//===- MemoryDependenceAnalysis.cpp - Mem Deps Implementation --*- C++ -*-===// // // The LLVM Compiler Infrastructure // // This file is distributed under the University of Illinois Open Source // License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// // // This file implements an analysis that determines, for a given memory // operation, what preceding memory operations it depends on. It builds on // alias analysis information, and tries to provide a lazy, caching interface to // a common kind of alias information query. // //===----------------------------------------------------------------------===// #define DEBUG_TYPE "memdep" #include "llvm/Analysis/MemoryDependenceAnalysis.h" #include "llvm/Constants.h" #include "llvm/Instructions.h" #include "llvm/Function.h" #include "llvm/Analysis/AliasAnalysis.h" #include "llvm/ADT/Statistic.h" #include "llvm/ADT/STLExtras.h" #include "llvm/Support/CFG.h" #include "llvm/Support/CommandLine.h" #include "llvm/Support/Debug.h" #include "llvm/Target/TargetData.h" using namespace llvm; // Control the calculation of non-local dependencies by only examining the // predecessors if the basic block has less than X amount (50 by default). static cl::opt PredLimit("nonlocaldep-threshold", cl::Hidden, cl::init(50), cl::desc("Control the calculation of non-local" "dependencies (default = 50)")); STATISTIC(NumCacheNonlocal, "Number of cached non-local responses"); STATISTIC(NumUncacheNonlocal, "Number of uncached non-local responses"); char MemoryDependenceAnalysis::ID = 0; // Register this pass... static RegisterPass X("memdep", "Memory Dependence Analysis", false, true); /// verifyRemoved - Verify that the specified instruction does not occur /// in our internal data structures. void MemoryDependenceAnalysis::verifyRemoved(Instruction *D) const { for (LocalDepMapType::const_iterator I = LocalDeps.begin(), E = LocalDeps.end(); I != E; ++I) { assert(I->first != D && "Inst occurs in data structures"); assert(I->second.getPointer() != D && "Inst occurs in data structures"); } for (nonLocalDepMapType::const_iterator I = depGraphNonLocal.begin(), E = depGraphNonLocal.end(); I != E; ++I) { assert(I->first != D && "Inst occurs in data structures"); for (DenseMap::iterator II = I->second.begin(), EE = I->second.end(); II != EE; ++II) assert(II->second.getPointer() != D && "Inst occurs in data structures"); } for (reverseDepMapType::const_iterator I = reverseDep.begin(), E = reverseDep.end(); I != E; ++I) for (SmallPtrSet::const_iterator II = I->second.begin(), EE = I->second.end(); II != EE; ++II) assert(*II != D && "Inst occurs in data structures"); for (reverseDepMapType::const_iterator I = reverseDepNonLocal.begin(), E = reverseDepNonLocal.end(); I != E; ++I) for (SmallPtrSet::const_iterator II = I->second.begin(), EE = I->second.end(); II != EE; ++II) assert(*II != D && "Inst occurs in data structures"); } /// getAnalysisUsage - Does not modify anything. It uses Alias Analysis. /// void MemoryDependenceAnalysis::getAnalysisUsage(AnalysisUsage &AU) const { AU.setPreservesAll(); AU.addRequiredTransitive(); AU.addRequiredTransitive(); } /// getCallSiteDependency - Private helper for finding the local dependencies /// of a call site. MemDepResult MemoryDependenceAnalysis:: getCallSiteDependency(CallSite C, Instruction *start, BasicBlock *block) { DepResultTy &cachedResult = LocalDeps[C.getInstruction()]; AliasAnalysis &AA = getAnalysis(); TargetData &TD = getAnalysis(); BasicBlock::iterator blockBegin = C.getInstruction()->getParent()->begin(); BasicBlock::iterator QI = C.getInstruction(); // If the starting point was specified, use it if (start) { QI = start; blockBegin = start->getParent()->begin(); // If the starting point wasn't specified, but the block was, use it } else if (!start && block) { QI = block->end(); blockBegin = block->begin(); } // Walk backwards through the block, looking for dependencies while (QI != blockBegin) { --QI; // If this inst is a memory op, get the pointer it accessed Value* pointer = 0; uint64_t pointerSize = 0; if (StoreInst* S = dyn_cast(QI)) { pointer = S->getPointerOperand(); pointerSize = TD.getTypeStoreSize(S->getOperand(0)->getType()); } else if (AllocationInst* AI = dyn_cast(QI)) { pointer = AI; if (ConstantInt* C = dyn_cast(AI->getArraySize())) pointerSize = C->getZExtValue() * TD.getABITypeSize(AI->getAllocatedType()); else pointerSize = ~0UL; } else if (VAArgInst* V = dyn_cast(QI)) { pointer = V->getOperand(0); pointerSize = TD.getTypeStoreSize(V->getType()); } else if (FreeInst* F = dyn_cast(QI)) { pointer = F->getPointerOperand(); // FreeInsts erase the entire structure pointerSize = ~0UL; } else if (CallSite::get(QI).getInstruction() != 0) { AliasAnalysis::ModRefBehavior result = AA.getModRefBehavior(CallSite::get(QI)); if (result != AliasAnalysis::DoesNotAccessMemory) { if (!start && !block) { cachedResult = DepResultTy(QI, Normal); reverseDep[QI].insert(C.getInstruction()); } return MemDepResult::get(QI); } else { continue; } } else continue; if (AA.getModRefInfo(C, pointer, pointerSize) != AliasAnalysis::NoModRef) { if (!start && !block) { cachedResult = DepResultTy(QI, Normal); reverseDep[QI].insert(C.getInstruction()); } return MemDepResult::get(QI); } } // No dependence found cachedResult = DepResultTy(0, NonLocal); return MemDepResult::getNonLocal(); } /// nonLocalHelper - Private helper used to calculate non-local dependencies /// by doing DFS on the predecessors of a block to find its dependencies. void MemoryDependenceAnalysis::nonLocalHelper(Instruction* query, BasicBlock* block, DenseMap &resp) { // Set of blocks that we've already visited in our DFS SmallPtrSet visited; // If we're updating a dirtied cache entry, we don't need to reprocess // already computed entries. for (DenseMap::iterator I = resp.begin(), E = resp.end(); I != E; ++I) if (I->second.getInt() != Dirty) visited.insert(I->first); // Current stack of the DFS SmallVector stack; for (pred_iterator PI = pred_begin(block), PE = pred_end(block); PI != PE; ++PI) stack.push_back(*PI); // Do a basic DFS while (!stack.empty()) { BasicBlock* BB = stack.back(); // If we've already visited this block, no need to revist if (visited.count(BB)) { stack.pop_back(); continue; } // If we find a new block with a local dependency for query, // then we insert the new dependency and backtrack. if (BB != block) { visited.insert(BB); MemDepResult localDep = getDependency(query, 0, BB); if (!localDep.isNonLocal()) { resp.insert(std::make_pair(BB, ConvFromResult(localDep))); stack.pop_back(); continue; } // If we re-encounter the starting block, we still need to search it // because there might be a dependency in the starting block AFTER // the position of the query. This is necessary to get loops right. } else if (BB == block) { visited.insert(BB); MemDepResult localDep = getDependency(query, 0, BB); if (localDep.getInst() != query) resp.insert(std::make_pair(BB, ConvFromResult(localDep))); stack.pop_back(); continue; } // If we didn't find anything, recurse on the precessors of this block // Only do this for blocks with a small number of predecessors. bool predOnStack = false; bool inserted = false; if (std::distance(pred_begin(BB), pred_end(BB)) <= PredLimit) { for (pred_iterator PI = pred_begin(BB), PE = pred_end(BB); PI != PE; ++PI) if (!visited.count(*PI)) { stack.push_back(*PI); inserted = true; } else predOnStack = true; } // If we inserted a new predecessor, then we'll come back to this block if (inserted) continue; // If we didn't insert because we have no predecessors, then this // query has no dependency at all. else if (!inserted && !predOnStack) { resp.insert(std::make_pair(BB, DepResultTy(0, None))); // If we didn't insert because our predecessors are already on the stack, // then we might still have a dependency, but it will be discovered during // backtracking. } else if (!inserted && predOnStack){ resp.insert(std::make_pair(BB, DepResultTy(0, NonLocal))); } stack.pop_back(); } } /// getNonLocalDependency - Fills the passed-in map with the non-local /// dependencies of the queries. The map will contain NonLocal for /// blocks between the query and its dependencies. void MemoryDependenceAnalysis::getNonLocalDependency(Instruction* query, DenseMap &resp) { if (depGraphNonLocal.count(query)) { DenseMap &cached = depGraphNonLocal[query]; NumCacheNonlocal++; SmallVector dirtied; for (DenseMap::iterator I = cached.begin(), E = cached.end(); I != E; ++I) if (I->second.getInt() == Dirty) dirtied.push_back(I->first); for (SmallVector::iterator I = dirtied.begin(), E = dirtied.end(); I != E; ++I) { MemDepResult localDep = getDependency(query, 0, *I); if (!localDep.isNonLocal()) cached[*I] = ConvFromResult(localDep); else { cached.erase(*I); nonLocalHelper(query, *I, cached); } } // Update the reverse non-local dependency cache. for (DenseMap::iterator I = cached.begin(), E = cached.end(); I != E; ++I) { if (Instruction *Inst = I->second.getPointer()) reverseDepNonLocal[Inst].insert(query); resp[I->first] = ConvToResult(I->second); } return; } NumUncacheNonlocal++; // If not, go ahead and search for non-local deps. DenseMap &cached = depGraphNonLocal[query]; nonLocalHelper(query, query->getParent(), cached); // Update the non-local dependency cache for (DenseMap::iterator I = cached.begin(), E = cached.end(); I != E; ++I) { // FIXME: Merge with the code above! if (Instruction *Inst = I->second.getPointer()) reverseDepNonLocal[Inst].insert(query); resp[I->first] = ConvToResult(I->second); } } /// getDependency - Return the instruction on which a memory operation /// depends. The local parameter indicates if the query should only /// evaluate dependencies within the same basic block. /// FIXME: ELIMINATE START/BLOCK and make the caching happen in a higher level /// METHOD. MemDepResult MemoryDependenceAnalysis::getDependency(Instruction *query, Instruction *start, BasicBlock *block) { // Start looking for dependencies with the queried inst BasicBlock::iterator QI = query; // Check for a cached result // FIXME: why do this when Block or Start is specified?? DepResultTy &cachedResult = LocalDeps[query]; if (start) QI = start; else if (block) QI = block->end(); else if (cachedResult.getInt() != Dirty) { // If we have a _confirmed_ cached entry, return it. return ConvToResult(cachedResult); } else if (Instruction *Inst = cachedResult.getPointer()) { // If we have an unconfirmed cached entry, we can start our search from it. QI = Inst; } AliasAnalysis& AA = getAnalysis(); TargetData& TD = getAnalysis(); // Get the pointer value for which dependence will be determined Value* dependee = 0; uint64_t dependeeSize = 0; bool queryIsVolatile = false; if (StoreInst* S = dyn_cast(query)) { dependee = S->getPointerOperand(); dependeeSize = TD.getTypeStoreSize(S->getOperand(0)->getType()); queryIsVolatile = S->isVolatile(); } else if (LoadInst* L = dyn_cast(query)) { dependee = L->getPointerOperand(); dependeeSize = TD.getTypeStoreSize(L->getType()); queryIsVolatile = L->isVolatile(); } else if (VAArgInst* V = dyn_cast(query)) { dependee = V->getOperand(0); dependeeSize = TD.getTypeStoreSize(V->getType()); } else if (FreeInst* F = dyn_cast(query)) { dependee = F->getPointerOperand(); // FreeInsts erase the entire structure, not just a field dependeeSize = ~0UL; } else if (CallSite::get(query).getInstruction() != 0) return getCallSiteDependency(CallSite::get(query), start, block); else if (isa(query)) return MemDepResult::getNone(); else return MemDepResult::getNone(); BasicBlock::iterator blockBegin = block ? block->begin() : query->getParent()->begin(); // Walk backwards through the basic block, looking for dependencies while (QI != blockBegin) { --QI; // If this inst is a memory op, get the pointer it accessed Value* pointer = 0; uint64_t pointerSize = 0; if (StoreInst* S = dyn_cast(QI)) { // All volatile loads/stores depend on each other if (queryIsVolatile && S->isVolatile()) { if (!start && !block) { cachedResult = DepResultTy(S, Normal); reverseDep[S].insert(query); } return MemDepResult::get(S); } pointer = S->getPointerOperand(); pointerSize = TD.getTypeStoreSize(S->getOperand(0)->getType()); } else if (LoadInst* L = dyn_cast(QI)) { // All volatile loads/stores depend on each other if (queryIsVolatile && L->isVolatile()) { if (!start && !block) { cachedResult = DepResultTy(L, Normal); reverseDep[L].insert(query); } return MemDepResult::get(L); } pointer = L->getPointerOperand(); pointerSize = TD.getTypeStoreSize(L->getType()); } else if (AllocationInst* AI = dyn_cast(QI)) { pointer = AI; if (ConstantInt* C = dyn_cast(AI->getArraySize())) pointerSize = C->getZExtValue() * TD.getABITypeSize(AI->getAllocatedType()); else pointerSize = ~0UL; } else if (VAArgInst* V = dyn_cast(QI)) { pointer = V->getOperand(0); pointerSize = TD.getTypeStoreSize(V->getType()); } else if (FreeInst* F = dyn_cast(QI)) { pointer = F->getPointerOperand(); // FreeInsts erase the entire structure pointerSize = ~0UL; } else if (CallSite::get(QI).getInstruction() != 0) { // Call insts need special handling. Check if they can modify our pointer AliasAnalysis::ModRefResult MR = AA.getModRefInfo(CallSite::get(QI), dependee, dependeeSize); if (MR != AliasAnalysis::NoModRef) { // Loads don't depend on read-only calls if (isa(query) && MR == AliasAnalysis::Ref) continue; if (!start && !block) { cachedResult = DepResultTy(QI, Normal); reverseDep[QI].insert(query); } return MemDepResult::get(QI); } else { continue; } } // If we found a pointer, check if it could be the same as our pointer if (pointer) { AliasAnalysis::AliasResult R = AA.alias(pointer, pointerSize, dependee, dependeeSize); if (R != AliasAnalysis::NoAlias) { // May-alias loads don't depend on each other if (isa(query) && isa(QI) && R == AliasAnalysis::MayAlias) continue; if (!start && !block) { cachedResult = DepResultTy(QI, Normal); reverseDep[QI].insert(query); } return MemDepResult::get(QI); } } } // If we found nothing, return the non-local flag if (!start && !block) cachedResult = DepResultTy(0, NonLocal); return MemDepResult::getNonLocal(); } /// dropInstruction - Remove an instruction from the analysis, making /// absolutely conservative assumptions when updating the cache. This is /// useful, for example when an instruction is changed rather than removed. void MemoryDependenceAnalysis::dropInstruction(Instruction* drop) { LocalDepMapType::iterator depGraphEntry = LocalDeps.find(drop); if (depGraphEntry != LocalDeps.end()) if (Instruction *Inst = depGraphEntry->second.getPointer()) reverseDep[Inst].erase(drop); // Drop dependency information for things that depended on this instr SmallPtrSet& set = reverseDep[drop]; for (SmallPtrSet::iterator I = set.begin(), E = set.end(); I != E; ++I) LocalDeps.erase(*I); LocalDeps.erase(drop); reverseDep.erase(drop); for (DenseMap::iterator DI = depGraphNonLocal[drop].begin(), DE = depGraphNonLocal[drop].end(); DI != DE; ++DI) if (Instruction *Inst = DI->second.getPointer()) reverseDepNonLocal[Inst].erase(drop); if (reverseDepNonLocal.count(drop)) { SmallPtrSet& set = reverseDepNonLocal[drop]; for (SmallPtrSet::iterator I = set.begin(), E = set.end(); I != E; ++I) for (DenseMap::iterator DI = depGraphNonLocal[*I].begin(), DE = depGraphNonLocal[*I].end(); DI != DE; ++DI) if (DI->second == DepResultTy(drop, Normal)) // FIXME: Why not remember the old insertion point?? DI->second = DepResultTy(0, Dirty); } reverseDepNonLocal.erase(drop); depGraphNonLocal.erase(drop); } /// removeInstruction - Remove an instruction from the dependence analysis, /// updating the dependence of instructions that previously depended on it. /// This method attempts to keep the cache coherent using the reverse map. void MemoryDependenceAnalysis::removeInstruction(Instruction *RemInst) { // Walk through the Non-local dependencies, removing this one as the value // for any cached queries. for (DenseMap::iterator DI = depGraphNonLocal[RemInst].begin(), DE = depGraphNonLocal[RemInst].end(); DI != DE; ++DI) if (Instruction *Inst = DI->second.getPointer()) reverseDepNonLocal[Inst].erase(RemInst); // Shortly after this, we will look for things that depend on RemInst. In // order to update these, we'll need a new dependency to base them on. We // could completely delete any entries that depend on this, but it is better // to make a more accurate approximation where possible. Compute that better // approximation if we can. DepResultTy NewDependency; // If we have a cached local dependence query for this instruction, remove it. // LocalDepMapType::iterator LocalDepEntry = LocalDeps.find(RemInst); if (LocalDepEntry != LocalDeps.end()) { DepResultTy LocalDep = LocalDepEntry->second; // Remove this local dependency info. LocalDeps.erase(LocalDepEntry); // Remove us from DepInst's reverse set now that the local dep info is gone. if (Instruction *Inst = LocalDep.getPointer()) reverseDep[Inst].erase(RemInst); // If we have unconfirmed info, don't trust it. if (LocalDep.getInt() != Dirty) { // If we have a confirmed non-local flag, use it. if (LocalDep.getInt() == NonLocal || LocalDep.getInt() == None) { // The only time this dependency is confirmed is if it is non-local. NewDependency = LocalDep; } else { // If we have dep info for RemInst, set them to it. Instruction *NDI = next(BasicBlock::iterator(LocalDep.getPointer())); if (NDI != RemInst) // Don't use RemInst for the new dependency! NewDependency = DepResultTy(NDI, Dirty); } } } // If we don't already have a local dependency answer for this instruction, // use the immediate successor of RemInst. We use the successor because // getDependence starts by checking the immediate predecessor of what is in // the cache. if (NewDependency == DepResultTy(0, Dirty)) NewDependency = DepResultTy(next(BasicBlock::iterator(RemInst)), Dirty); // Loop over all of the things that depend on the instruction we're removing. // reverseDepMapType::iterator ReverseDepIt = reverseDep.find(RemInst); if (ReverseDepIt != reverseDep.end()) { SmallPtrSet &ReverseDeps = ReverseDepIt->second; for (SmallPtrSet::iterator I = ReverseDeps.begin(), E = ReverseDeps.end(); I != E; ++I) { Instruction *InstDependingOnRemInst = *I; // If we thought the instruction depended on itself (possible for // unconfirmed dependencies) ignore the update. if (InstDependingOnRemInst == RemInst) continue; // Insert the new dependencies. LocalDeps[InstDependingOnRemInst] = NewDependency; // If our NewDependency is an instruction, make sure to remember that new // things depend on it. if (Instruction *Inst = NewDependency.getPointer()) reverseDep[Inst].insert(InstDependingOnRemInst); } reverseDep.erase(RemInst); } ReverseDepIt = reverseDepNonLocal.find(RemInst); if (ReverseDepIt != reverseDepNonLocal.end()) { SmallPtrSet& set = ReverseDepIt->second; for (SmallPtrSet::iterator I = set.begin(), E = set.end(); I != E; ++I) for (DenseMap::iterator DI = depGraphNonLocal[*I].begin(), DE = depGraphNonLocal[*I].end(); DI != DE; ++DI) if (DI->second == DepResultTy(RemInst, Normal)) // FIXME: Why not remember the old insertion point?? DI->second = DepResultTy(0, Dirty); reverseDepNonLocal.erase(ReverseDepIt); } depGraphNonLocal.erase(RemInst); getAnalysis().deleteValue(RemInst); DEBUG(verifyRemoved(RemInst)); }