//===- ReadInst.cpp - Code to read an instruction from bytecode -----------===// // // This file defines the mechanism to read an instruction from a bytecode // stream. // // Note that this library should be as fast as possible, reentrant, and // threadsafe!! // // TODO: Change from getValue(Raw.Arg1) etc, to getArg(Raw, 1) // Make it check type, so that casts are checked. // //===----------------------------------------------------------------------===// #include "ReaderInternals.h" #include "llvm/iTerminators.h" #include "llvm/iMemory.h" #include "llvm/iPHINode.h" #include "llvm/iOther.h" std::auto_ptr BytecodeParser::ParseRawInst(const unsigned char *&Buf, const unsigned char *EndBuf) { unsigned Op, Typ; std::auto_ptr Result = std::auto_ptr(new RawInst()); if (read(Buf, EndBuf, Op)) throw std::string("Error reading from buffer."); // bits Instruction format: Common to all formats // -------------------------- // 01-00: Opcode type, fixed to 1. // 07-02: Opcode Result->NumOperands = (Op >> 0) & 03; Result->Opcode = (Op >> 2) & 63; switch (Result->NumOperands) { case 1: // bits Instruction format: // -------------------------- // 19-08: Resulting type plane // 31-20: Operand #1 (if set to (2^12-1), then zero operands) // Result->Ty = getType((Op >> 8) & 4095); Result->Arg1 = (Op >> 20) & 4095; if (Result->Arg1 == 4095) // Handle special encoding for 0 operands... Result->NumOperands = 0; break; case 2: // bits Instruction format: // -------------------------- // 15-08: Resulting type plane // 23-16: Operand #1 // 31-24: Operand #2 // Result->Ty = getType((Op >> 8) & 255); Result->Arg1 = (Op >> 16) & 255; Result->Arg2 = (Op >> 24) & 255; break; case 3: // bits Instruction format: // -------------------------- // 13-08: Resulting type plane // 19-14: Operand #1 // 25-20: Operand #2 // 31-26: Operand #3 // Result->Ty = getType((Op >> 8) & 63); Result->Arg1 = (Op >> 14) & 63; Result->Arg2 = (Op >> 20) & 63; Result->Arg3 = (Op >> 26) & 63; break; case 0: Buf -= 4; // Hrm, try this again... if (read_vbr(Buf, EndBuf, Result->Opcode)) throw std::string("Error reading from buffer."); Result->Opcode >>= 2; if (read_vbr(Buf, EndBuf, Typ)) throw std::string("Error reading from buffer."); Result->Ty = getType(Typ); if (Result->Ty == 0) throw std::string("Invalid type read in instruction."); if (read_vbr(Buf, EndBuf, Result->NumOperands)) throw std::string("Error reading from buffer."); switch (Result->NumOperands) { case 0: throw std::string("Zero-argument instruction found; this is invalid."); case 1: if (read_vbr(Buf, EndBuf, Result->Arg1)) throw std::string("Error reading from buffer"); break; case 2: if (read_vbr(Buf, EndBuf, Result->Arg1) || read_vbr(Buf, EndBuf, Result->Arg2)) throw std::string("Error reading from buffer"); break; case 3: if (read_vbr(Buf, EndBuf, Result->Arg1) || read_vbr(Buf, EndBuf, Result->Arg2) || read_vbr(Buf, EndBuf, Result->Arg3)) throw std::string("Error reading from buffer"); break; default: if (read_vbr(Buf, EndBuf, Result->Arg1) || read_vbr(Buf, EndBuf, Result->Arg2)) throw std::string("Error reading from buffer"); // Allocate a vector to hold arguments 3, 4, 5, 6 ... Result->VarArgs = new std::vector(Result->NumOperands-2); for (unsigned a = 0; a < Result->NumOperands-2; a++) if (read_vbr(Buf, EndBuf, (*Result->VarArgs)[a])) throw std::string("Error reading from buffer"); break; } if (align32(Buf, EndBuf)) throw std::string("Unaligned bytecode buffer."); break; } #if 0 std::cerr << "NO: " << Result->NumOperands << " opcode: " << Result->Opcode << " Ty: "<< Result->Ty->getDescription()<< " arg1: "<< Result->Arg1 << " arg2: " << Result->Arg2 << " arg3: " << Result->Arg3 << "\n"; #endif return Result; } bool BytecodeParser::ParseInstruction(const unsigned char *&Buf, const unsigned char *EndBuf, Instruction *&Res) { std::auto_ptr Raw = ParseRawInst(Buf, EndBuf); if (Raw->Opcode >= Instruction::BinaryOpsBegin && Raw->Opcode < Instruction::BinaryOpsEnd && Raw->NumOperands == 2) { Res = BinaryOperator::create((Instruction::BinaryOps)Raw->Opcode, getValue(Raw->Ty, Raw->Arg1), getValue(Raw->Ty, Raw->Arg2)); return false; } Value *V; switch (Raw->Opcode) { case Instruction::VarArg: case Instruction::Cast: { V = getValue(Raw->Ty, Raw->Arg1); const Type *Ty = getType(Raw->Arg2); if (V == 0 || Ty == 0) { std::cerr << "Invalid cast!\n"; return true; } if (Raw->Opcode == Instruction::Cast) Res = new CastInst(V, Ty); else Res = new VarArgInst(V, Ty); return false; } case Instruction::PHINode: { PHINode *PN = new PHINode(Raw->Ty); switch (Raw->NumOperands) { case 0: case 1: case 3: std::cerr << "Invalid phi node encountered!\n"; delete PN; return true; case 2: PN->addIncoming(getValue(Raw->Ty, Raw->Arg1), cast(getValue(Type::LabelTy, Raw->Arg2))); break; default: PN->addIncoming(getValue(Raw->Ty, Raw->Arg1), cast(getValue(Type::LabelTy, Raw->Arg2))); if (Raw->VarArgs->size() & 1) { std::cerr << "PHI Node with ODD number of arguments!\n"; delete PN; return true; } else { std::vector &args = *Raw->VarArgs; for (unsigned i = 0; i < args.size(); i+=2) PN->addIncoming(getValue(Raw->Ty, args[i]), cast(getValue(Type::LabelTy, args[i+1]))); } delete Raw->VarArgs; break; } Res = PN; return false; } case Instruction::Shl: case Instruction::Shr: Res = new ShiftInst((Instruction::OtherOps)Raw->Opcode, getValue(Raw->Ty, Raw->Arg1), getValue(Type::UByteTy, Raw->Arg2)); return false; case Instruction::Ret: if (Raw->NumOperands == 0) { Res = new ReturnInst(); return false; } else if (Raw->NumOperands == 1) { Res = new ReturnInst(getValue(Raw->Ty, Raw->Arg1)); return false; } break; case Instruction::Br: if (Raw->NumOperands == 1) { Res = new BranchInst(cast(getValue(Type::LabelTy,Raw->Arg1))); return false; } else if (Raw->NumOperands == 3) { Res = new BranchInst(cast(getValue(Type::LabelTy, Raw->Arg1)), cast(getValue(Type::LabelTy, Raw->Arg2)), getValue(Type::BoolTy , Raw->Arg3)); return false; } break; case Instruction::Switch: { SwitchInst *I = new SwitchInst(getValue(Raw->Ty, Raw->Arg1), cast(getValue(Type::LabelTy, Raw->Arg2))); Res = I; if (Raw->NumOperands < 3) return false; // No destinations? Weird. if (Raw->NumOperands == 3 || Raw->VarArgs->size() & 1) { std::cerr << "Switch statement with odd number of arguments!\n"; delete I; return true; } std::vector &args = *Raw->VarArgs; for (unsigned i = 0; i < args.size(); i += 2) I->addCase(cast(getValue(Raw->Ty, args[i])), cast(getValue(Type::LabelTy, args[i+1]))); delete Raw->VarArgs; return false; } case Instruction::Call: { Value *F = getValue(Raw->Ty, Raw->Arg1); if (F == 0) return true; // Check to make sure we have a pointer to method type const PointerType *PTy = dyn_cast(F->getType()); if (PTy == 0) return true; const FunctionType *FTy = dyn_cast(PTy->getElementType()); if (FTy == 0) return true; std::vector Params; const FunctionType::ParamTypes &PL = FTy->getParamTypes(); if (!FTy->isVarArg()) { FunctionType::ParamTypes::const_iterator It = PL.begin(); switch (Raw->NumOperands) { case 0: std::cerr << "Invalid call instruction encountered!\n"; return true; case 1: break; case 2: Params.push_back(getValue(*It++, Raw->Arg2)); break; case 3: Params.push_back(getValue(*It++, Raw->Arg2)); if (It == PL.end()) return true; Params.push_back(getValue(*It++, Raw->Arg3)); break; default: Params.push_back(getValue(*It++, Raw->Arg2)); { std::vector &args = *Raw->VarArgs; for (unsigned i = 0; i < args.size(); i++) { if (It == PL.end()) return true; Params.push_back(getValue(*It++, args[i])); if (Params.back() == 0) return true; } } delete Raw->VarArgs; } if (It != PL.end()) return true; } else { if (Raw->NumOperands > 2) { std::vector &args = *Raw->VarArgs; if (args.size() < 1) return true; if ((args.size() & 1) != 0) return true; // Must be pairs of type/value for (unsigned i = 0; i < args.size(); i+=2) { const Type *Ty = getType(args[i]); if (Ty == 0) return true; Value *V = getValue(Ty, args[i+1]); if (V == 0) return true; Params.push_back(V); } delete Raw->VarArgs; } } Res = new CallInst(F, Params); return false; } case Instruction::Invoke: { Value *F = getValue(Raw->Ty, Raw->Arg1); if (F == 0) return true; // Check to make sure we have a pointer to method type const PointerType *PTy = dyn_cast(F->getType()); if (PTy == 0) return true; const FunctionType *FTy = dyn_cast(PTy->getElementType()); if (FTy == 0) return true; std::vector Params; const FunctionType::ParamTypes &PL = FTy->getParamTypes(); std::vector &args = *Raw->VarArgs; BasicBlock *Normal, *Except; if (!FTy->isVarArg()) { if (Raw->NumOperands < 3) return true; Normal = cast(getValue(Type::LabelTy, Raw->Arg2)); if (Raw->NumOperands == 3) Except = cast(getValue(Type::LabelTy, Raw->Arg3)); else { Except = cast(getValue(Type::LabelTy, args[0])); FunctionType::ParamTypes::const_iterator It = PL.begin(); for (unsigned i = 1; i < args.size(); i++) { if (It == PL.end()) return true; Params.push_back(getValue(*It++, args[i])); if (Params.back() == 0) return true; } if (It != PL.end()) return true; } } else { if (args.size() < 4) return true; if (getType(args[0]) != Type::LabelTy || getType(args[2]) != Type::LabelTy) return true; Normal = cast(getValue(Type::LabelTy, args[1])); Except = cast(getValue(Type::LabelTy, args[3])); if ((args.size() & 1) != 0) return true; // Must be pairs of type/value for (unsigned i = 4; i < args.size(); i+=2) { Params.push_back(getValue(getType(args[i]), args[i+1])); if (Params.back() == 0) return true; } } if (Raw->NumOperands > 3) delete Raw->VarArgs; Res = new InvokeInst(F, Normal, Except, Params); return false; } case Instruction::Malloc: if (Raw->NumOperands > 2) return true; V = Raw->NumOperands ? getValue(Type::UIntTy, Raw->Arg1) : 0; if (const PointerType *PTy = dyn_cast(Raw->Ty)) Res = new MallocInst(PTy->getElementType(), V); else return true; return false; case Instruction::Alloca: if (Raw->NumOperands > 2) return true; V = Raw->NumOperands ? getValue(Type::UIntTy, Raw->Arg1) : 0; if (const PointerType *PTy = dyn_cast(Raw->Ty)) Res = new AllocaInst(PTy->getElementType(), V); else return true; return false; case Instruction::Free: V = getValue(Raw->Ty, Raw->Arg1); if (!isa(V->getType())) return true; Res = new FreeInst(V); return false; case Instruction::GetElementPtr: { std::vector Idx; if (!isa(Raw->Ty)) return true; const CompositeType *TopTy = dyn_cast(Raw->Ty); switch (Raw->NumOperands) { case 0: std::cerr << "Invalid getelementptr encountered!\n"; return true; case 1: break; case 2: if (!TopTy) return true; Idx.push_back(V = getValue(TopTy->getIndexType(), Raw->Arg2)); if (!V) return true; break; case 3: { if (!TopTy) return true; Idx.push_back(V = getValue(TopTy->getIndexType(), Raw->Arg2)); if (!V) return true; const Type *ETy = GetElementPtrInst::getIndexedType(TopTy, Idx, true); const CompositeType *ElTy = dyn_cast_or_null(ETy); if (!ElTy) return true; Idx.push_back(V = getValue(ElTy->getIndexType(), Raw->Arg3)); if (!V) return true; break; } default: if (!TopTy) return true; Idx.push_back(V = getValue(TopTy->getIndexType(), Raw->Arg2)); if (!V) return true; std::vector &args = *Raw->VarArgs; for (unsigned i = 0, E = args.size(); i != E; ++i) { const Type *ETy = GetElementPtrInst::getIndexedType(Raw->Ty, Idx, true); const CompositeType *ElTy = dyn_cast_or_null(ETy); if (!ElTy) return true; Idx.push_back(V = getValue(ElTy->getIndexType(), args[i])); if (!V) return true; } delete Raw->VarArgs; break; } Res = new GetElementPtrInst(getValue(Raw->Ty, Raw->Arg1), Idx); return false; } case 62: // volatile load case Instruction::Load: if (Raw->NumOperands != 1) return true; if (!isa(Raw->Ty)) return true; Res = new LoadInst(getValue(Raw->Ty, Raw->Arg1), "", Raw->Opcode == 62); return false; case 63: // volatile store case Instruction::Store: { if (!isa(Raw->Ty) || Raw->NumOperands != 2) return true; Value *Ptr = getValue(Raw->Ty, Raw->Arg2); const Type *ValTy = cast(Ptr->getType())->getElementType(); Res = new StoreInst(getValue(ValTy, Raw->Arg1), Ptr, Raw->Opcode == 63); return false; } case Instruction::Unwind: if (Raw->NumOperands != 0) return true; Res = new UnwindInst(); return false; } // end switch(Raw->Opcode) std::cerr << "Unrecognized instruction! " << Raw->Opcode << " ADDR = 0x" << (void*)Buf << "\n"; return true; }