSym = getPICLabel(DL->getPrivateGlobalPrefix(), getFunctionNumber(), MI->getOperand(2).getImm(), OutContext); const MCExpr *LabelSymExpr= MCSymbolRefExpr::Create(LabelSym, OutContext); unsigned PCAdj = (Opc == ARM::MOVi16_ga_pcrel) ? 8 : 4; const MCExpr *PCRelExpr = ARMMCExpr::CreateLower16(MCBinaryExpr::CreateSub(GVSymExpr, MCBinaryExpr::CreateAdd(LabelSymExpr, MCConstantExpr::Create(PCAdj, OutContext), OutContext), OutContext), OutContext); TmpInst.addOperand(MCOperand::CreateExpr(PCRelExpr)); // Add predicate operands. TmpInst.addOperand(MCOperand::CreateImm(ARMCC::AL)); TmpInst.addOperand(MCOperand::CreateReg(0)); // Add 's' bit operand (always reg0 for this) TmpInst.addOperand(MCOperand::CreateReg(0)); EmitToStreamer(OutStreamer, TmpInst); return; } case ARM::MOVTi16_ga_pcrel: case ARM::t2MOVTi16_ga_pcrel: { MCInst TmpInst; TmpInst.setOpcode(Opc == ARM::MOVTi16_ga_pcrel ? ARM::MOVTi16 : ARM::t2MOVTi16); TmpInst.addOperand(MCOperand::CreateReg(MI->getOperand(0).getReg())); TmpInst.addOperand(MCOperand::CreateReg(MI->getOperand(1).getReg())); unsigned TF = MI->getOperand(2).getTargetFlags(); const GlobalValue *GV = MI->getOperand(2).getGlobal(); MCSymbol *GVSym = GetARMGVSymbol(GV, TF); const MCExpr *GVSymExpr = MCSymbolRefExpr::Create(GVSym, OutContext); MCSymbol *LabelSym = getPICLabel(DL->getPrivateGlobalPrefix(), getFunctionNumber(), MI->getOperand(3).getImm(), OutContext); const MCExpr *LabelSymExpr= MCSymbolRefExpr::Create(LabelSym, OutContext); unsigned PCAdj = (Opc == ARM::MOVTi16_ga_pcrel) ? 8 : 4; const MCExpr *PCRelExpr = ARMMCExpr::CreateUpper16(MCBinaryExpr::CreateSub(GVSymExpr, MCBinaryExpr::CreateAdd(LabelSymExpr, MCConstantExpr::Create(PCAdj, OutContext), OutContext), OutContext), OutContext); TmpInst.addOperand(MCOperand::CreateExpr(PCRelExpr)); // Add predicate operands. TmpInst.addOperand(MCOperand::CreateImm(ARMCC::AL)); TmpInst.addOperand(MCOperand::CreateReg(0)); // Add 's' bit operand (always reg0 for this) TmpInst.addOperand(MCOperand::CreateReg(0)); EmitToStreamer(OutStreamer, TmpInst); return; } case ARM::tPICADD: { // This is a pseudo op for a label + instruction sequence, which looks like: // LPC0: // add r0, pc // This adds the address of LPC0 to r0. // Emit the label. OutStreamer.EmitLabel(getPICLabel(DL->getPrivateGlobalPrefix(), getFunctionNumber(), MI->getOperand(2).getImm(), OutContext)); // Form and emit the add. EmitToStreamer(OutStreamer, MCInstBuilder(ARM::tADDhirr) .addReg(MI->getOperand(0).getReg()) .addReg(MI->getOperand(0).getReg()) .addReg(ARM::PC) // Add predicate operands. .addImm(ARMCC::AL) .addReg(0)); return; } case ARM::PICADD: { // This is a pseudo op for a label + instruction sequence, which looks like: // LPC0: // add r0, pc, r0 // This adds the address of LPC0 to r0. // Emit the label. OutStreamer.EmitLabel(getPICLabel(DL->getPrivateGlobalPrefix(), getFunctionNumber(), MI->getOperand(2).getImm(), OutContext)); // Form and emit the add. EmitToStreamer(OutStreamer, MCInstBuilder(ARM::ADDrr) .addReg(MI->getOperand(0).getReg()) .addReg(ARM::PC) .addReg(MI->getOperand(1).getReg()) // Add predicate operands. .addImm(MI->getOperand(3).getImm()) .addReg(MI->getOperand(4).getReg()) // Add 's' bit operand (always reg0 for this) .addReg(0)); return; } case ARM::PICSTR: case ARM::PICSTRB: case ARM::PICSTRH: case ARM::PICLDR: case ARM::PICLDRB: case ARM::PICLDRH: case ARM::PICLDRSB: case ARM::PICLDRSH: { // This is a pseudo op for a label + instruction sequence, which looks like: // LPC0: // OP r0, [pc, r0] // The LCP0 label is referenced by a constant pool entry in order to get // a PC-relative address at the ldr instruction. // Emit the label. OutStreamer.EmitLabel(getPICLabel(DL->getPrivateGlobalPrefix(), getFunctionNumber(), MI->getOperand(2).getImm(), OutContext)); // Form and emit the load unsigned Opcode; switch (MI->getOpcode()) { default: llvm_unreachable("Unexpected opcode!"); case ARM::PICSTR: Opcode = ARM::STRrs; break; case ARM::PICSTRB: Opcode = ARM::STRBrs; break; case ARM::PICSTRH: Opcode = ARM::STRH; break; case ARM::PICLDR: Opcode = ARM::LDRrs; break; case ARM::PICLDRB: Opcode = ARM::LDRBrs; break; case ARM::PICLDRH: Opcode = ARM::LDRH; break; case ARM::PICLDRSB: Opcode = ARM::LDRSB; break; case ARM::PICLDRSH: Opcode = ARM::LDRSH; break; } EmitToStreamer(OutStreamer, MCInstBuilder(Opcode) .addReg(MI->getOperand(0).getReg()) .addReg(ARM::PC) .addReg(MI->getOperand(1).getReg()) .addImm(0) // Add predicate operands. .addImm(MI->getOperand(3).getImm()) .addReg(MI->getOperand(4).getReg())); return; } case ARM::CONSTPOOL_ENTRY: { /// CONSTPOOL_ENTRY - This instruction represents a floating constant pool /// in the function. The first operand is the ID# for this instruction, the /// second is the index into the MachineConstantPool that this is, the third /// is the size in bytes of this constant pool entry. /// The required alignment is specified on the basic block holding this MI. unsigned LabelId = (unsigned)MI->getOperand(0).getImm(); unsigned CPIdx = (unsigned)MI->getOperand(1).getIndex(); // If this is the first entry of the pool, mark it. if (!InConstantPool) { OutStreamer.EmitDataRegion(MCDR_DataRegion); InConstantPool = true; } OutStreamer.EmitLabel(GetCPISymbol(LabelId)); const MachineConstantPoolEntry &MCPE = MCP->getConstants()[CPIdx]; if (MCPE.isMachineConstantPoolEntry()) EmitMachineConstantPoolValue(MCPE.Val.MachineCPVal); else EmitGlobalConstant(MCPE.Val.ConstVal); return; } case ARM::t2BR_JT: { // Lower and emit the instruction itself, then the jump table following it. EmitToStreamer(OutStreamer, MCInstBuilder(ARM::tMOVr) .addReg(ARM::PC) .addReg(MI->getOperand(0).getReg()) // Add predicate operands. .addImm(ARMCC::AL) .addReg(0)); // Output the data for the jump table itself EmitJump2Table(MI); return; } case ARM::t2TBB_JT: { // Lower and emit the instruction itself, then the jump table following it. EmitToStreamer(OutStreamer, MCInstBuilder(ARM::t2TBB) .addReg(ARM::PC) .addReg(MI->getOperand(0).getReg()) // Add predicate operands. .addImm(ARMCC::AL) .addReg(0)); // Output the data for the jump table itself EmitJump2Table(MI); // Make sure the next instruction is 2-byte aligned. EmitAlignment(1); return; } case ARM::t2TBH_JT: { // Lower and emit the instruction itself, then the jump table following it. EmitToStreamer(OutStreamer, MCInstBuilder(ARM::t2TBH) .addReg(ARM::PC) .addReg(MI->getOperand(0).getReg()) // Add predicate operands. .addImm(ARMCC::AL) .addReg(0)); // Output the data for the jump table itself EmitJump2Table(MI); return; } case ARM::tBR_JTr: case ARM::BR_JTr: { // Lower and emit the instruction itself, then the jump table following it. // mov pc, target MCInst TmpInst; unsigned Opc = MI->getOpcode() == ARM::BR_JTr ? ARM::MOVr : ARM::tMOVr; TmpInst.setOpcode(Opc); TmpInst.addOperand(MCOperand::CreateReg(ARM::PC)); TmpInst.addOperand(MCOperand::CreateReg(MI->getOperand(0).getReg())); // Add predicate operands. TmpInst.addOperand(MCOperand::CreateImm(ARMCC::AL)); TmpInst.addOperand(MCOperand::CreateReg(0)); // Add 's' bit operand (always reg0 for this) if (Opc == ARM::MOVr) TmpInst.addOperand(MCOperand::CreateReg(0)); EmitToStreamer(OutStreamer, TmpInst); // Make sure the Thumb jump table is 4-byte aligned. if (Opc == ARM::tMOVr) EmitAlignment(2); // Output the data for the jump table itself EmitJumpTable(MI); return; } case ARM::BR_JTm: { // Lower and emit the instruction itself, then the jump table following it. // ldr pc, target MCInst TmpInst; if (MI->getOperand(1).getReg() == 0) { // literal offset TmpInst.setOpcode(ARM::LDRi12); TmpInst.addOperand(MCOperand::CreateReg(ARM::PC)); TmpInst.addOperand(MCOperand::CreateReg(MI->getOperand(0).getReg())); TmpInst.addOperand(MCOperand::CreateImm(MI->getOperand(2).getImm())); } else { TmpInst.setOpcode(ARM::LDRrs); TmpInst.addOperand(MCOperand::CreateReg(ARM::PC)); TmpInst.addOperand(MCOperand::CreateReg(MI->getOperand(0).getReg())); TmpInst.addOperand(MCOperand::CreateReg(MI->getOperand(1).getReg())); TmpInst.addOperand(MCOperand::CreateImm(0)); } // Add predicate operands. TmpInst.addOperand(MCOperand::CreateImm(ARMCC::AL)); TmpInst.addOperand(MCOperand::CreateReg(0)); EmitToStreamer(OutStreamer, TmpInst); // Output the data for the jump table itself EmitJumpTable(MI); return; } case ARM::BR_JTadd: { // Lower and emit the instruction itself, then the jump table following it. // add pc, target, idx EmitToStreamer(OutStreamer, MCInstBuilder(ARM::ADDrr) .addReg(ARM::PC) .addReg(MI->getOperand(0).getReg()) .addReg(MI->getOperand(1).getReg()) // Add predicate operands. .addImm(ARMCC::AL) .addReg(0) // Add 's' bit operand (always reg0 for this) .addReg(0)); // Output the data for the jump table itself EmitJumpTable(MI); return; } case ARM::TRAP: { // Non-Darwin binutils don't yet support the "trap" mnemonic. // FIXME: Remove this special case when they do. if (!Subtarget->isTargetMachO()) { //.long 0xe7ffdefe @ trap uint32_t Val = 0xe7ffdefeUL; OutStreamer.AddComment("trap"); OutStreamer.EmitIntValue(Val, 4); return; } break; } case ARM::TRAPNaCl: { //.long 0xe7fedef0 @ trap uint32_t Val = 0xe7fedef0UL; OutStreamer.AddComment("trap"); OutStreamer.EmitIntValue(Val, 4); return; } case ARM::tTRAP: { // Non-Darwin binutils don't yet support the "trap" mnemonic. // FIXME: Remove this special case when they do. if (!Subtarget->isTargetMachO()) { //.short 57086 @ trap uint16_t Val = 0xdefe; OutStreamer.AddComment("trap"); OutStreamer.EmitIntValue(Val, 2); return; } break; } case ARM::t2Int_eh_sjlj_setjmp: case ARM::t2Int_eh_sjlj_setjmp_nofp: case ARM::tInt_eh_sjlj_setjmp: { // Two incoming args: GPR:$src, GPR:$val // mov $val, pc // adds $val, #7 // str $val, [$src, #4] // movs r0, #0 // b 1f // movs r0, #1 // 1: unsigned SrcReg = MI->getOperand(0).getReg(); unsigned ValReg = MI->getOperand(1).getReg(); MCSymbol *Label = GetARMSJLJEHLabel(); OutStreamer.AddComment("eh_setjmp begin"); EmitToStreamer(OutStreamer, MCInstBuilder(ARM::tMOVr) .addReg(ValReg) .addReg(ARM::PC) // Predicate. .addImm(ARMCC::AL) .addReg(0)); EmitToStreamer(OutStreamer, MCInstBuilder(ARM::tADDi3) .addReg(ValReg) // 's' bit operand .addReg(ARM::CPSR) .addReg(ValReg) .addImm(7) // Predicate. .addImm(ARMCC::AL) .addReg(0)); EmitToStreamer(OutStreamer, MCInstBuilder(ARM::tSTRi) .addReg(ValReg) .addReg(SrcReg) // The offset immediate is #4. The operand value is scaled by 4 for the // tSTR instruction. .addImm(1) // Predicate. .addImm(ARMCC::AL) .addReg(0)); EmitToStreamer(OutStreamer, MCInstBuilder(ARM::tMOVi8) .addReg(ARM::R0) .addReg(ARM::CPSR) .addImm(0) // Predicate. .addImm(ARMCC::AL) .addReg(0)); const MCExpr *SymbolExpr = MCSymbolRefExpr::Create(Label, OutContext); EmitToStreamer(OutStreamer, MCInstBuilder(ARM::tB) .addExpr(SymbolExpr) .addImm(ARMCC::AL) .addReg(0)); OutStreamer.AddComment("eh_setjmp end"); EmitToStreamer(OutStreamer, MCInstBuilder(ARM::tMOVi8) .addReg(ARM::R0) .addReg(ARM::CPSR) .addImm(1) // Predicate. .addImm(ARMCC::AL) .addReg(0)); OutStreamer.EmitLabel(Label); return; } case ARM::Int_eh_sjlj_setjmp_nofp: case ARM::Int_eh_sjlj_setjmp: { // Two incoming args: GPR:$src, GPR:$val // add $val, pc, #8 // str $val, [$src, #+4] // mov r0, #0 // add pc, pc, #0 // mov r0, #1 unsigned SrcReg = MI->getOperand(0).getReg(); unsigned ValReg = MI->getOperand(1).getReg(); OutStreamer.AddComment("eh_setjmp begin"); EmitToStreamer(OutStreamer, MCInstBuilder(ARM::ADDri) .addReg(ValReg) .addReg(ARM::PC) .addImm(8) // Predicate. .addImm(ARMCC::AL) .addReg(0) // 's' bit operand (always reg0 for this). .addReg(0)); EmitToStreamer(OutStreamer, MCInstBuilder(ARM::STRi12) .addReg(ValReg) .addReg(SrcReg) .addImm(4) // Predicate. .addImm(ARMCC::AL) .addReg(0)); EmitToStreamer(OutStreamer, MCInstBuilder(ARM::MOVi) .addReg(ARM::R0) .addImm(0) // Predicate. .addImm(ARMCC::AL) .addReg(0) // 's' bit operand (always reg0 for this). .addReg(0)); EmitToStreamer(OutStreamer, MCInstBuilder(ARM::ADDri) .addReg(ARM::PC) .addReg(ARM::PC) .addImm(0) // Predicate. .addImm(ARMCC::AL) .addReg(0) // 's' bit operand (always reg0 for this). .addReg(0)); OutStreamer.AddComment("eh_setjmp end"); EmitToStreamer(OutStreamer, MCInstBuilder(ARM::MOVi) .addReg(ARM::R0) .addImm(1) // Predicate. .addImm(ARMCC::AL) .addReg(0) // 's' bit operand (always reg0 for this). .addReg(0)); return; } case ARM::Int_eh_sjlj_longjmp: { // ldr sp, [$src, #8] // ldr $scratch, [$src, #4] // ldr r7, [$src] // bx $scratch unsigned SrcReg = MI->getOperand(0).getReg(); unsigned ScratchReg = MI->getOperand(1).getReg(); EmitToStreamer(OutStreamer, MCInstBuilder(ARM::LDRi12) .addReg(ARM::SP) .addReg(SrcReg) .addImm(8) // Predicate. .addImm(ARMCC::AL) .addReg(0)); EmitToStreamer(OutStreamer, MCInstBuilder(ARM::LDRi12) .addReg(ScratchReg) .addReg(SrcReg) .addImm(4) // Predicate. .addImm(ARMCC::AL) .addReg(0)); EmitToStreamer(OutStreamer, MCInstBuilder(ARM::LDRi12) .addReg(ARM::R7) .addReg(SrcReg) .addImm(0) // Predicate. .addImm(ARMCC::AL) .addReg(0)); EmitToStreamer(OutStreamer, MCInstBuilder(ARM::BX) .addReg(ScratchReg) // Predicate. .addImm(ARMCC::AL) .addReg(0)); return; } case ARM::tInt_eh_sjlj_longjmp: { // ldr $scratch, [$src, #8] // mov sp, $scratch // ldr $scratch, [$src, #4] // ldr r7, [$src] // bx $scratch unsigned SrcReg = MI->getOperand(0).getReg(); unsigned ScratchReg = MI->getOperand(1).getReg(); EmitToStreamer(OutStreamer, MCInstBuilder(ARM::tLDRi) .addReg(ScratchReg) .addReg(SrcReg) // The offset immediate is #8. The operand value is scaled by 4 for the // tLDR instruction. .addImm(2) // Predicate. .addImm(ARMCC::AL) .addReg(0)); EmitToStreamer(OutStreamer, MCInstBuilder(ARM::tMOVr) .addReg(ARM::SP) .addReg(ScratchReg) // Predicate. .addImm(ARMCC::AL) .addReg(0)); EmitToStreamer(OutStreamer, MCInstBuilder(ARM::tLDRi) .addReg(ScratchReg) .addReg(SrcReg) .addImm(1) // Predicate. .addImm(ARMCC::AL) .addReg(0)); EmitToStreamer(OutStreamer, MCInstBuilder(ARM::tLDRi) .addReg(ARM::R7) .addReg(SrcReg) .addImm(0) // Predicate. .addImm(ARMCC::AL) .addReg(0)); EmitToStreamer(OutStreamer, MCInstBuilder(ARM::tBX) .addReg(ScratchReg) // Predicate. .addImm(ARMCC::AL) .addReg(0)); return; } } MCInst TmpInst; LowerARMMachineInstrToMCInst(MI, TmpInst, *this); EmitToStreamer(OutStreamer, TmpInst); } //===----------------------------------------------------------------------===// // Target Registry Stuff //===----------------------------------------------------------------------===// // Force static initialization. extern "C" void LLVMInitializeARMAsmPrinter() { RegisterAsmPrinter X(TheARMTarget); RegisterAsmPrinter Y(TheThumbTarget); }