//===-- llvm/BasicBlock.h - Represent a basic block in the VM ----*- C++ -*--=// // // This file contains the declaration of the BasicBlock class, which represents // a single basic block in the VM. // // Note that basic blocks themselves are Def's, because they are referenced // by instructions like branches and can go in switch tables and stuff... // // This may see wierd at first, but it's really pretty cool. :) // //===----------------------------------------------------------------------===// // // Note that well formed basic blocks are formed of a list of instructions // followed by a single TerminatorInst instruction. TerminatorInst's may not // occur in the middle of basic blocks, and must terminate the blocks. // // This code allows malformed basic blocks to occur, because it may be useful // in the intermediate stage of analysis or modification of a program. // //===----------------------------------------------------------------------===// #ifndef LLVM_BASICBLOCK_H #define LLVM_BASICBLOCK_H #include "llvm/Value.h" #include "llvm/ValueHolder.h" #include "llvm/InstrTypes.h" #include "Support/GraphTraits.h" #include class Instruction; class Method; class TerminatorInst; class MachineCodeForBasicBlock; class BasicBlock : public Value { // Basic blocks are data objects also template class PredIterator; template class SuccIterator; public: typedef ValueHolder InstListType; private : InstListType InstList; MachineCodeForBasicBlock* machineInstrVec; friend class ValueHolder; void setParent(Method *parent); public: // Instruction iterators... typedef InstListType::iterator iterator; typedef InstListType::const_iterator const_iterator; typedef reverse_iterator const_reverse_iterator; typedef reverse_iterator reverse_iterator; // Predecessor and successor iterators... typedef PredIterator pred_iterator; typedef PredIterator pred_const_iterator; typedef SuccIterator succ_iterator; typedef SuccIterator succ_const_iterator; // Ctor, dtor BasicBlock(const string &Name = "", Method *Parent = 0); ~BasicBlock(); // Specialize setName to take care of symbol table majik virtual void setName(const string &name, SymbolTable *ST = 0); // getParent - Return the enclosing method, or null if none const Method *getParent() const { return InstList.getParent(); } Method *getParent() { return InstList.getParent(); } // getTerminator() - If this is a well formed basic block, then this returns // a pointer to the terminator instruction. If it is not, then you get a null // pointer back. // TerminatorInst *getTerminator(); const TerminatorInst *const getTerminator() const; // Machine code accessor... inline MachineCodeForBasicBlock& getMachineInstrVec() const { return *machineInstrVec; } //===--------------------------------------------------------------------===// // Instruction iterator methods // inline iterator begin() { return InstList.begin(); } inline const_iterator begin() const { return InstList.begin(); } inline iterator end () { return InstList.end(); } inline const_iterator end () const { return InstList.end(); } inline reverse_iterator rbegin() { return InstList.rbegin(); } inline const_reverse_iterator rbegin() const { return InstList.rbegin(); } inline reverse_iterator rend () { return InstList.rend(); } inline const_reverse_iterator rend () const { return InstList.rend(); } inline unsigned size() const { return InstList.size(); } inline bool empty() const { return InstList.empty(); } inline const Instruction *front() const { return InstList.front(); } inline Instruction *front() { return InstList.front(); } inline const Instruction *back() const { return InstList.back(); } inline Instruction *back() { return InstList.back(); } // getInstList() - Return the underlying instruction list container. You need // to access it directly if you want to modify it currently. // const InstListType &getInstList() const { return InstList; } InstListType &getInstList() { return InstList; } // Methods for support type inquiry through isa, cast, and dyn_cast: static inline bool classof(const BasicBlock *BB) { return true; } static inline bool classof(const Value *V) { return V->getValueType() == Value::BasicBlockVal; } // hasConstantReferences() - This predicate is true if there is a // reference to this basic block in the constant pool for this method. For // example, if a block is reached through a switch table, that table resides // in the constant pool, and the basic block is reference from it. // bool hasConstantReferences() const; // dropAllReferences() - This function causes all the subinstructions to "let // go" of all references that they are maintaining. This allows one to // 'delete' a whole class at a time, even though there may be circular // references... first all references are dropped, and all use counts go to // zero. Then everything is delete'd for real. Note that no operations are // valid on an object that has "dropped all references", except operator // delete. // void dropAllReferences(); // removePredecessor - This method is used to notify a BasicBlock that the // specified Predecessor of the block is no longer able to reach it. This is // actually not used to update the Predecessor list, but is actually used to // update the PHI nodes that reside in the block. Note that this should be // called while the predecessor still refers to this block. // void removePredecessor(BasicBlock *Pred); // splitBasicBlock - This splits a basic block into two at the specified // instruction. Note that all instructions BEFORE the specified iterator stay // as part of the original basic block, an unconditional branch is added to // the new BB, and the rest of the instructions in the BB are moved to the new // BB, including the old terminator. The newly formed BasicBlock is returned. // This function invalidates the specified iterator. // // Note that this only works on well formed basic blocks (must have a // terminator), and 'I' must not be the end of instruction list (which would // cause a degenerate basic block to be formed, having a terminator inside of // the basic block). // BasicBlock *splitBasicBlock(iterator I); //===--------------------------------------------------------------------===// // Predecessor and Successor Iterators // template // Predecessor Iterator class PredIterator : public std::bidirectional_iterator<_Ptr, ptrdiff_t> { _Ptr *BB; _USE_iterator It; public: typedef PredIterator<_Ptr,_USE_iterator> _Self; inline void advancePastConstants() { // TODO: This is bad // Loop to ignore constant pool references while (It != BB->use_end() && !isa(*It)) ++It; } inline PredIterator(_Ptr *bb) : BB(bb), It(bb->use_begin()) { advancePastConstants(); } inline PredIterator(_Ptr *bb, bool) : BB(bb), It(bb->use_end()) {} inline bool operator==(const _Self& x) const { return It == x.It; } inline bool operator!=(const _Self& x) const { return !operator==(x); } inline pointer operator*() const { return cast(*It)->getParent(); } inline pointer *operator->() const { return &(operator*()); } inline _Self& operator++() { // Preincrement ++It; advancePastConstants(); return *this; } inline _Self operator++(int) { // Postincrement _Self tmp = *this; ++*this; return tmp; } inline _Self& operator--() { --It; return *this; } // Predecrement inline _Self operator--(int) { // Postdecrement _Self tmp = *this; --*this; return tmp; } }; inline pred_iterator pred_begin() { return pred_iterator(this); } inline pred_const_iterator pred_begin() const { return pred_const_iterator(this); } inline pred_iterator pred_end() { return pred_iterator(this, true); } inline pred_const_iterator pred_end() const { return pred_const_iterator(this, true); } template // Successor Iterator class SuccIterator : public std::bidirectional_iterator<_BB, ptrdiff_t> { const _Term Term; unsigned idx; public: typedef SuccIterator<_Term, _BB> _Self; // TODO: This can be random access iterator, need operator+ and stuff tho inline SuccIterator(_Term T) : Term(T), idx(0) { // begin iterator assert(T && "getTerminator returned null!"); } inline SuccIterator(_Term T, bool) // end iterator : Term(T), idx(Term->getNumSuccessors()) { assert(T && "getTerminator returned null!"); } inline bool operator==(const _Self& x) const { return idx == x.idx; } inline bool operator!=(const _Self& x) const { return !operator==(x); } inline pointer operator*() const { return Term->getSuccessor(idx); } inline pointer operator->() const { return operator*(); } inline _Self& operator++() { ++idx; return *this; } // Preincrement inline _Self operator++(int) { // Postincrement _Self tmp = *this; ++*this; return tmp; } inline _Self& operator--() { --idx; return *this; } // Predecrement inline _Self operator--(int) { // Postdecrement _Self tmp = *this; --*this; return tmp; } }; inline succ_iterator succ_begin() { return succ_iterator(getTerminator()); } inline succ_const_iterator succ_begin() const { return succ_const_iterator(getTerminator()); } inline succ_iterator succ_end() {return succ_iterator(getTerminator(), true);} inline succ_const_iterator succ_end() const { return succ_const_iterator(getTerminator(), true); } }; //===--------------------------------------------------------------------===// // GraphTraits specializations for basic block graphs (CFGs) //===--------------------------------------------------------------------===// // Provide specializations of GraphTraits to be able to treat a method as a // graph of basic blocks... template <> struct GraphTraits { typedef BasicBlock NodeType; typedef BasicBlock::succ_iterator ChildIteratorType; static NodeType *getEntryNode(BasicBlock *BB) { return BB; } static inline ChildIteratorType child_begin(NodeType *N) { return N->succ_begin(); } static inline ChildIteratorType child_end(NodeType *N) { return N->succ_end(); } }; template <> struct GraphTraits { typedef const BasicBlock NodeType; typedef BasicBlock::succ_const_iterator ChildIteratorType; static NodeType *getEntryNode(const BasicBlock *BB) { return BB; } static inline ChildIteratorType child_begin(NodeType *N) { return N->succ_begin(); } static inline ChildIteratorType child_end(NodeType *N) { return N->succ_end(); } }; // Provide specializations of GraphTraits to be able to treat a method as a // graph of basic blocks... and to walk it in inverse order. Inverse order for // a method is considered to be when traversing the predecessor edges of a BB // instead of the successor edges. // template <> struct GraphTraits > { typedef BasicBlock NodeType; typedef BasicBlock::pred_iterator ChildIteratorType; static NodeType *getEntryNode(Inverse G) { return G.Graph; } static inline ChildIteratorType child_begin(NodeType *N) { return N->pred_begin(); } static inline ChildIteratorType child_end(NodeType *N) { return N->pred_end(); } }; template <> struct GraphTraits > { typedef const BasicBlock NodeType; typedef BasicBlock::pred_const_iterator ChildIteratorType; static NodeType *getEntryNode(Inverse G) { return G.Graph; } static inline ChildIteratorType child_begin(NodeType *N) { return N->pred_begin(); } static inline ChildIteratorType child_end(NodeType *N) { return N->pred_end(); } }; #endif