//===- Dominators.cpp - Dominator Calculation -----------------------------===// // // This file implements simple dominator construction algorithms for finding // forward dominators. Postdominators are available in libanalysis, but are not // included in libvmcore, because it's not needed. Forward dominators are // needed to support the Verifier pass. // //===----------------------------------------------------------------------===// #include "llvm/Analysis/Dominators.h" #include "llvm/Support/CFG.h" #include "llvm/Assembly/Writer.h" #include "Support/DepthFirstIterator.h" #include "Support/SetOperations.h" //===----------------------------------------------------------------------===// // DominatorSet Implementation //===----------------------------------------------------------------------===// static RegisterAnalysis A("domset", "Dominator Set Construction", true); // dominates - Return true if A dominates B. This performs the special checks // necessary if A and B are in the same basic block. // bool DominatorSetBase::dominates(Instruction *A, Instruction *B) const { BasicBlock *BBA = A->getParent(), *BBB = B->getParent(); if (BBA != BBB) return dominates(BBA, BBB); // Loop through the basic block until we find A or B. BasicBlock::iterator I = BBA->begin(); for (; &*I != A && &*I != B; ++I) /*empty*/; // A dominates B if it is found first in the basic block... return &*I == A; } void DominatorSet::calculateDominatorsFromBlock(BasicBlock *RootBB) { bool Changed; Doms[RootBB].insert(RootBB); // Root always dominates itself... do { Changed = false; DomSetType WorkingSet; df_iterator It = df_begin(RootBB), End = df_end(RootBB); for ( ; It != End; ++It) { BasicBlock *BB = *It; pred_iterator PI = pred_begin(BB), PEnd = pred_end(BB); if (PI != PEnd) { // Is there SOME predecessor? // Loop until we get to a predecessor that has had its dom set filled // in at least once. We are guaranteed to have this because we are // traversing the graph in DFO and have handled start nodes specially, // except when there are unreachable blocks. // while (PI != PEnd && Doms[*PI].empty()) ++PI; if (PI != PEnd) { // Not unreachable code case? WorkingSet = Doms[*PI]; // Intersect all of the predecessor sets for (++PI; PI != PEnd; ++PI) { DomSetType &PredSet = Doms[*PI]; if (PredSet.size()) set_intersect(WorkingSet, PredSet); } } } else { assert(Roots.size() == 1 && BB == Roots[0] && "We got into unreachable code somehow!"); } WorkingSet.insert(BB); // A block always dominates itself DomSetType &BBSet = Doms[BB]; if (BBSet != WorkingSet) { //assert(WorkingSet.size() > BBSet.size() && "Must only grow sets!"); BBSet.swap(WorkingSet); // Constant time operation! Changed = true; // The sets changed. } WorkingSet.clear(); // Clear out the set for next iteration } } while (Changed); } // runOnFunction - This method calculates the forward dominator sets for the // specified function. // bool DominatorSet::runOnFunction(Function &F) { BasicBlock *Root = &F.getEntryNode(); Roots.clear(); Roots.push_back(Root); assert(pred_begin(Root) == pred_end(Root) && "Root node has predecessors in function!"); recalculate(); return false; } void DominatorSet::recalculate() { assert(Roots.size() == 1 && "DominatorSet should have single root block!"); Doms.clear(); // Reset from the last time we were run... // Calculate dominator sets for the reachable basic blocks... calculateDominatorsFromBlock(Roots[0]); // Loop through the function, ensuring that every basic block has at least an // empty set of nodes. This is important for the case when there is // unreachable blocks. Function *F = Roots[0]->getParent(); for (Function::iterator I = F->begin(), E = F->end(); I != E; ++I) Doms[I]; } static std::ostream &operator<<(std::ostream &o, const std::set &BBs) { for (std::set::const_iterator I = BBs.begin(), E = BBs.end(); I != E; ++I) if (*I) WriteAsOperand(o, *I, false); else o << " <>"; return o; } void DominatorSetBase::print(std::ostream &o) const { for (const_iterator I = begin(), E = end(); I != E; ++I) { o << " DomSet For BB: "; if (I->first) WriteAsOperand(o, I->first, false); else o << " <>"; o << " is:\t" << I->second << "\n"; } } //===----------------------------------------------------------------------===// // ImmediateDominators Implementation //===----------------------------------------------------------------------===// static RegisterAnalysis C("idom", "Immediate Dominators Construction", true); // calcIDoms - Calculate the immediate dominator mapping, given a set of // dominators for every basic block. void ImmediateDominatorsBase::calcIDoms(const DominatorSetBase &DS) { // Loop over all of the nodes that have dominators... figuring out the IDOM // for each node... // for (DominatorSet::const_iterator DI = DS.begin(), DEnd = DS.end(); DI != DEnd; ++DI) { BasicBlock *BB = DI->first; const DominatorSet::DomSetType &Dominators = DI->second; unsigned DomSetSize = Dominators.size(); if (DomSetSize == 1) continue; // Root node... IDom = null // Loop over all dominators of this node. This corresponds to looping over // nodes in the dominator chain, looking for a node whose dominator set is // equal to the current nodes, except that the current node does not exist // in it. This means that it is one level higher in the dom chain than the // current node, and it is our idom! // DominatorSet::DomSetType::const_iterator I = Dominators.begin(); DominatorSet::DomSetType::const_iterator End = Dominators.end(); for (; I != End; ++I) { // Iterate over dominators... // All of our dominators should form a chain, where the number of elements // in the dominator set indicates what level the node is at in the chain. // We want the node immediately above us, so it will have an identical // dominator set, except that BB will not dominate it... therefore it's // dominator set size will be one less than BB's... // if (DS.getDominators(*I).size() == DomSetSize - 1) { IDoms[BB] = *I; break; } } } } void ImmediateDominatorsBase::print(std::ostream &o) const { for (const_iterator I = begin(), E = end(); I != E; ++I) { o << " Immediate Dominator For Basic Block:"; if (I->first) WriteAsOperand(o, I->first, false); else o << " <>"; o << " is:"; if (I->second) WriteAsOperand(o, I->second, false); else o << " <>"; o << "\n"; } o << "\n"; } //===----------------------------------------------------------------------===// // DominatorTree Implementation //===----------------------------------------------------------------------===// static RegisterAnalysis E("domtree", "Dominator Tree Construction", true); // DominatorTreeBase::reset - Free all of the tree node memory. // void DominatorTreeBase::reset() { for (NodeMapType::iterator I = Nodes.begin(), E = Nodes.end(); I != E; ++I) delete I->second; Nodes.clear(); RootNode = 0; } void DominatorTreeBase::Node2::setIDom(Node2 *NewIDom) { assert(IDom && "No immediate dominator?"); if (IDom != NewIDom) { std::vector::iterator I = std::find(IDom->Children.begin(), IDom->Children.end(), this); assert(I != IDom->Children.end() && "Not in immediate dominator children set!"); // I am no longer your child... IDom->Children.erase(I); // Switch to new dominator IDom = NewIDom; IDom->Children.push_back(this); } } void DominatorTree::calculate(const DominatorSet &DS) { assert(Roots.size() == 1 && "DominatorTree should have 1 root block!"); BasicBlock *Root = Roots[0]; Nodes[Root] = RootNode = new Node(Root, 0); // Add a node for the root... // Iterate over all nodes in depth first order... for (df_iterator I = df_begin(Root), E = df_end(Root); I != E; ++I) { BasicBlock *BB = *I; const DominatorSet::DomSetType &Dominators = DS.getDominators(BB); unsigned DomSetSize = Dominators.size(); if (DomSetSize == 1) continue; // Root node... IDom = null // Loop over all dominators of this node. This corresponds to looping over // nodes in the dominator chain, looking for a node whose dominator set is // equal to the current nodes, except that the current node does not exist // in it. This means that it is one level higher in the dom chain than the // current node, and it is our idom! We know that we have already added // a DominatorTree node for our idom, because the idom must be a // predecessor in the depth first order that we are iterating through the // function. // DominatorSet::DomSetType::const_iterator I = Dominators.begin(); DominatorSet::DomSetType::const_iterator End = Dominators.end(); for (; I != End; ++I) { // Iterate over dominators... // All of our dominators should form a chain, where the number of // elements in the dominator set indicates what level the node is at in // the chain. We want the node immediately above us, so it will have // an identical dominator set, except that BB will not dominate it... // therefore it's dominator set size will be one less than BB's... // if (DS.getDominators(*I).size() == DomSetSize - 1) { // We know that the immediate dominator should already have a node, // because we are traversing the CFG in depth first order! // Node *IDomNode = Nodes[*I]; assert(IDomNode && "No node for IDOM?"); // Add a new tree node for this BasicBlock, and link it as a child of // IDomNode Nodes[BB] = IDomNode->addChild(new Node(BB, IDomNode)); break; } } } } static std::ostream &operator<<(std::ostream &o, const DominatorTreeBase::Node *Node) { if (Node->getNode()) WriteAsOperand(o, Node->getNode(), false); else o << " <>"; return o << "\n"; } static void PrintDomTree(const DominatorTreeBase::Node *N, std::ostream &o, unsigned Lev) { o << std::string(2*Lev, ' ') << "[" << Lev << "] " << N; for (DominatorTreeBase::Node::const_iterator I = N->begin(), E = N->end(); I != E; ++I) PrintDomTree(*I, o, Lev+1); } void DominatorTreeBase::print(std::ostream &o) const { o << "=============================--------------------------------\n" << "Inorder Dominator Tree:\n"; PrintDomTree(getRootNode(), o, 1); } //===----------------------------------------------------------------------===// // DominanceFrontier Implementation //===----------------------------------------------------------------------===// static RegisterAnalysis G("domfrontier", "Dominance Frontier Construction", true); const DominanceFrontier::DomSetType & DominanceFrontier::calculate(const DominatorTree &DT, const DominatorTree::Node *Node) { // Loop over CFG successors to calculate DFlocal[Node] BasicBlock *BB = Node->getNode(); DomSetType &S = Frontiers[BB]; // The new set to fill in... for (succ_iterator SI = succ_begin(BB), SE = succ_end(BB); SI != SE; ++SI) { // Does Node immediately dominate this successor? if (DT[*SI]->getIDom() != Node) S.insert(*SI); } // At this point, S is DFlocal. Now we union in DFup's of our children... // Loop through and visit the nodes that Node immediately dominates (Node's // children in the IDomTree) // for (DominatorTree::Node::const_iterator NI = Node->begin(), NE = Node->end(); NI != NE; ++NI) { DominatorTree::Node *IDominee = *NI; const DomSetType &ChildDF = calculate(DT, IDominee); DomSetType::const_iterator CDFI = ChildDF.begin(), CDFE = ChildDF.end(); for (; CDFI != CDFE; ++CDFI) { if (!Node->dominates(DT[*CDFI])) S.insert(*CDFI); } } return S; } void DominanceFrontierBase::print(std::ostream &o) const { for (const_iterator I = begin(), E = end(); I != E; ++I) { o << " DomFrontier for BB"; if (I->first) WriteAsOperand(o, I->first, false); else o << " <>"; o << " is:\t" << I->second << "\n"; } }