//===-- llvm/Instructions.h - Instruction subclass definitions --*- C++ -*-===// // // The LLVM Compiler Infrastructure // // This file is distributed under the University of Illinois Open Source // License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// // // This file exposes the class definitions of all of the subclasses of the // Instruction class. This is meant to be an easy way to get access to all // instruction subclasses. // //===----------------------------------------------------------------------===// #ifndef LLVM_INSTRUCTIONS_H #define LLVM_INSTRUCTIONS_H #include #include "llvm/InstrTypes.h" #include "llvm/DerivedTypes.h" #include "llvm/Attributes.h" #include "llvm/BasicBlock.h" #include "llvm/ADT/SmallVector.h" namespace llvm { class ConstantInt; class PointerType; class VectorType; class ConstantRange; class APInt; //===----------------------------------------------------------------------===// // AllocationInst Class //===----------------------------------------------------------------------===// /// AllocationInst - This class is the common base class of MallocInst and /// AllocaInst. /// class AllocationInst : public UnaryInstruction { protected: AllocationInst(const Type *Ty, Value *ArraySize, unsigned iTy, unsigned Align, const std::string &Name = "", Instruction *InsertBefore = 0); AllocationInst(const Type *Ty, Value *ArraySize, unsigned iTy, unsigned Align, const std::string &Name, BasicBlock *InsertAtEnd); public: // Out of line virtual method, so the vtable, etc. has a home. virtual ~AllocationInst(); /// isArrayAllocation - Return true if there is an allocation size parameter /// to the allocation instruction that is not 1. /// bool isArrayAllocation() const; /// getArraySize - Get the number of element allocated, for a simple /// allocation of a single element, this will return a constant 1 value. /// const Value *getArraySize() const { return getOperand(0); } Value *getArraySize() { return getOperand(0); } /// getType - Overload to return most specific pointer type /// const PointerType *getType() const { return reinterpret_cast(Instruction::getType()); } /// getAllocatedType - Return the type that is being allocated by the /// instruction. /// const Type *getAllocatedType() const; /// getAlignment - Return the alignment of the memory that is being allocated /// by the instruction. /// unsigned getAlignment() const { return (1u << SubclassData) >> 1; } void setAlignment(unsigned Align); virtual Instruction *clone() const = 0; // Methods for support type inquiry through isa, cast, and dyn_cast: static inline bool classof(const AllocationInst *) { return true; } static inline bool classof(const Instruction *I) { return I->getOpcode() == Instruction::Alloca || I->getOpcode() == Instruction::Malloc; } static inline bool classof(const Value *V) { return isa(V) && classof(cast(V)); } }; //===----------------------------------------------------------------------===// // MallocInst Class //===----------------------------------------------------------------------===// /// MallocInst - an instruction to allocated memory on the heap /// class MallocInst : public AllocationInst { MallocInst(const MallocInst &MI); public: explicit MallocInst(const Type *Ty, Value *ArraySize = 0, const std::string &NameStr = "", Instruction *InsertBefore = 0) : AllocationInst(Ty, ArraySize, Malloc, 0, NameStr, InsertBefore) {} MallocInst(const Type *Ty, Value *ArraySize, const std::string &NameStr, BasicBlock *InsertAtEnd) : AllocationInst(Ty, ArraySize, Malloc, 0, NameStr, InsertAtEnd) {} MallocInst(const Type *Ty, const std::string &NameStr, Instruction *InsertBefore = 0) : AllocationInst(Ty, 0, Malloc, 0, NameStr, InsertBefore) {} MallocInst(const Type *Ty, const std::string &NameStr, BasicBlock *InsertAtEnd) : AllocationInst(Ty, 0, Malloc, 0, NameStr, InsertAtEnd) {} MallocInst(const Type *Ty, Value *ArraySize, unsigned Align, const std::string &NameStr, BasicBlock *InsertAtEnd) : AllocationInst(Ty, ArraySize, Malloc, Align, NameStr, InsertAtEnd) {} MallocInst(const Type *Ty, Value *ArraySize, unsigned Align, const std::string &NameStr = "", Instruction *InsertBefore = 0) : AllocationInst(Ty, ArraySize, Malloc, Align, NameStr, InsertBefore) {} virtual MallocInst *clone() const; // Methods for support type inquiry through isa, cast, and dyn_cast: static inline bool classof(const MallocInst *) { return true; } static inline bool classof(const Instruction *I) { return (I->getOpcode() == Instruction::Malloc); } static inline bool classof(const Value *V) { return isa(V) && classof(cast(V)); } }; //===----------------------------------------------------------------------===// // AllocaInst Class //===----------------------------------------------------------------------===// /// AllocaInst - an instruction to allocate memory on the stack /// class AllocaInst : public AllocationInst { AllocaInst(const AllocaInst &); public: explicit AllocaInst(const Type *Ty, Value *ArraySize = 0, const std::string &NameStr = "", Instruction *InsertBefore = 0) : AllocationInst(Ty, ArraySize, Alloca, 0, NameStr, InsertBefore) {} AllocaInst(const Type *Ty, Value *ArraySize, const std::string &NameStr, BasicBlock *InsertAtEnd) : AllocationInst(Ty, ArraySize, Alloca, 0, NameStr, InsertAtEnd) {} AllocaInst(const Type *Ty, const std::string &NameStr, Instruction *InsertBefore = 0) : AllocationInst(Ty, 0, Alloca, 0, NameStr, InsertBefore) {} AllocaInst(const Type *Ty, const std::string &NameStr, BasicBlock *InsertAtEnd) : AllocationInst(Ty, 0, Alloca, 0, NameStr, InsertAtEnd) {} AllocaInst(const Type *Ty, Value *ArraySize, unsigned Align, const std::string &NameStr = "", Instruction *InsertBefore = 0) : AllocationInst(Ty, ArraySize, Alloca, Align, NameStr, InsertBefore) {} AllocaInst(const Type *Ty, Value *ArraySize, unsigned Align, const std::string &NameStr, BasicBlock *InsertAtEnd) : AllocationInst(Ty, ArraySize, Alloca, Align, NameStr, InsertAtEnd) {} virtual AllocaInst *clone() const; // Methods for support type inquiry through isa, cast, and dyn_cast: static inline bool classof(const AllocaInst *) { return true; } static inline bool classof(const Instruction *I) { return (I->getOpcode() == Instruction::Alloca); } static inline bool classof(const Value *V) { return isa(V) && classof(cast(V)); } }; //===----------------------------------------------------------------------===// // FreeInst Class //===----------------------------------------------------------------------===// /// FreeInst - an instruction to deallocate memory /// class FreeInst : public UnaryInstruction { void AssertOK(); public: explicit FreeInst(Value *Ptr, Instruction *InsertBefore = 0); FreeInst(Value *Ptr, BasicBlock *InsertAfter); virtual FreeInst *clone() const; // Accessor methods for consistency with other memory operations Value *getPointerOperand() { return getOperand(0); } const Value *getPointerOperand() const { return getOperand(0); } // Methods for support type inquiry through isa, cast, and dyn_cast: static inline bool classof(const FreeInst *) { return true; } static inline bool classof(const Instruction *I) { return (I->getOpcode() == Instruction::Free); } static inline bool classof(const Value *V) { return isa(V) && classof(cast(V)); } }; //===----------------------------------------------------------------------===// // LoadInst Class //===----------------------------------------------------------------------===// /// LoadInst - an instruction for reading from memory. This uses the /// SubclassData field in Value to store whether or not the load is volatile. /// class LoadInst : public UnaryInstruction { LoadInst(const LoadInst &LI) : UnaryInstruction(LI.getType(), Load, LI.getOperand(0)) { setVolatile(LI.isVolatile()); setAlignment(LI.getAlignment()); #ifndef NDEBUG AssertOK(); #endif } void AssertOK(); public: LoadInst(Value *Ptr, const std::string &NameStr, Instruction *InsertBefore); LoadInst(Value *Ptr, const std::string &NameStr, BasicBlock *InsertAtEnd); LoadInst(Value *Ptr, const std::string &NameStr, bool isVolatile = false, Instruction *InsertBefore = 0); LoadInst(Value *Ptr, const std::string &NameStr, bool isVolatile, unsigned Align, Instruction *InsertBefore = 0); LoadInst(Value *Ptr, const std::string &NameStr, bool isVolatile, BasicBlock *InsertAtEnd); LoadInst(Value *Ptr, const std::string &NameStr, bool isVolatile, unsigned Align, BasicBlock *InsertAtEnd); LoadInst(Value *Ptr, const char *NameStr, Instruction *InsertBefore); LoadInst(Value *Ptr, const char *NameStr, BasicBlock *InsertAtEnd); explicit LoadInst(Value *Ptr, const char *NameStr = 0, bool isVolatile = false, Instruction *InsertBefore = 0); LoadInst(Value *Ptr, const char *NameStr, bool isVolatile, BasicBlock *InsertAtEnd); /// isVolatile - Return true if this is a load from a volatile memory /// location. /// bool isVolatile() const { return SubclassData & 1; } /// setVolatile - Specify whether this is a volatile load or not. /// void setVolatile(bool V) { SubclassData = (SubclassData & ~1) | (V ? 1 : 0); } virtual LoadInst *clone() const; /// getAlignment - Return the alignment of the access that is being performed /// unsigned getAlignment() const { return (1 << (SubclassData>>1)) >> 1; } void setAlignment(unsigned Align); Value *getPointerOperand() { return getOperand(0); } const Value *getPointerOperand() const { return getOperand(0); } static unsigned getPointerOperandIndex() { return 0U; } // Methods for support type inquiry through isa, cast, and dyn_cast: static inline bool classof(const LoadInst *) { return true; } static inline bool classof(const Instruction *I) { return I->getOpcode() == Instruction::Load; } static inline bool classof(const Value *V) { return isa(V) && classof(cast(V)); } }; //===----------------------------------------------------------------------===// // StoreInst Class //===----------------------------------------------------------------------===// /// StoreInst - an instruction for storing to memory /// class StoreInst : public Instruction { void *operator new(size_t, unsigned); // DO NOT IMPLEMENT StoreInst(const StoreInst &SI) : Instruction(SI.getType(), Store, &Op<0>(), 2) { Op<0>() = SI.Op<0>(); Op<1>() = SI.Op<1>(); setVolatile(SI.isVolatile()); setAlignment(SI.getAlignment()); #ifndef NDEBUG AssertOK(); #endif } void AssertOK(); public: // allocate space for exactly two operands void *operator new(size_t s) { return User::operator new(s, 2); } StoreInst(Value *Val, Value *Ptr, Instruction *InsertBefore); StoreInst(Value *Val, Value *Ptr, BasicBlock *InsertAtEnd); StoreInst(Value *Val, Value *Ptr, bool isVolatile = false, Instruction *InsertBefore = 0); StoreInst(Value *Val, Value *Ptr, bool isVolatile, unsigned Align, Instruction *InsertBefore = 0); StoreInst(Value *Val, Value *Ptr, bool isVolatile, BasicBlock *InsertAtEnd); StoreInst(Value *Val, Value *Ptr, bool isVolatile, unsigned Align, BasicBlock *InsertAtEnd); /// isVolatile - Return true if this is a load from a volatile memory /// location. /// bool isVolatile() const { return SubclassData & 1; } /// setVolatile - Specify whether this is a volatile load or not. /// void setVolatile(bool V) { SubclassData = (SubclassData & ~1) | (V ? 1 : 0); } /// Transparently provide more efficient getOperand methods. DECLARE_TRANSPARENT_OPERAND_ACCESSORS(Value); /// getAlignment - Return the alignment of the access that is being performed /// unsigned getAlignment() const { return (1 << (SubclassData>>1)) >> 1; } void setAlignment(unsigned Align); virtual StoreInst *clone() const; Value *getPointerOperand() { return getOperand(1); } const Value *getPointerOperand() const { return getOperand(1); } static unsigned getPointerOperandIndex() { return 1U; } // Methods for support type inquiry through isa, cast, and dyn_cast: static inline bool classof(const StoreInst *) { return true; } static inline bool classof(const Instruction *I) { return I->getOpcode() == Instruction::Store; } static inline bool classof(const Value *V) { return isa(V) && classof(cast(V)); } }; template <> struct OperandTraits : FixedNumOperandTraits<2> { }; DEFINE_TRANSPARENT_OPERAND_ACCESSORS(StoreInst, Value) //===----------------------------------------------------------------------===// // GetElementPtrInst Class //===----------------------------------------------------------------------===// // checkType - Simple wrapper function to give a better assertion failure // message on bad indexes for a gep instruction. // static inline const Type *checkType(const Type *Ty) { assert(Ty && "Invalid GetElementPtrInst indices for type!"); return Ty; } /// GetElementPtrInst - an instruction for type-safe pointer arithmetic to /// access elements of arrays and structs /// class GetElementPtrInst : public Instruction { GetElementPtrInst(const GetElementPtrInst &GEPI); void init(Value *Ptr, Value* const *Idx, unsigned NumIdx, const std::string &NameStr); void init(Value *Ptr, Value *Idx, const std::string &NameStr); template void init(Value *Ptr, InputIterator IdxBegin, InputIterator IdxEnd, const std::string &NameStr, // This argument ensures that we have an iterator we can // do arithmetic on in constant time std::random_access_iterator_tag) { unsigned NumIdx = static_cast(std::distance(IdxBegin, IdxEnd)); if (NumIdx > 0) { // This requires that the iterator points to contiguous memory. init(Ptr, &*IdxBegin, NumIdx, NameStr); // FIXME: for the general case // we have to build an array here } else { init(Ptr, 0, NumIdx, NameStr); } } /// getIndexedType - Returns the type of the element that would be loaded with /// a load instruction with the specified parameters. /// /// Null is returned if the indices are invalid for the specified /// pointer type. /// template static const Type *getIndexedType(const Type *Ptr, InputIterator IdxBegin, InputIterator IdxEnd, // This argument ensures that we // have an iterator we can do // arithmetic on in constant time std::random_access_iterator_tag) { unsigned NumIdx = static_cast(std::distance(IdxBegin, IdxEnd)); if (NumIdx > 0) // This requires that the iterator points to contiguous memory. return getIndexedType(Ptr, (Value *const *)&*IdxBegin, NumIdx); else return getIndexedType(Ptr, (Value *const*)0, NumIdx); } /// Constructors - Create a getelementptr instruction with a base pointer an /// list of indices. The first ctor can optionally insert before an existing /// instruction, the second appends the new instruction to the specified /// BasicBlock. template inline GetElementPtrInst(Value *Ptr, InputIterator IdxBegin, InputIterator IdxEnd, unsigned Values, const std::string &NameStr, Instruction *InsertBefore); template inline GetElementPtrInst(Value *Ptr, InputIterator IdxBegin, InputIterator IdxEnd, unsigned Values, const std::string &NameStr, BasicBlock *InsertAtEnd); /// Constructors - These two constructors are convenience methods because one /// and two index getelementptr instructions are so common. GetElementPtrInst(Value *Ptr, Value *Idx, const std::string &NameStr = "", Instruction *InsertBefore = 0); GetElementPtrInst(Value *Ptr, Value *Idx, const std::string &NameStr, BasicBlock *InsertAtEnd); public: template static GetElementPtrInst *Create(Value *Ptr, InputIterator IdxBegin, InputIterator IdxEnd, const std::string &NameStr = "", Instruction *InsertBefore = 0) { typename std::iterator_traits::difference_type Values = 1 + std::distance(IdxBegin, IdxEnd); return new(Values) GetElementPtrInst(Ptr, IdxBegin, IdxEnd, Values, NameStr, InsertBefore); } template static GetElementPtrInst *Create(Value *Ptr, InputIterator IdxBegin, InputIterator IdxEnd, const std::string &NameStr, BasicBlock *InsertAtEnd) { typename std::iterator_traits::difference_type Values = 1 + std::distance(IdxBegin, IdxEnd); return new(Values) GetElementPtrInst(Ptr, IdxBegin, IdxEnd, Values, NameStr, InsertAtEnd); } /// Constructors - These two creators are convenience methods because one /// index getelementptr instructions are so common. static GetElementPtrInst *Create(Value *Ptr, Value *Idx, const std::string &NameStr = "", Instruction *InsertBefore = 0) { return new(2) GetElementPtrInst(Ptr, Idx, NameStr, InsertBefore); } static GetElementPtrInst *Create(Value *Ptr, Value *Idx, const std::string &NameStr, BasicBlock *InsertAtEnd) { return new(2) GetElementPtrInst(Ptr, Idx, NameStr, InsertAtEnd); } virtual GetElementPtrInst *clone() const; /// Transparently provide more efficient getOperand methods. DECLARE_TRANSPARENT_OPERAND_ACCESSORS(Value); // getType - Overload to return most specific pointer type... const PointerType *getType() const { return reinterpret_cast(Instruction::getType()); } /// getIndexedType - Returns the type of the element that would be loaded with /// a load instruction with the specified parameters. /// /// Null is returned if the indices are invalid for the specified /// pointer type. /// template static const Type *getIndexedType(const Type *Ptr, InputIterator IdxBegin, InputIterator IdxEnd) { return getIndexedType(Ptr, IdxBegin, IdxEnd, typename std::iterator_traits:: iterator_category()); } static const Type *getIndexedType(const Type *Ptr, Value* const *Idx, unsigned NumIdx); static const Type *getIndexedType(const Type *Ptr, uint64_t const *Idx, unsigned NumIdx); static const Type *getIndexedType(const Type *Ptr, Value *Idx); inline op_iterator idx_begin() { return op_begin()+1; } inline const_op_iterator idx_begin() const { return op_begin()+1; } inline op_iterator idx_end() { return op_end(); } inline const_op_iterator idx_end() const { return op_end(); } Value *getPointerOperand() { return getOperand(0); } const Value *getPointerOperand() const { return getOperand(0); } static unsigned getPointerOperandIndex() { return 0U; // get index for modifying correct operand } unsigned getNumIndices() const { // Note: always non-negative return getNumOperands() - 1; } bool hasIndices() const { return getNumOperands() > 1; } /// hasAllZeroIndices - Return true if all of the indices of this GEP are /// zeros. If so, the result pointer and the first operand have the same /// value, just potentially different types. bool hasAllZeroIndices() const; /// hasAllConstantIndices - Return true if all of the indices of this GEP are /// constant integers. If so, the result pointer and the first operand have /// a constant offset between them. bool hasAllConstantIndices() const; // Methods for support type inquiry through isa, cast, and dyn_cast: static inline bool classof(const GetElementPtrInst *) { return true; } static inline bool classof(const Instruction *I) { return (I->getOpcode() == Instruction::GetElementPtr); } static inline bool classof(const Value *V) { return isa(V) && classof(cast(V)); } }; template <> struct OperandTraits : VariadicOperandTraits<1> { }; template GetElementPtrInst::GetElementPtrInst(Value *Ptr, InputIterator IdxBegin, InputIterator IdxEnd, unsigned Values, const std::string &NameStr, Instruction *InsertBefore) : Instruction(PointerType::get(checkType( getIndexedType(Ptr->getType(), IdxBegin, IdxEnd)), cast(Ptr->getType()) ->getAddressSpace()), GetElementPtr, OperandTraits::op_end(this) - Values, Values, InsertBefore) { init(Ptr, IdxBegin, IdxEnd, NameStr, typename std::iterator_traits::iterator_category()); } template GetElementPtrInst::GetElementPtrInst(Value *Ptr, InputIterator IdxBegin, InputIterator IdxEnd, unsigned Values, const std::string &NameStr, BasicBlock *InsertAtEnd) : Instruction(PointerType::get(checkType( getIndexedType(Ptr->getType(), IdxBegin, IdxEnd)), cast(Ptr->getType()) ->getAddressSpace()), GetElementPtr, OperandTraits::op_end(this) - Values, Values, InsertAtEnd) { init(Ptr, IdxBegin, IdxEnd, NameStr, typename std::iterator_traits::iterator_category()); } DEFINE_TRANSPARENT_OPERAND_ACCESSORS(GetElementPtrInst, Value) //===----------------------------------------------------------------------===// // ICmpInst Class //===----------------------------------------------------------------------===// /// This instruction compares its operands according to the predicate given /// to the constructor. It only operates on integers or pointers. The operands /// must be identical types. /// @brief Represent an integer comparison operator. class ICmpInst: public CmpInst { public: /// @brief Constructor with insert-before-instruction semantics. ICmpInst( Predicate pred, ///< The predicate to use for the comparison Value *LHS, ///< The left-hand-side of the expression Value *RHS, ///< The right-hand-side of the expression const std::string &NameStr = "", ///< Name of the instruction Instruction *InsertBefore = 0 ///< Where to insert ) : CmpInst(makeCmpResultType(LHS->getType()), Instruction::ICmp, pred, LHS, RHS, NameStr, InsertBefore) { assert(pred >= CmpInst::FIRST_ICMP_PREDICATE && pred <= CmpInst::LAST_ICMP_PREDICATE && "Invalid ICmp predicate value"); assert(getOperand(0)->getType() == getOperand(1)->getType() && "Both operands to ICmp instruction are not of the same type!"); // Check that the operands are the right type assert((getOperand(0)->getType()->isIntOrIntVector() || isa(getOperand(0)->getType())) && "Invalid operand types for ICmp instruction"); } /// @brief Constructor with insert-at-block-end semantics. ICmpInst( Predicate pred, ///< The predicate to use for the comparison Value *LHS, ///< The left-hand-side of the expression Value *RHS, ///< The right-hand-side of the expression const std::string &NameStr, ///< Name of the instruction BasicBlock *InsertAtEnd ///< Block to insert into. ) : CmpInst(makeCmpResultType(LHS->getType()), Instruction::ICmp, pred, LHS, RHS, NameStr, InsertAtEnd) { assert(pred >= CmpInst::FIRST_ICMP_PREDICATE && pred <= CmpInst::LAST_ICMP_PREDICATE && "Invalid ICmp predicate value"); assert(getOperand(0)->getType() == getOperand(1)->getType() && "Both operands to ICmp instruction are not of the same type!"); // Check that the operands are the right type assert((getOperand(0)->getType()->isIntOrIntVector() || isa(getOperand(0)->getType())) && "Invalid operand types for ICmp instruction"); } /// For example, EQ->EQ, SLE->SLE, UGT->SGT, etc. /// @returns the predicate that would be the result if the operand were /// regarded as signed. /// @brief Return the signed version of the predicate Predicate getSignedPredicate() const { return getSignedPredicate(getPredicate()); } /// This is a static version that you can use without an instruction. /// @brief Return the signed version of the predicate. static Predicate getSignedPredicate(Predicate pred); /// For example, EQ->EQ, SLE->ULE, UGT->UGT, etc. /// @returns the predicate that would be the result if the operand were /// regarded as unsigned. /// @brief Return the unsigned version of the predicate Predicate getUnsignedPredicate() const { return getUnsignedPredicate(getPredicate()); } /// This is a static version that you can use without an instruction. /// @brief Return the unsigned version of the predicate. static Predicate getUnsignedPredicate(Predicate pred); /// isEquality - Return true if this predicate is either EQ or NE. This also /// tests for commutativity. static bool isEquality(Predicate P) { return P == ICMP_EQ || P == ICMP_NE; } /// isEquality - Return true if this predicate is either EQ or NE. This also /// tests for commutativity. bool isEquality() const { return isEquality(getPredicate()); } /// @returns true if the predicate of this ICmpInst is commutative /// @brief Determine if this relation is commutative. bool isCommutative() const { return isEquality(); } /// isRelational - Return true if the predicate is relational (not EQ or NE). /// bool isRelational() const { return !isEquality(); } /// isRelational - Return true if the predicate is relational (not EQ or NE). /// static bool isRelational(Predicate P) { return !isEquality(P); } /// @returns true if the predicate of this ICmpInst is signed, false otherwise /// @brief Determine if this instruction's predicate is signed. bool isSignedPredicate() const { return isSignedPredicate(getPredicate()); } /// @returns true if the predicate provided is signed, false otherwise /// @brief Determine if the predicate is signed. static bool isSignedPredicate(Predicate pred); /// @returns true if the specified compare predicate is /// true when both operands are equal... /// @brief Determine if the icmp is true when both operands are equal static bool isTrueWhenEqual(ICmpInst::Predicate pred) { return pred == ICmpInst::ICMP_EQ || pred == ICmpInst::ICMP_UGE || pred == ICmpInst::ICMP_SGE || pred == ICmpInst::ICMP_ULE || pred == ICmpInst::ICMP_SLE; } /// @returns true if the specified compare instruction is /// true when both operands are equal... /// @brief Determine if the ICmpInst returns true when both operands are equal bool isTrueWhenEqual() { return isTrueWhenEqual(getPredicate()); } /// Initialize a set of values that all satisfy the predicate with C. /// @brief Make a ConstantRange for a relation with a constant value. static ConstantRange makeConstantRange(Predicate pred, const APInt &C); /// Exchange the two operands to this instruction in such a way that it does /// not modify the semantics of the instruction. The predicate value may be /// changed to retain the same result if the predicate is order dependent /// (e.g. ult). /// @brief Swap operands and adjust predicate. void swapOperands() { SubclassData = getSwappedPredicate(); Op<0>().swap(Op<1>()); } virtual ICmpInst *clone() const; // Methods for support type inquiry through isa, cast, and dyn_cast: static inline bool classof(const ICmpInst *) { return true; } static inline bool classof(const Instruction *I) { return I->getOpcode() == Instruction::ICmp; } static inline bool classof(const Value *V) { return isa(V) && classof(cast(V)); } }; //===----------------------------------------------------------------------===// // FCmpInst Class //===----------------------------------------------------------------------===// /// This instruction compares its operands according to the predicate given /// to the constructor. It only operates on floating point values or packed /// vectors of floating point values. The operands must be identical types. /// @brief Represents a floating point comparison operator. class FCmpInst: public CmpInst { public: /// @brief Constructor with insert-before-instruction semantics. FCmpInst( Predicate pred, ///< The predicate to use for the comparison Value *LHS, ///< The left-hand-side of the expression Value *RHS, ///< The right-hand-side of the expression const std::string &NameStr = "", ///< Name of the instruction Instruction *InsertBefore = 0 ///< Where to insert ) : CmpInst(makeCmpResultType(LHS->getType()), Instruction::FCmp, pred, LHS, RHS, NameStr, InsertBefore) { assert(pred <= FCmpInst::LAST_FCMP_PREDICATE && "Invalid FCmp predicate value"); assert(getOperand(0)->getType() == getOperand(1)->getType() && "Both operands to FCmp instruction are not of the same type!"); // Check that the operands are the right type assert(getOperand(0)->getType()->isFPOrFPVector() && "Invalid operand types for FCmp instruction"); } /// @brief Constructor with insert-at-block-end semantics. FCmpInst( Predicate pred, ///< The predicate to use for the comparison Value *LHS, ///< The left-hand-side of the expression Value *RHS, ///< The right-hand-side of the expression const std::string &NameStr, ///< Name of the instruction BasicBlock *InsertAtEnd ///< Block to insert into. ) : CmpInst(makeCmpResultType(LHS->getType()), Instruction::FCmp, pred, LHS, RHS, NameStr, InsertAtEnd) { assert(pred <= FCmpInst::LAST_FCMP_PREDICATE && "Invalid FCmp predicate value"); assert(getOperand(0)->getType() == getOperand(1)->getType() && "Both operands to FCmp instruction are not of the same type!"); // Check that the operands are the right type assert(getOperand(0)->getType()->isFPOrFPVector() && "Invalid operand types for FCmp instruction"); } /// @returns true if the predicate of this instruction is EQ or NE. /// @brief Determine if this is an equality predicate. bool isEquality() const { return SubclassData == FCMP_OEQ || SubclassData == FCMP_ONE || SubclassData == FCMP_UEQ || SubclassData == FCMP_UNE; } /// @returns true if the predicate of this instruction is commutative. /// @brief Determine if this is a commutative predicate. bool isCommutative() const { return isEquality() || SubclassData == FCMP_FALSE || SubclassData == FCMP_TRUE || SubclassData == FCMP_ORD || SubclassData == FCMP_UNO; } /// @returns true if the predicate is relational (not EQ or NE). /// @brief Determine if this a relational predicate. bool isRelational() const { return !isEquality(); } /// Exchange the two operands to this instruction in such a way that it does /// not modify the semantics of the instruction. The predicate value may be /// changed to retain the same result if the predicate is order dependent /// (e.g. ult). /// @brief Swap operands and adjust predicate. void swapOperands() { SubclassData = getSwappedPredicate(); Op<0>().swap(Op<1>()); } virtual FCmpInst *clone() const; /// @brief Methods for support type inquiry through isa, cast, and dyn_cast: static inline bool classof(const FCmpInst *) { return true; } static inline bool classof(const Instruction *I) { return I->getOpcode() == Instruction::FCmp; } static inline bool classof(const Value *V) { return isa(V) && classof(cast(V)); } }; //===----------------------------------------------------------------------===// // VICmpInst Class //===----------------------------------------------------------------------===// /// This instruction compares its operands according to the predicate given /// to the constructor. It only operates on vectors of integers. /// The operands must be identical types. /// @brief Represents a vector integer comparison operator. class VICmpInst: public CmpInst { public: /// @brief Constructor with insert-before-instruction semantics. VICmpInst( Predicate pred, ///< The predicate to use for the comparison Value *LHS, ///< The left-hand-side of the expression Value *RHS, ///< The right-hand-side of the expression const std::string &NameStr = "", ///< Name of the instruction Instruction *InsertBefore = 0 ///< Where to insert ) : CmpInst(LHS->getType(), Instruction::VICmp, pred, LHS, RHS, NameStr, InsertBefore) { assert(pred >= CmpInst::FIRST_ICMP_PREDICATE && pred <= CmpInst::LAST_ICMP_PREDICATE && "Invalid VICmp predicate value"); assert(getOperand(0)->getType() == getOperand(1)->getType() && "Both operands to VICmp instruction are not of the same type!"); } /// @brief Constructor with insert-at-block-end semantics. VICmpInst( Predicate pred, ///< The predicate to use for the comparison Value *LHS, ///< The left-hand-side of the expression Value *RHS, ///< The right-hand-side of the expression const std::string &NameStr, ///< Name of the instruction BasicBlock *InsertAtEnd ///< Block to insert into. ) : CmpInst(LHS->getType(), Instruction::VICmp, pred, LHS, RHS, NameStr, InsertAtEnd) { assert(pred >= CmpInst::FIRST_ICMP_PREDICATE && pred <= CmpInst::LAST_ICMP_PREDICATE && "Invalid VICmp predicate value"); assert(getOperand(0)->getType() == getOperand(1)->getType() && "Both operands to VICmp instruction are not of the same type!"); } /// @brief Return the predicate for this instruction. Predicate getPredicate() const { return Predicate(SubclassData); } virtual VICmpInst *clone() const; // Methods for support type inquiry through isa, cast, and dyn_cast: static inline bool classof(const VICmpInst *) { return true; } static inline bool classof(const Instruction *I) { return I->getOpcode() == Instruction::VICmp; } static inline bool classof(const Value *V) { return isa(V) && classof(cast(V)); } }; //===----------------------------------------------------------------------===// // VFCmpInst Class //===----------------------------------------------------------------------===// /// This instruction compares its operands according to the predicate given /// to the constructor. It only operates on vectors of floating point values. /// The operands must be identical types. /// @brief Represents a vector floating point comparison operator. class VFCmpInst: public CmpInst { public: /// @brief Constructor with insert-before-instruction semantics. VFCmpInst( Predicate pred, ///< The predicate to use for the comparison Value *LHS, ///< The left-hand-side of the expression Value *RHS, ///< The right-hand-side of the expression const std::string &NameStr = "", ///< Name of the instruction Instruction *InsertBefore = 0 ///< Where to insert ) : CmpInst(VectorType::getInteger(cast(LHS->getType())), Instruction::VFCmp, pred, LHS, RHS, NameStr, InsertBefore) { assert(pred <= CmpInst::LAST_FCMP_PREDICATE && "Invalid VFCmp predicate value"); assert(getOperand(0)->getType() == getOperand(1)->getType() && "Both operands to VFCmp instruction are not of the same type!"); } /// @brief Constructor with insert-at-block-end semantics. VFCmpInst( Predicate pred, ///< The predicate to use for the comparison Value *LHS, ///< The left-hand-side of the expression Value *RHS, ///< The right-hand-side of the expression const std::string &NameStr, ///< Name of the instruction BasicBlock *InsertAtEnd ///< Block to insert into. ) : CmpInst(VectorType::getInteger(cast(LHS->getType())), Instruction::VFCmp, pred, LHS, RHS, NameStr, InsertAtEnd) { assert(pred <= CmpInst::LAST_FCMP_PREDICATE && "Invalid VFCmp predicate value"); assert(getOperand(0)->getType() == getOperand(1)->getType() && "Both operands to VFCmp instruction are not of the same type!"); } /// @brief Return the predicate for this instruction. Predicate getPredicate() const { return Predicate(SubclassData); } virtual VFCmpInst *clone() const; /// @brief Methods for support type inquiry through isa, cast, and dyn_cast: static inline bool classof(const VFCmpInst *) { return true; } static inline bool classof(const Instruction *I) { return I->getOpcode() == Instruction::VFCmp; } static inline bool classof(const Value *V) { return isa(V) && classof(cast(V)); } }; //===----------------------------------------------------------------------===// // CallInst Class //===----------------------------------------------------------------------===// /// CallInst - This class represents a function call, abstracting a target /// machine's calling convention. This class uses low bit of the SubClassData /// field to indicate whether or not this is a tail call. The rest of the bits /// hold the calling convention of the call. /// class CallInst : public Instruction { AttrListPtr AttributeList; ///< parameter attributes for call CallInst(const CallInst &CI); void init(Value *Func, Value* const *Params, unsigned NumParams); void init(Value *Func, Value *Actual1, Value *Actual2); void init(Value *Func, Value *Actual); void init(Value *Func); template void init(Value *Func, InputIterator ArgBegin, InputIterator ArgEnd, const std::string &NameStr, // This argument ensures that we have an iterator we can // do arithmetic on in constant time std::random_access_iterator_tag) { unsigned NumArgs = (unsigned)std::distance(ArgBegin, ArgEnd); // This requires that the iterator points to contiguous memory. init(Func, NumArgs ? &*ArgBegin : 0, NumArgs); setName(NameStr); } /// Construct a CallInst given a range of arguments. InputIterator /// must be a random-access iterator pointing to contiguous storage /// (e.g. a std::vector<>::iterator). Checks are made for /// random-accessness but not for contiguous storage as that would /// incur runtime overhead. /// @brief Construct a CallInst from a range of arguments template CallInst(Value *Func, InputIterator ArgBegin, InputIterator ArgEnd, const std::string &NameStr, Instruction *InsertBefore); /// Construct a CallInst given a range of arguments. InputIterator /// must be a random-access iterator pointing to contiguous storage /// (e.g. a std::vector<>::iterator). Checks are made for /// random-accessness but not for contiguous storage as that would /// incur runtime overhead. /// @brief Construct a CallInst from a range of arguments template inline CallInst(Value *Func, InputIterator ArgBegin, InputIterator ArgEnd, const std::string &NameStr, BasicBlock *InsertAtEnd); CallInst(Value *F, Value *Actual, const std::string& NameStr, Instruction *InsertBefore); CallInst(Value *F, Value *Actual, const std::string& NameStr, BasicBlock *InsertAtEnd); explicit CallInst(Value *F, const std::string &NameStr, Instruction *InsertBefore); CallInst(Value *F, const std::string &NameStr, BasicBlock *InsertAtEnd); public: template static CallInst *Create(Value *Func, InputIterator ArgBegin, InputIterator ArgEnd, const std::string &NameStr = "", Instruction *InsertBefore = 0) { return new((unsigned)(ArgEnd - ArgBegin + 1)) CallInst(Func, ArgBegin, ArgEnd, NameStr, InsertBefore); } template static CallInst *Create(Value *Func, InputIterator ArgBegin, InputIterator ArgEnd, const std::string &NameStr, BasicBlock *InsertAtEnd) { return new((unsigned)(ArgEnd - ArgBegin + 1)) CallInst(Func, ArgBegin, ArgEnd, NameStr, InsertAtEnd); } static CallInst *Create(Value *F, Value *Actual, const std::string& NameStr = "", Instruction *InsertBefore = 0) { return new(2) CallInst(F, Actual, NameStr, InsertBefore); } static CallInst *Create(Value *F, Value *Actual, const std::string& NameStr, BasicBlock *InsertAtEnd) { return new(2) CallInst(F, Actual, NameStr, InsertAtEnd); } static CallInst *Create(Value *F, const std::string &NameStr = "", Instruction *InsertBefore = 0) { return new(1) CallInst(F, NameStr, InsertBefore); } static CallInst *Create(Value *F, const std::string &NameStr, BasicBlock *InsertAtEnd) { return new(1) CallInst(F, NameStr, InsertAtEnd); } ~CallInst(); virtual CallInst *clone() const; /// Provide fast operand accessors DECLARE_TRANSPARENT_OPERAND_ACCESSORS(Value); bool isTailCall() const { return SubclassData & 1; } void setTailCall(bool isTC = true) { SubclassData = (SubclassData & ~1) | unsigned(isTC); } /// getCallingConv/setCallingConv - Get or set the calling convention of this /// function call. unsigned getCallingConv() const { return SubclassData >> 1; } void setCallingConv(unsigned CC) { SubclassData = (SubclassData & 1) | (CC << 1); } /// getAttributes - Return the parameter attributes for this call. /// const AttrListPtr &getAttributes() const { return AttributeList; } /// setAttributes - Sets the parameter attributes for this call. void setAttributes(const AttrListPtr &Attrs) { AttributeList = Attrs; } /// addAttribute - adds the attribute to the list of attributes. void addAttribute(unsigned i, Attributes attr); /// removeAttribute - removes the attribute from the list of attributes. void removeAttribute(unsigned i, Attributes attr); /// @brief Determine whether the call or the callee has the given attribute. bool paramHasAttr(unsigned i, unsigned attr) const; /// @brief Extract the alignment for a call or parameter (0=unknown). unsigned getParamAlignment(unsigned i) const { return AttributeList.getParamAlignment(i); } /// @brief Determine if the call does not access memory. bool doesNotAccessMemory() const { return paramHasAttr(0, Attribute::ReadNone); } void setDoesNotAccessMemory(bool NotAccessMemory = true) { if (NotAccessMemory) addAttribute(0, Attribute::ReadNone); else removeAttribute(0, Attribute::ReadNone); } /// @brief Determine if the call does not access or only reads memory. bool onlyReadsMemory() const { return doesNotAccessMemory() || paramHasAttr(0, Attribute::ReadOnly); } void setOnlyReadsMemory(bool OnlyReadsMemory = true) { if (OnlyReadsMemory) addAttribute(0, Attribute::ReadOnly); else removeAttribute(0, Attribute::ReadOnly | Attribute::ReadNone); } /// @brief Determine if the call cannot return. bool doesNotReturn() const { return paramHasAttr(0, Attribute::NoReturn); } void setDoesNotReturn(bool DoesNotReturn = true) { if (DoesNotReturn) addAttribute(0, Attribute::NoReturn); else removeAttribute(0, Attribute::NoReturn); } /// @brief Determine if the call cannot unwind. bool doesNotThrow() const { return paramHasAttr(0, Attribute::NoUnwind); } void setDoesNotThrow(bool DoesNotThrow = true) { if (DoesNotThrow) addAttribute(0, Attribute::NoUnwind); else removeAttribute(0, Attribute::NoUnwind); } /// @brief Determine if the call returns a structure through first /// pointer argument. bool hasStructRetAttr() const { // Be friendly and also check the callee. return paramHasAttr(1, Attribute::StructRet); } /// @brief Determine if any call argument is an aggregate passed by value. bool hasByValArgument() const { return AttributeList.hasAttrSomewhere(Attribute::ByVal); } /// getCalledFunction - Return the function being called by this instruction /// if it is a direct call. If it is a call through a function pointer, /// return null. Function *getCalledFunction() const { return dyn_cast(getOperand(0)); } /// getCalledValue - Get a pointer to the function that is invoked by this /// instruction const Value *getCalledValue() const { return getOperand(0); } Value *getCalledValue() { return getOperand(0); } // Methods for support type inquiry through isa, cast, and dyn_cast: static inline bool classof(const CallInst *) { return true; } static inline bool classof(const Instruction *I) { return I->getOpcode() == Instruction::Call; } static inline bool classof(const Value *V) { return isa(V) && classof(cast(V)); } }; template <> struct OperandTraits : VariadicOperandTraits<1> { }; template CallInst::CallInst(Value *Func, InputIterator ArgBegin, InputIterator ArgEnd, const std::string &NameStr, BasicBlock *InsertAtEnd) : Instruction(cast(cast(Func->getType()) ->getElementType())->getReturnType(), Instruction::Call, OperandTraits::op_end(this) - (ArgEnd - ArgBegin + 1), (unsigned)(ArgEnd - ArgBegin + 1), InsertAtEnd) { init(Func, ArgBegin, ArgEnd, NameStr, typename std::iterator_traits::iterator_category()); } template CallInst::CallInst(Value *Func, InputIterator ArgBegin, InputIterator ArgEnd, const std::string &NameStr, Instruction *InsertBefore) : Instruction(cast(cast(Func->getType()) ->getElementType())->getReturnType(), Instruction::Call, OperandTraits::op_end(this) - (ArgEnd - ArgBegin + 1), (unsigned)(ArgEnd - ArgBegin + 1), InsertBefore) { init(Func, ArgBegin, ArgEnd, NameStr, typename std::iterator_traits::iterator_category()); } DEFINE_TRANSPARENT_OPERAND_ACCESSORS(CallInst, Value) //===----------------------------------------------------------------------===// // SelectInst Class //===----------------------------------------------------------------------===// /// SelectInst - This class represents the LLVM 'select' instruction. /// class SelectInst : public Instruction { void init(Value *C, Value *S1, Value *S2) { Op<0>() = C; Op<1>() = S1; Op<2>() = S2; } SelectInst(const SelectInst &SI) : Instruction(SI.getType(), SI.getOpcode(), &Op<0>(), 3) { init(SI.Op<0>(), SI.Op<1>(), SI.Op<2>()); } SelectInst(Value *C, Value *S1, Value *S2, const std::string &NameStr, Instruction *InsertBefore) : Instruction(S1->getType(), Instruction::Select, &Op<0>(), 3, InsertBefore) { init(C, S1, S2); setName(NameStr); } SelectInst(Value *C, Value *S1, Value *S2, const std::string &NameStr, BasicBlock *InsertAtEnd) : Instruction(S1->getType(), Instruction::Select, &Op<0>(), 3, InsertAtEnd) { init(C, S1, S2); setName(NameStr); } public: static SelectInst *Create(Value *C, Value *S1, Value *S2, const std::string &NameStr = "", Instruction *InsertBefore = 0) { return new(3) SelectInst(C, S1, S2, NameStr, InsertBefore); } static SelectInst *Create(Value *C, Value *S1, Value *S2, const std::string &NameStr, BasicBlock *InsertAtEnd) { return new(3) SelectInst(C, S1, S2, NameStr, InsertAtEnd); } Value *getCondition() const { return Op<0>(); } Value *getTrueValue() const { return Op<1>(); } Value *getFalseValue() const { return Op<2>(); } /// Transparently provide more efficient getOperand methods. DECLARE_TRANSPARENT_OPERAND_ACCESSORS(Value); OtherOps getOpcode() const { return static_cast(Instruction::getOpcode()); } virtual SelectInst *clone() const; // Methods for support type inquiry through isa, cast, and dyn_cast: static inline bool classof(const SelectInst *) { return true; } static inline bool classof(const Instruction *I) { return I->getOpcode() == Instruction::Select; } static inline bool classof(const Value *V) { return isa(V) && classof(cast(V)); } }; template <> struct OperandTraits : FixedNumOperandTraits<3> { }; DEFINE_TRANSPARENT_OPERAND_ACCESSORS(SelectInst, Value) //===----------------------------------------------------------------------===// // VAArgInst Class //===----------------------------------------------------------------------===// /// VAArgInst - This class represents the va_arg llvm instruction, which returns /// an argument of the specified type given a va_list and increments that list /// class VAArgInst : public UnaryInstruction { VAArgInst(const VAArgInst &VAA) : UnaryInstruction(VAA.getType(), VAArg, VAA.getOperand(0)) {} public: VAArgInst(Value *List, const Type *Ty, const std::string &NameStr = "", Instruction *InsertBefore = 0) : UnaryInstruction(Ty, VAArg, List, InsertBefore) { setName(NameStr); } VAArgInst(Value *List, const Type *Ty, const std::string &NameStr, BasicBlock *InsertAtEnd) : UnaryInstruction(Ty, VAArg, List, InsertAtEnd) { setName(NameStr); } virtual VAArgInst *clone() const; // Methods for support type inquiry through isa, cast, and dyn_cast: static inline bool classof(const VAArgInst *) { return true; } static inline bool classof(const Instruction *I) { return I->getOpcode() == VAArg; } static inline bool classof(const Value *V) { return isa(V) && classof(cast(V)); } }; //===----------------------------------------------------------------------===// // ExtractElementInst Class //===----------------------------------------------------------------------===// /// ExtractElementInst - This instruction extracts a single (scalar) /// element from a VectorType value /// class ExtractElementInst : public Instruction { ExtractElementInst(const ExtractElementInst &EE) : Instruction(EE.getType(), ExtractElement, &Op<0>(), 2) { Op<0>() = EE.Op<0>(); Op<1>() = EE.Op<1>(); } public: // allocate space for exactly two operands void *operator new(size_t s) { return User::operator new(s, 2); // FIXME: "unsigned Idx" forms of ctor? } ExtractElementInst(Value *Vec, Value *Idx, const std::string &NameStr = "", Instruction *InsertBefore = 0); ExtractElementInst(Value *Vec, unsigned Idx, const std::string &NameStr = "", Instruction *InsertBefore = 0); ExtractElementInst(Value *Vec, Value *Idx, const std::string &NameStr, BasicBlock *InsertAtEnd); ExtractElementInst(Value *Vec, unsigned Idx, const std::string &NameStr, BasicBlock *InsertAtEnd); /// isValidOperands - Return true if an extractelement instruction can be /// formed with the specified operands. static bool isValidOperands(const Value *Vec, const Value *Idx); virtual ExtractElementInst *clone() const; /// Transparently provide more efficient getOperand methods. DECLARE_TRANSPARENT_OPERAND_ACCESSORS(Value); // Methods for support type inquiry through isa, cast, and dyn_cast: static inline bool classof(const ExtractElementInst *) { return true; } static inline bool classof(const Instruction *I) { return I->getOpcode() == Instruction::ExtractElement; } static inline bool classof(const Value *V) { return isa(V) && classof(cast(V)); } }; template <> struct OperandTraits : FixedNumOperandTraits<2> { }; DEFINE_TRANSPARENT_OPERAND_ACCESSORS(ExtractElementInst, Value) //===----------------------------------------------------------------------===// // InsertElementInst Class //===----------------------------------------------------------------------===// /// InsertElementInst - This instruction inserts a single (scalar) /// element into a VectorType value /// class InsertElementInst : public Instruction { InsertElementInst(const InsertElementInst &IE); InsertElementInst(Value *Vec, Value *NewElt, Value *Idx, const std::string &NameStr = "",Instruction *InsertBefore = 0); InsertElementInst(Value *Vec, Value *NewElt, unsigned Idx, const std::string &NameStr = "",Instruction *InsertBefore = 0); InsertElementInst(Value *Vec, Value *NewElt, Value *Idx, const std::string &NameStr, BasicBlock *InsertAtEnd); InsertElementInst(Value *Vec, Value *NewElt, unsigned Idx, const std::string &NameStr, BasicBlock *InsertAtEnd); public: static InsertElementInst *Create(const InsertElementInst &IE) { return new(IE.getNumOperands()) InsertElementInst(IE); } static InsertElementInst *Create(Value *Vec, Value *NewElt, Value *Idx, const std::string &NameStr = "", Instruction *InsertBefore = 0) { return new(3) InsertElementInst(Vec, NewElt, Idx, NameStr, InsertBefore); } static InsertElementInst *Create(Value *Vec, Value *NewElt, unsigned Idx, const std::string &NameStr = "", Instruction *InsertBefore = 0) { return new(3) InsertElementInst(Vec, NewElt, Idx, NameStr, InsertBefore); } static InsertElementInst *Create(Value *Vec, Value *NewElt, Value *Idx, const std::string &NameStr, BasicBlock *InsertAtEnd) { return new(3) InsertElementInst(Vec, NewElt, Idx, NameStr, InsertAtEnd); } static InsertElementInst *Create(Value *Vec, Value *NewElt, unsigned Idx, const std::string &NameStr, BasicBlock *InsertAtEnd) { return new(3) InsertElementInst(Vec, NewElt, Idx, NameStr, InsertAtEnd); } /// isValidOperands - Return true if an insertelement instruction can be /// formed with the specified operands. static bool isValidOperands(const Value *Vec, const Value *NewElt, const Value *Idx); virtual InsertElementInst *clone() const; /// getType - Overload to return most specific vector type. /// const VectorType *getType() const { return reinterpret_cast(Instruction::getType()); } /// Transparently provide more efficient getOperand methods. DECLARE_TRANSPARENT_OPERAND_ACCESSORS(Value); // Methods for support type inquiry through isa, cast, and dyn_cast: static inline bool classof(const InsertElementInst *) { return true; } static inline bool classof(const Instruction *I) { return I->getOpcode() == Instruction::InsertElement; } static inline bool classof(const Value *V) { return isa(V) && classof(cast(V)); } }; template <> struct OperandTraits : FixedNumOperandTraits<3> { }; DEFINE_TRANSPARENT_OPERAND_ACCESSORS(InsertElementInst, Value) //===----------------------------------------------------------------------===// // ShuffleVectorInst Class //===----------------------------------------------------------------------===// /// ShuffleVectorInst - This instruction constructs a fixed permutation of two /// input vectors. /// class ShuffleVectorInst : public Instruction { ShuffleVectorInst(const ShuffleVectorInst &IE); public: // allocate space for exactly three operands void *operator new(size_t s) { return User::operator new(s, 3); } ShuffleVectorInst(Value *V1, Value *V2, Value *Mask, const std::string &NameStr = "", Instruction *InsertBefor = 0); ShuffleVectorInst(Value *V1, Value *V2, Value *Mask, const std::string &NameStr, BasicBlock *InsertAtEnd); /// isValidOperands - Return true if a shufflevector instruction can be /// formed with the specified operands. static bool isValidOperands(const Value *V1, const Value *V2, const Value *Mask); virtual ShuffleVectorInst *clone() const; /// getType - Overload to return most specific vector type. /// const VectorType *getType() const { return reinterpret_cast(Instruction::getType()); } /// Transparently provide more efficient getOperand methods. DECLARE_TRANSPARENT_OPERAND_ACCESSORS(Value); /// getMaskValue - Return the index from the shuffle mask for the specified /// output result. This is either -1 if the element is undef or a number less /// than 2*numelements. int getMaskValue(unsigned i) const; // Methods for support type inquiry through isa, cast, and dyn_cast: static inline bool classof(const ShuffleVectorInst *) { return true; } static inline bool classof(const Instruction *I) { return I->getOpcode() == Instruction::ShuffleVector; } static inline bool classof(const Value *V) { return isa(V) && classof(cast(V)); } }; template <> struct OperandTraits : FixedNumOperandTraits<3> { }; DEFINE_TRANSPARENT_OPERAND_ACCESSORS(ShuffleVectorInst, Value) //===----------------------------------------------------------------------===// // ExtractValueInst Class //===----------------------------------------------------------------------===// /// ExtractValueInst - This instruction extracts a struct member or array /// element value from an aggregate value. /// class ExtractValueInst : public UnaryInstruction { SmallVector Indices; ExtractValueInst(const ExtractValueInst &EVI); void init(const unsigned *Idx, unsigned NumIdx, const std::string &NameStr); void init(unsigned Idx, const std::string &NameStr); template void init(InputIterator IdxBegin, InputIterator IdxEnd, const std::string &NameStr, // This argument ensures that we have an iterator we can // do arithmetic on in constant time std::random_access_iterator_tag) { unsigned NumIdx = static_cast(std::distance(IdxBegin, IdxEnd)); // There's no fundamental reason why we require at least one index // (other than weirdness with &*IdxBegin being invalid; see // getelementptr's init routine for example). But there's no // present need to support it. assert(NumIdx > 0 && "ExtractValueInst must have at least one index"); // This requires that the iterator points to contiguous memory. init(&*IdxBegin, NumIdx, NameStr); // FIXME: for the general case // we have to build an array here } /// getIndexedType - Returns the type of the element that would be extracted /// with an extractvalue instruction with the specified parameters. /// /// Null is returned if the indices are invalid for the specified /// pointer type. /// static const Type *getIndexedType(const Type *Agg, const unsigned *Idx, unsigned NumIdx); template static const Type *getIndexedType(const Type *Ptr, InputIterator IdxBegin, InputIterator IdxEnd, // This argument ensures that we // have an iterator we can do // arithmetic on in constant time std::random_access_iterator_tag) { unsigned NumIdx = static_cast(std::distance(IdxBegin, IdxEnd)); if (NumIdx > 0) // This requires that the iterator points to contiguous memory. return getIndexedType(Ptr, &*IdxBegin, NumIdx); else return getIndexedType(Ptr, (const unsigned *)0, NumIdx); } /// Constructors - Create a extractvalue instruction with a base aggregate /// value and a list of indices. The first ctor can optionally insert before /// an existing instruction, the second appends the new instruction to the /// specified BasicBlock. template inline ExtractValueInst(Value *Agg, InputIterator IdxBegin, InputIterator IdxEnd, const std::string &NameStr, Instruction *InsertBefore); template inline ExtractValueInst(Value *Agg, InputIterator IdxBegin, InputIterator IdxEnd, const std::string &NameStr, BasicBlock *InsertAtEnd); // allocate space for exactly one operand void *operator new(size_t s) { return User::operator new(s, 1); } public: template static ExtractValueInst *Create(Value *Agg, InputIterator IdxBegin, InputIterator IdxEnd, const std::string &NameStr = "", Instruction *InsertBefore = 0) { return new ExtractValueInst(Agg, IdxBegin, IdxEnd, NameStr, InsertBefore); } template static ExtractValueInst *Create(Value *Agg, InputIterator IdxBegin, InputIterator IdxEnd, const std::string &NameStr, BasicBlock *InsertAtEnd) { return new ExtractValueInst(Agg, IdxBegin, IdxEnd, NameStr, InsertAtEnd); } /// Constructors - These two creators are convenience methods because one /// index extractvalue instructions are much more common than those with /// more than one. static ExtractValueInst *Create(Value *Agg, unsigned Idx, const std::string &NameStr = "", Instruction *InsertBefore = 0) { unsigned Idxs[1] = { Idx }; return new ExtractValueInst(Agg, Idxs, Idxs + 1, NameStr, InsertBefore); } static ExtractValueInst *Create(Value *Agg, unsigned Idx, const std::string &NameStr, BasicBlock *InsertAtEnd) { unsigned Idxs[1] = { Idx }; return new ExtractValueInst(Agg, Idxs, Idxs + 1, NameStr, InsertAtEnd); } virtual ExtractValueInst *clone() const; // getType - Overload to return most specific pointer type... const PointerType *getType() const { return reinterpret_cast(Instruction::getType()); } /// getIndexedType - Returns the type of the element that would be extracted /// with an extractvalue instruction with the specified parameters. /// /// Null is returned if the indices are invalid for the specified /// pointer type. /// template static const Type *getIndexedType(const Type *Ptr, InputIterator IdxBegin, InputIterator IdxEnd) { return getIndexedType(Ptr, IdxBegin, IdxEnd, typename std::iterator_traits:: iterator_category()); } static const Type *getIndexedType(const Type *Ptr, unsigned Idx); typedef const unsigned* idx_iterator; inline idx_iterator idx_begin() const { return Indices.begin(); } inline idx_iterator idx_end() const { return Indices.end(); } Value *getAggregateOperand() { return getOperand(0); } const Value *getAggregateOperand() const { return getOperand(0); } static unsigned getAggregateOperandIndex() { return 0U; // get index for modifying correct operand } unsigned getNumIndices() const { // Note: always non-negative return (unsigned)Indices.size(); } bool hasIndices() const { return true; } // Methods for support type inquiry through isa, cast, and dyn_cast: static inline bool classof(const ExtractValueInst *) { return true; } static inline bool classof(const Instruction *I) { return I->getOpcode() == Instruction::ExtractValue; } static inline bool classof(const Value *V) { return isa(V) && classof(cast(V)); } }; template ExtractValueInst::ExtractValueInst(Value *Agg, InputIterator IdxBegin, InputIterator IdxEnd, const std::string &NameStr, Instruction *InsertBefore) : UnaryInstruction(checkType(getIndexedType(Agg->getType(), IdxBegin, IdxEnd)), ExtractValue, Agg, InsertBefore) { init(IdxBegin, IdxEnd, NameStr, typename std::iterator_traits::iterator_category()); } template ExtractValueInst::ExtractValueInst(Value *Agg, InputIterator IdxBegin, InputIterator IdxEnd, const std::string &NameStr, BasicBlock *InsertAtEnd) : UnaryInstruction(checkType(getIndexedType(Agg->getType(), IdxBegin, IdxEnd)), ExtractValue, Agg, InsertAtEnd) { init(IdxBegin, IdxEnd, NameStr, typename std::iterator_traits::iterator_category()); } //===----------------------------------------------------------------------===// // InsertValueInst Class //===----------------------------------------------------------------------===// /// InsertValueInst - This instruction inserts a struct field of array element /// value into an aggregate value. /// class InsertValueInst : public Instruction { SmallVector Indices; void *operator new(size_t, unsigned); // Do not implement InsertValueInst(const InsertValueInst &IVI); void init(Value *Agg, Value *Val, const unsigned *Idx, unsigned NumIdx, const std::string &NameStr); void init(Value *Agg, Value *Val, unsigned Idx, const std::string &NameStr); template void init(Value *Agg, Value *Val, InputIterator IdxBegin, InputIterator IdxEnd, const std::string &NameStr, // This argument ensures that we have an iterator we can // do arithmetic on in constant time std::random_access_iterator_tag) { unsigned NumIdx = static_cast(std::distance(IdxBegin, IdxEnd)); // There's no fundamental reason why we require at least one index // (other than weirdness with &*IdxBegin being invalid; see // getelementptr's init routine for example). But there's no // present need to support it. assert(NumIdx > 0 && "InsertValueInst must have at least one index"); // This requires that the iterator points to contiguous memory. init(Agg, Val, &*IdxBegin, NumIdx, NameStr); // FIXME: for the general case // we have to build an array here } /// Constructors - Create a insertvalue instruction with a base aggregate /// value, a value to insert, and a list of indices. The first ctor can /// optionally insert before an existing instruction, the second appends /// the new instruction to the specified BasicBlock. template inline InsertValueInst(Value *Agg, Value *Val, InputIterator IdxBegin, InputIterator IdxEnd, const std::string &NameStr, Instruction *InsertBefore); template inline InsertValueInst(Value *Agg, Value *Val, InputIterator IdxBegin, InputIterator IdxEnd, const std::string &NameStr, BasicBlock *InsertAtEnd); /// Constructors - These two constructors are convenience methods because one /// and two index insertvalue instructions are so common. InsertValueInst(Value *Agg, Value *Val, unsigned Idx, const std::string &NameStr = "", Instruction *InsertBefore = 0); InsertValueInst(Value *Agg, Value *Val, unsigned Idx, const std::string &NameStr, BasicBlock *InsertAtEnd); public: // allocate space for exactly two operands void *operator new(size_t s) { return User::operator new(s, 2); } template static InsertValueInst *Create(Value *Agg, Value *Val, InputIterator IdxBegin, InputIterator IdxEnd, const std::string &NameStr = "", Instruction *InsertBefore = 0) { return new InsertValueInst(Agg, Val, IdxBegin, IdxEnd, NameStr, InsertBefore); } template static InsertValueInst *Create(Value *Agg, Value *Val, InputIterator IdxBegin, InputIterator IdxEnd, const std::string &NameStr, BasicBlock *InsertAtEnd) { return new InsertValueInst(Agg, Val, IdxBegin, IdxEnd, NameStr, InsertAtEnd); } /// Constructors - These two creators are convenience methods because one /// index insertvalue instructions are much more common than those with /// more than one. static InsertValueInst *Create(Value *Agg, Value *Val, unsigned Idx, const std::string &NameStr = "", Instruction *InsertBefore = 0) { return new InsertValueInst(Agg, Val, Idx, NameStr, InsertBefore); } static InsertValueInst *Create(Value *Agg, Value *Val, unsigned Idx, const std::string &NameStr, BasicBlock *InsertAtEnd) { return new InsertValueInst(Agg, Val, Idx, NameStr, InsertAtEnd); } virtual InsertValueInst *clone() const; /// Transparently provide more efficient getOperand methods. DECLARE_TRANSPARENT_OPERAND_ACCESSORS(Value); // getType - Overload to return most specific pointer type... const PointerType *getType() const { return reinterpret_cast(Instruction::getType()); } typedef const unsigned* idx_iterator; inline idx_iterator idx_begin() const { return Indices.begin(); } inline idx_iterator idx_end() const { return Indices.end(); } Value *getAggregateOperand() { return getOperand(0); } const Value *getAggregateOperand() const { return getOperand(0); } static unsigned getAggregateOperandIndex() { return 0U; // get index for modifying correct operand } Value *getInsertedValueOperand() { return getOperand(1); } const Value *getInsertedValueOperand() const { return getOperand(1); } static unsigned getInsertedValueOperandIndex() { return 1U; // get index for modifying correct operand } unsigned getNumIndices() const { // Note: always non-negative return (unsigned)Indices.size(); } bool hasIndices() const { return true; } // Methods for support type inquiry through isa, cast, and dyn_cast: static inline bool classof(const InsertValueInst *) { return true; } static inline bool classof(const Instruction *I) { return I->getOpcode() == Instruction::InsertValue; } static inline bool classof(const Value *V) { return isa(V) && classof(cast(V)); } }; template <> struct OperandTraits : FixedNumOperandTraits<2> { }; template InsertValueInst::InsertValueInst(Value *Agg, Value *Val, InputIterator IdxBegin, InputIterator IdxEnd, const std::string &NameStr, Instruction *InsertBefore) : Instruction(Agg->getType(), InsertValue, OperandTraits::op_begin(this), 2, InsertBefore) { init(Agg, Val, IdxBegin, IdxEnd, NameStr, typename std::iterator_traits::iterator_category()); } template InsertValueInst::InsertValueInst(Value *Agg, Value *Val, InputIterator IdxBegin, InputIterator IdxEnd, const std::string &NameStr, BasicBlock *InsertAtEnd) : Instruction(Agg->getType(), InsertValue, OperandTraits::op_begin(this), 2, InsertAtEnd) { init(Agg, Val, IdxBegin, IdxEnd, NameStr, typename std::iterator_traits::iterator_category()); } DEFINE_TRANSPARENT_OPERAND_ACCESSORS(InsertValueInst, Value) //===----------------------------------------------------------------------===// // PHINode Class //===----------------------------------------------------------------------===// // PHINode - The PHINode class is used to represent the magical mystical PHI // node, that can not exist in nature, but can be synthesized in a computer // scientist's overactive imagination. // class PHINode : public Instruction { void *operator new(size_t, unsigned); // DO NOT IMPLEMENT /// ReservedSpace - The number of operands actually allocated. NumOperands is /// the number actually in use. unsigned ReservedSpace; PHINode(const PHINode &PN); // allocate space for exactly zero operands void *operator new(size_t s) { return User::operator new(s, 0); } explicit PHINode(const Type *Ty, const std::string &NameStr = "", Instruction *InsertBefore = 0) : Instruction(Ty, Instruction::PHI, 0, 0, InsertBefore), ReservedSpace(0) { setName(NameStr); } PHINode(const Type *Ty, const std::string &NameStr, BasicBlock *InsertAtEnd) : Instruction(Ty, Instruction::PHI, 0, 0, InsertAtEnd), ReservedSpace(0) { setName(NameStr); } public: static PHINode *Create(const Type *Ty, const std::string &NameStr = "", Instruction *InsertBefore = 0) { return new PHINode(Ty, NameStr, InsertBefore); } static PHINode *Create(const Type *Ty, const std::string &NameStr, BasicBlock *InsertAtEnd) { return new PHINode(Ty, NameStr, InsertAtEnd); } ~PHINode(); /// reserveOperandSpace - This method can be used to avoid repeated /// reallocation of PHI operand lists by reserving space for the correct /// number of operands before adding them. Unlike normal vector reserves, /// this method can also be used to trim the operand space. void reserveOperandSpace(unsigned NumValues) { resizeOperands(NumValues*2); } virtual PHINode *clone() const; /// Provide fast operand accessors DECLARE_TRANSPARENT_OPERAND_ACCESSORS(Value); /// getNumIncomingValues - Return the number of incoming edges /// unsigned getNumIncomingValues() const { return getNumOperands()/2; } /// getIncomingValue - Return incoming value number x /// Value *getIncomingValue(unsigned i) const { assert(i*2 < getNumOperands() && "Invalid value number!"); return getOperand(i*2); } void setIncomingValue(unsigned i, Value *V) { assert(i*2 < getNumOperands() && "Invalid value number!"); setOperand(i*2, V); } unsigned getOperandNumForIncomingValue(unsigned i) { return i*2; } /// getIncomingBlock - Return incoming basic block number x /// BasicBlock *getIncomingBlock(unsigned i) const { return static_cast(getOperand(i*2+1)); } void setIncomingBlock(unsigned i, BasicBlock *BB) { setOperand(i*2+1, BB); } unsigned getOperandNumForIncomingBlock(unsigned i) { return i*2+1; } /// addIncoming - Add an incoming value to the end of the PHI list /// void addIncoming(Value *V, BasicBlock *BB) { assert(V && "PHI node got a null value!"); assert(BB && "PHI node got a null basic block!"); assert(getType() == V->getType() && "All operands to PHI node must be the same type as the PHI node!"); unsigned OpNo = NumOperands; if (OpNo+2 > ReservedSpace) resizeOperands(0); // Get more space! // Initialize some new operands. NumOperands = OpNo+2; OperandList[OpNo] = V; OperandList[OpNo+1] = BB; } /// removeIncomingValue - Remove an incoming value. This is useful if a /// predecessor basic block is deleted. The value removed is returned. /// /// If the last incoming value for a PHI node is removed (and DeletePHIIfEmpty /// is true), the PHI node is destroyed and any uses of it are replaced with /// dummy values. The only time there should be zero incoming values to a PHI /// node is when the block is dead, so this strategy is sound. /// Value *removeIncomingValue(unsigned Idx, bool DeletePHIIfEmpty = true); Value *removeIncomingValue(const BasicBlock *BB, bool DeletePHIIfEmpty=true) { int Idx = getBasicBlockIndex(BB); assert(Idx >= 0 && "Invalid basic block argument to remove!"); return removeIncomingValue(Idx, DeletePHIIfEmpty); } /// getBasicBlockIndex - Return the first index of the specified basic /// block in the value list for this PHI. Returns -1 if no instance. /// int getBasicBlockIndex(const BasicBlock *BB) const { Use *OL = OperandList; for (unsigned i = 0, e = getNumOperands(); i != e; i += 2) if (OL[i+1].get() == BB) return i/2; return -1; } Value *getIncomingValueForBlock(const BasicBlock *BB) const { return getIncomingValue(getBasicBlockIndex(BB)); } /// hasConstantValue - If the specified PHI node always merges together the /// same value, return the value, otherwise return null. /// Value *hasConstantValue(bool AllowNonDominatingInstruction = false) const; /// Methods for support type inquiry through isa, cast, and dyn_cast: static inline bool classof(const PHINode *) { return true; } static inline bool classof(const Instruction *I) { return I->getOpcode() == Instruction::PHI; } static inline bool classof(const Value *V) { return isa(V) && classof(cast(V)); } private: void resizeOperands(unsigned NumOperands); }; template <> struct OperandTraits : HungoffOperandTraits<2> { }; DEFINE_TRANSPARENT_OPERAND_ACCESSORS(PHINode, Value) //===----------------------------------------------------------------------===// // ReturnInst Class //===----------------------------------------------------------------------===// //===--------------------------------------------------------------------------- /// ReturnInst - Return a value (possibly void), from a function. Execution /// does not continue in this function any longer. /// class ReturnInst : public TerminatorInst { ReturnInst(const ReturnInst &RI); private: // ReturnInst constructors: // ReturnInst() - 'ret void' instruction // ReturnInst( null) - 'ret void' instruction // ReturnInst(Value* X) - 'ret X' instruction // ReturnInst( null, Inst *I) - 'ret void' instruction, insert before I // ReturnInst(Value* X, Inst *I) - 'ret X' instruction, insert before I // ReturnInst( null, BB *B) - 'ret void' instruction, insert @ end of B // ReturnInst(Value* X, BB *B) - 'ret X' instruction, insert @ end of B // // NOTE: If the Value* passed is of type void then the constructor behaves as // if it was passed NULL. explicit ReturnInst(Value *retVal = 0, Instruction *InsertBefore = 0); ReturnInst(Value *retVal, BasicBlock *InsertAtEnd); explicit ReturnInst(BasicBlock *InsertAtEnd); public: static ReturnInst* Create(Value *retVal = 0, Instruction *InsertBefore = 0) { return new(!!retVal) ReturnInst(retVal, InsertBefore); } static ReturnInst* Create(Value *retVal, BasicBlock *InsertAtEnd) { return new(!!retVal) ReturnInst(retVal, InsertAtEnd); } static ReturnInst* Create(BasicBlock *InsertAtEnd) { return new(0) ReturnInst(InsertAtEnd); } virtual ~ReturnInst(); virtual ReturnInst *clone() const; /// Provide fast operand accessors DECLARE_TRANSPARENT_OPERAND_ACCESSORS(Value); /// Convenience accessor Value *getReturnValue(unsigned n = 0) const { return n < getNumOperands() ? getOperand(n) : 0; } unsigned getNumSuccessors() const { return 0; } // Methods for support type inquiry through isa, cast, and dyn_cast: static inline bool classof(const ReturnInst *) { return true; } static inline bool classof(const Instruction *I) { return (I->getOpcode() == Instruction::Ret); } static inline bool classof(const Value *V) { return isa(V) && classof(cast(V)); } private: virtual BasicBlock *getSuccessorV(unsigned idx) const; virtual unsigned getNumSuccessorsV() const; virtual void setSuccessorV(unsigned idx, BasicBlock *B); }; template <> struct OperandTraits : OptionalOperandTraits<> { }; DEFINE_TRANSPARENT_OPERAND_ACCESSORS(ReturnInst, Value) //===----------------------------------------------------------------------===// // BranchInst Class //===----------------------------------------------------------------------===// //===--------------------------------------------------------------------------- /// BranchInst - Conditional or Unconditional Branch instruction. /// class BranchInst : public TerminatorInst { /// Ops list - Branches are strange. The operands are ordered: /// TrueDest, FalseDest, Cond. This makes some accessors faster because /// they don't have to check for cond/uncond branchness. BranchInst(const BranchInst &BI); void AssertOK(); // BranchInst constructors (where {B, T, F} are blocks, and C is a condition): // BranchInst(BB *B) - 'br B' // BranchInst(BB* T, BB *F, Value *C) - 'br C, T, F' // BranchInst(BB* B, Inst *I) - 'br B' insert before I // BranchInst(BB* T, BB *F, Value *C, Inst *I) - 'br C, T, F', insert before I // BranchInst(BB* B, BB *I) - 'br B' insert at end // BranchInst(BB* T, BB *F, Value *C, BB *I) - 'br C, T, F', insert at end explicit BranchInst(BasicBlock *IfTrue, Instruction *InsertBefore = 0); BranchInst(BasicBlock *IfTrue, BasicBlock *IfFalse, Value *Cond, Instruction *InsertBefore = 0); BranchInst(BasicBlock *IfTrue, BasicBlock *InsertAtEnd); BranchInst(BasicBlock *IfTrue, BasicBlock *IfFalse, Value *Cond, BasicBlock *InsertAtEnd); public: static BranchInst *Create(BasicBlock *IfTrue, Instruction *InsertBefore = 0) { return new(1) BranchInst(IfTrue, InsertBefore); } static BranchInst *Create(BasicBlock *IfTrue, BasicBlock *IfFalse, Value *Cond, Instruction *InsertBefore = 0) { return new(3) BranchInst(IfTrue, IfFalse, Cond, InsertBefore); } static BranchInst *Create(BasicBlock *IfTrue, BasicBlock *InsertAtEnd) { return new(1) BranchInst(IfTrue, InsertAtEnd); } static BranchInst *Create(BasicBlock *IfTrue, BasicBlock *IfFalse, Value *Cond, BasicBlock *InsertAtEnd) { return new(3) BranchInst(IfTrue, IfFalse, Cond, InsertAtEnd); } ~BranchInst() { if (NumOperands == 1) NumOperands = (unsigned)((Use*)this - OperandList); } /// Transparently provide more efficient getOperand methods. DECLARE_TRANSPARENT_OPERAND_ACCESSORS(Value); virtual BranchInst *clone() const; bool isUnconditional() const { return getNumOperands() == 1; } bool isConditional() const { return getNumOperands() == 3; } Value *getCondition() const { assert(isConditional() && "Cannot get condition of an uncond branch!"); return getOperand(2); } void setCondition(Value *V) { assert(isConditional() && "Cannot set condition of unconditional branch!"); setOperand(2, V); } // setUnconditionalDest - Change the current branch to an unconditional branch // targeting the specified block. // FIXME: Eliminate this ugly method. void setUnconditionalDest(BasicBlock *Dest) { Op<0>() = Dest; if (isConditional()) { // Convert this to an uncond branch. Op<1>().set(0); Op<2>().set(0); NumOperands = 1; } } unsigned getNumSuccessors() const { return 1+isConditional(); } BasicBlock *getSuccessor(unsigned i) const { assert(i < getNumSuccessors() && "Successor # out of range for Branch!"); return cast(getOperand(i)); } void setSuccessor(unsigned idx, BasicBlock *NewSucc) { assert(idx < getNumSuccessors() && "Successor # out of range for Branch!"); setOperand(idx, NewSucc); } // Methods for support type inquiry through isa, cast, and dyn_cast: static inline bool classof(const BranchInst *) { return true; } static inline bool classof(const Instruction *I) { return (I->getOpcode() == Instruction::Br); } static inline bool classof(const Value *V) { return isa(V) && classof(cast(V)); } private: virtual BasicBlock *getSuccessorV(unsigned idx) const; virtual unsigned getNumSuccessorsV() const; virtual void setSuccessorV(unsigned idx, BasicBlock *B); }; template <> struct OperandTraits : HungoffOperandTraits<> { // we need to access operands via OperandList, since // the NumOperands may change from 3 to 1 static inline void *allocate(unsigned); // FIXME }; DEFINE_TRANSPARENT_OPERAND_ACCESSORS(BranchInst, Value) //===----------------------------------------------------------------------===// // SwitchInst Class //===----------------------------------------------------------------------===// //===--------------------------------------------------------------------------- /// SwitchInst - Multiway switch /// class SwitchInst : public TerminatorInst { void *operator new(size_t, unsigned); // DO NOT IMPLEMENT unsigned ReservedSpace; // Operand[0] = Value to switch on // Operand[1] = Default basic block destination // Operand[2n ] = Value to match // Operand[2n+1] = BasicBlock to go to on match SwitchInst(const SwitchInst &RI); void init(Value *Value, BasicBlock *Default, unsigned NumCases); void resizeOperands(unsigned No); // allocate space for exactly zero operands void *operator new(size_t s) { return User::operator new(s, 0); } /// SwitchInst ctor - Create a new switch instruction, specifying a value to /// switch on and a default destination. The number of additional cases can /// be specified here to make memory allocation more efficient. This /// constructor can also autoinsert before another instruction. SwitchInst(Value *Value, BasicBlock *Default, unsigned NumCases, Instruction *InsertBefore = 0); /// SwitchInst ctor - Create a new switch instruction, specifying a value to /// switch on and a default destination. The number of additional cases can /// be specified here to make memory allocation more efficient. This /// constructor also autoinserts at the end of the specified BasicBlock. SwitchInst(Value *Value, BasicBlock *Default, unsigned NumCases, BasicBlock *InsertAtEnd); public: static SwitchInst *Create(Value *Value, BasicBlock *Default, unsigned NumCases, Instruction *InsertBefore = 0) { return new SwitchInst(Value, Default, NumCases, InsertBefore); } static SwitchInst *Create(Value *Value, BasicBlock *Default, unsigned NumCases, BasicBlock *InsertAtEnd) { return new SwitchInst(Value, Default, NumCases, InsertAtEnd); } ~SwitchInst(); /// Provide fast operand accessors DECLARE_TRANSPARENT_OPERAND_ACCESSORS(Value); // Accessor Methods for Switch stmt Value *getCondition() const { return getOperand(0); } void setCondition(Value *V) { setOperand(0, V); } BasicBlock *getDefaultDest() const { return cast(getOperand(1)); } /// getNumCases - return the number of 'cases' in this switch instruction. /// Note that case #0 is always the default case. unsigned getNumCases() const { return getNumOperands()/2; } /// getCaseValue - Return the specified case value. Note that case #0, the /// default destination, does not have a case value. ConstantInt *getCaseValue(unsigned i) { assert(i && i < getNumCases() && "Illegal case value to get!"); return getSuccessorValue(i); } /// getCaseValue - Return the specified case value. Note that case #0, the /// default destination, does not have a case value. const ConstantInt *getCaseValue(unsigned i) const { assert(i && i < getNumCases() && "Illegal case value to get!"); return getSuccessorValue(i); } /// findCaseValue - Search all of the case values for the specified constant. /// If it is explicitly handled, return the case number of it, otherwise /// return 0 to indicate that it is handled by the default handler. unsigned findCaseValue(const ConstantInt *C) const { for (unsigned i = 1, e = getNumCases(); i != e; ++i) if (getCaseValue(i) == C) return i; return 0; } /// findCaseDest - Finds the unique case value for a given successor. Returns /// null if the successor is not found, not unique, or is the default case. ConstantInt *findCaseDest(BasicBlock *BB) { if (BB == getDefaultDest()) return NULL; ConstantInt *CI = NULL; for (unsigned i = 1, e = getNumCases(); i != e; ++i) { if (getSuccessor(i) == BB) { if (CI) return NULL; // Multiple cases lead to BB. else CI = getCaseValue(i); } } return CI; } /// addCase - Add an entry to the switch instruction... /// void addCase(ConstantInt *OnVal, BasicBlock *Dest); /// removeCase - This method removes the specified successor from the switch /// instruction. Note that this cannot be used to remove the default /// destination (successor #0). /// void removeCase(unsigned idx); virtual SwitchInst *clone() const; unsigned getNumSuccessors() const { return getNumOperands()/2; } BasicBlock *getSuccessor(unsigned idx) const { assert(idx < getNumSuccessors() &&"Successor idx out of range for switch!"); return cast(getOperand(idx*2+1)); } void setSuccessor(unsigned idx, BasicBlock *NewSucc) { assert(idx < getNumSuccessors() && "Successor # out of range for switch!"); setOperand(idx*2+1, NewSucc); } // getSuccessorValue - Return the value associated with the specified // successor. ConstantInt *getSuccessorValue(unsigned idx) const { assert(idx < getNumSuccessors() && "Successor # out of range!"); return reinterpret_cast(getOperand(idx*2)); } // Methods for support type inquiry through isa, cast, and dyn_cast: static inline bool classof(const SwitchInst *) { return true; } static inline bool classof(const Instruction *I) { return I->getOpcode() == Instruction::Switch; } static inline bool classof(const Value *V) { return isa(V) && classof(cast(V)); } private: virtual BasicBlock *getSuccessorV(unsigned idx) const; virtual unsigned getNumSuccessorsV() const; virtual void setSuccessorV(unsigned idx, BasicBlock *B); }; template <> struct OperandTraits : HungoffOperandTraits<2> { }; DEFINE_TRANSPARENT_OPERAND_ACCESSORS(SwitchInst, Value) //===----------------------------------------------------------------------===// // InvokeInst Class //===----------------------------------------------------------------------===// /// InvokeInst - Invoke instruction. The SubclassData field is used to hold the /// calling convention of the call. /// class InvokeInst : public TerminatorInst { AttrListPtr AttributeList; InvokeInst(const InvokeInst &BI); void init(Value *Fn, BasicBlock *IfNormal, BasicBlock *IfException, Value* const *Args, unsigned NumArgs); template void init(Value *Func, BasicBlock *IfNormal, BasicBlock *IfException, InputIterator ArgBegin, InputIterator ArgEnd, const std::string &NameStr, // This argument ensures that we have an iterator we can // do arithmetic on in constant time std::random_access_iterator_tag) { unsigned NumArgs = (unsigned)std::distance(ArgBegin, ArgEnd); // This requires that the iterator points to contiguous memory. init(Func, IfNormal, IfException, NumArgs ? &*ArgBegin : 0, NumArgs); setName(NameStr); } /// Construct an InvokeInst given a range of arguments. /// InputIterator must be a random-access iterator pointing to /// contiguous storage (e.g. a std::vector<>::iterator). Checks are /// made for random-accessness but not for contiguous storage as /// that would incur runtime overhead. /// /// @brief Construct an InvokeInst from a range of arguments template inline InvokeInst(Value *Func, BasicBlock *IfNormal, BasicBlock *IfException, InputIterator ArgBegin, InputIterator ArgEnd, unsigned Values, const std::string &NameStr, Instruction *InsertBefore); /// Construct an InvokeInst given a range of arguments. /// InputIterator must be a random-access iterator pointing to /// contiguous storage (e.g. a std::vector<>::iterator). Checks are /// made for random-accessness but not for contiguous storage as /// that would incur runtime overhead. /// /// @brief Construct an InvokeInst from a range of arguments template inline InvokeInst(Value *Func, BasicBlock *IfNormal, BasicBlock *IfException, InputIterator ArgBegin, InputIterator ArgEnd, unsigned Values, const std::string &NameStr, BasicBlock *InsertAtEnd); public: template static InvokeInst *Create(Value *Func, BasicBlock *IfNormal, BasicBlock *IfException, InputIterator ArgBegin, InputIterator ArgEnd, const std::string &NameStr = "", Instruction *InsertBefore = 0) { unsigned Values(ArgEnd - ArgBegin + 3); return new(Values) InvokeInst(Func, IfNormal, IfException, ArgBegin, ArgEnd, Values, NameStr, InsertBefore); } template static InvokeInst *Create(Value *Func, BasicBlock *IfNormal, BasicBlock *IfException, InputIterator ArgBegin, InputIterator ArgEnd, const std::string &NameStr, BasicBlock *InsertAtEnd) { unsigned Values(ArgEnd - ArgBegin + 3); return new(Values) InvokeInst(Func, IfNormal, IfException, ArgBegin, ArgEnd, Values, NameStr, InsertAtEnd); } virtual InvokeInst *clone() const; /// Provide fast operand accessors DECLARE_TRANSPARENT_OPERAND_ACCESSORS(Value); /// getCallingConv/setCallingConv - Get or set the calling convention of this /// function call. unsigned getCallingConv() const { return SubclassData; } void setCallingConv(unsigned CC) { SubclassData = CC; } /// getAttributes - Return the parameter attributes for this invoke. /// const AttrListPtr &getAttributes() const { return AttributeList; } /// setAttributes - Set the parameter attributes for this invoke. /// void setAttributes(const AttrListPtr &Attrs) { AttributeList = Attrs; } /// @brief Determine whether the call or the callee has the given attribute. bool paramHasAttr(unsigned i, Attributes attr) const; /// addAttribute - adds the attribute to the list of attributes. void addAttribute(unsigned i, Attributes attr); /// removeAttribute - removes the attribute from the list of attributes. void removeAttribute(unsigned i, Attributes attr); /// @brief Extract the alignment for a call or parameter (0=unknown). unsigned getParamAlignment(unsigned i) const { return AttributeList.getParamAlignment(i); } /// @brief Determine if the call does not access memory. bool doesNotAccessMemory() const { return paramHasAttr(0, Attribute::ReadNone); } void setDoesNotAccessMemory(bool NotAccessMemory = true) { if (NotAccessMemory) addAttribute(0, Attribute::ReadNone); else removeAttribute(0, Attribute::ReadNone); } /// @brief Determine if the call does not access or only reads memory. bool onlyReadsMemory() const { return doesNotAccessMemory() || paramHasAttr(0, Attribute::ReadOnly); } void setOnlyReadsMemory(bool OnlyReadsMemory = true) { if (OnlyReadsMemory) addAttribute(0, Attribute::ReadOnly); else removeAttribute(0, Attribute::ReadOnly | Attribute::ReadNone); } /// @brief Determine if the call cannot return. bool doesNotReturn() const { return paramHasAttr(0, Attribute::NoReturn); } void setDoesNotReturn(bool DoesNotReturn = true) { if (DoesNotReturn) addAttribute(0, Attribute::NoReturn); else removeAttribute(0, Attribute::NoReturn); } /// @brief Determine if the call cannot unwind. bool doesNotThrow() const { return paramHasAttr(0, Attribute::NoUnwind); } void setDoesNotThrow(bool DoesNotThrow = true) { if (DoesNotThrow) addAttribute(0, Attribute::NoUnwind); else removeAttribute(0, Attribute::NoUnwind); } /// @brief Determine if the call returns a structure through first /// pointer argument. bool hasStructRetAttr() const { // Be friendly and also check the callee. return paramHasAttr(1, Attribute::StructRet); } /// getCalledFunction - Return the function called, or null if this is an /// indirect function invocation. /// Function *getCalledFunction() const { return dyn_cast(getOperand(0)); } // getCalledValue - Get a pointer to a function that is invoked by this inst. Value *getCalledValue() const { return getOperand(0); } // get*Dest - Return the destination basic blocks... BasicBlock *getNormalDest() const { return cast(getOperand(1)); } BasicBlock *getUnwindDest() const { return cast(getOperand(2)); } void setNormalDest(BasicBlock *B) { setOperand(1, B); } void setUnwindDest(BasicBlock *B) { setOperand(2, B); } BasicBlock *getSuccessor(unsigned i) const { assert(i < 2 && "Successor # out of range for invoke!"); return i == 0 ? getNormalDest() : getUnwindDest(); } void setSuccessor(unsigned idx, BasicBlock *NewSucc) { assert(idx < 2 && "Successor # out of range for invoke!"); setOperand(idx+1, NewSucc); } unsigned getNumSuccessors() const { return 2; } // Methods for support type inquiry through isa, cast, and dyn_cast: static inline bool classof(const InvokeInst *) { return true; } static inline bool classof(const Instruction *I) { return (I->getOpcode() == Instruction::Invoke); } static inline bool classof(const Value *V) { return isa(V) && classof(cast(V)); } private: virtual BasicBlock *getSuccessorV(unsigned idx) const; virtual unsigned getNumSuccessorsV() const; virtual void setSuccessorV(unsigned idx, BasicBlock *B); }; template <> struct OperandTraits : VariadicOperandTraits<3> { }; template InvokeInst::InvokeInst(Value *Func, BasicBlock *IfNormal, BasicBlock *IfException, InputIterator ArgBegin, InputIterator ArgEnd, unsigned Values, const std::string &NameStr, Instruction *InsertBefore) : TerminatorInst(cast(cast(Func->getType()) ->getElementType())->getReturnType(), Instruction::Invoke, OperandTraits::op_end(this) - Values, Values, InsertBefore) { init(Func, IfNormal, IfException, ArgBegin, ArgEnd, NameStr, typename std::iterator_traits::iterator_category()); } template InvokeInst::InvokeInst(Value *Func, BasicBlock *IfNormal, BasicBlock *IfException, InputIterator ArgBegin, InputIterator ArgEnd, unsigned Values, const std::string &NameStr, BasicBlock *InsertAtEnd) : TerminatorInst(cast(cast(Func->getType()) ->getElementType())->getReturnType(), Instruction::Invoke, OperandTraits::op_end(this) - Values, Values, InsertAtEnd) { init(Func, IfNormal, IfException, ArgBegin, ArgEnd, NameStr, typename std::iterator_traits::iterator_category()); } DEFINE_TRANSPARENT_OPERAND_ACCESSORS(InvokeInst, Value) //===----------------------------------------------------------------------===// // UnwindInst Class //===----------------------------------------------------------------------===// //===--------------------------------------------------------------------------- /// UnwindInst - Immediately exit the current function, unwinding the stack /// until an invoke instruction is found. /// class UnwindInst : public TerminatorInst { void *operator new(size_t, unsigned); // DO NOT IMPLEMENT public: // allocate space for exactly zero operands void *operator new(size_t s) { return User::operator new(s, 0); } explicit UnwindInst(Instruction *InsertBefore = 0); explicit UnwindInst(BasicBlock *InsertAtEnd); virtual UnwindInst *clone() const; unsigned getNumSuccessors() const { return 0; } // Methods for support type inquiry through isa, cast, and dyn_cast: static inline bool classof(const UnwindInst *) { return true; } static inline bool classof(const Instruction *I) { return I->getOpcode() == Instruction::Unwind; } static inline bool classof(const Value *V) { return isa(V) && classof(cast(V)); } private: virtual BasicBlock *getSuccessorV(unsigned idx) const; virtual unsigned getNumSuccessorsV() const; virtual void setSuccessorV(unsigned idx, BasicBlock *B); }; //===----------------------------------------------------------------------===// // UnreachableInst Class //===----------------------------------------------------------------------===// //===--------------------------------------------------------------------------- /// UnreachableInst - This function has undefined behavior. In particular, the /// presence of this instruction indicates some higher level knowledge that the /// end of the block cannot be reached. /// class UnreachableInst : public TerminatorInst { void *operator new(size_t, unsigned); // DO NOT IMPLEMENT public: // allocate space for exactly zero operands void *operator new(size_t s) { return User::operator new(s, 0); } explicit UnreachableInst(Instruction *InsertBefore = 0); explicit UnreachableInst(BasicBlock *InsertAtEnd); virtual UnreachableInst *clone() const; unsigned getNumSuccessors() const { return 0; } // Methods for support type inquiry through isa, cast, and dyn_cast: static inline bool classof(const UnreachableInst *) { return true; } static inline bool classof(const Instruction *I) { return I->getOpcode() == Instruction::Unreachable; } static inline bool classof(const Value *V) { return isa(V) && classof(cast(V)); } private: virtual BasicBlock *getSuccessorV(unsigned idx) const; virtual unsigned getNumSuccessorsV() const; virtual void setSuccessorV(unsigned idx, BasicBlock *B); }; //===----------------------------------------------------------------------===// // TruncInst Class //===----------------------------------------------------------------------===// /// @brief This class represents a truncation of integer types. class TruncInst : public CastInst { /// Private copy constructor TruncInst(const TruncInst &CI) : CastInst(CI.getType(), Trunc, CI.getOperand(0)) { } public: /// @brief Constructor with insert-before-instruction semantics TruncInst( Value *S, ///< The value to be truncated const Type *Ty, ///< The (smaller) type to truncate to const std::string &NameStr = "", ///< A name for the new instruction Instruction *InsertBefore = 0 ///< Where to insert the new instruction ); /// @brief Constructor with insert-at-end-of-block semantics TruncInst( Value *S, ///< The value to be truncated const Type *Ty, ///< The (smaller) type to truncate to const std::string &NameStr, ///< A name for the new instruction BasicBlock *InsertAtEnd ///< The block to insert the instruction into ); /// @brief Clone an identical TruncInst virtual CastInst *clone() const; /// @brief Methods for support type inquiry through isa, cast, and dyn_cast: static inline bool classof(const TruncInst *) { return true; } static inline bool classof(const Instruction *I) { return I->getOpcode() == Trunc; } static inline bool classof(const Value *V) { return isa(V) && classof(cast(V)); } }; //===----------------------------------------------------------------------===// // ZExtInst Class //===----------------------------------------------------------------------===// /// @brief This class represents zero extension of integer types. class ZExtInst : public CastInst { /// @brief Private copy constructor ZExtInst(const ZExtInst &CI) : CastInst(CI.getType(), ZExt, CI.getOperand(0)) { } public: /// @brief Constructor with insert-before-instruction semantics ZExtInst( Value *S, ///< The value to be zero extended const Type *Ty, ///< The type to zero extend to const std::string &NameStr = "", ///< A name for the new instruction Instruction *InsertBefore = 0 ///< Where to insert the new instruction ); /// @brief Constructor with insert-at-end semantics. ZExtInst( Value *S, ///< The value to be zero extended const Type *Ty, ///< The type to zero extend to const std::string &NameStr, ///< A name for the new instruction BasicBlock *InsertAtEnd ///< The block to insert the instruction into ); /// @brief Clone an identical ZExtInst virtual CastInst *clone() const; /// @brief Methods for support type inquiry through isa, cast, and dyn_cast: static inline bool classof(const ZExtInst *) { return true; } static inline bool classof(const Instruction *I) { return I->getOpcode() == ZExt; } static inline bool classof(const Value *V) { return isa(V) && classof(cast(V)); } }; //===----------------------------------------------------------------------===// // SExtInst Class //===----------------------------------------------------------------------===// /// @brief This class represents a sign extension of integer types. class SExtInst : public CastInst { /// @brief Private copy constructor SExtInst(const SExtInst &CI) : CastInst(CI.getType(), SExt, CI.getOperand(0)) { } public: /// @brief Constructor with insert-before-instruction semantics SExtInst( Value *S, ///< The value to be sign extended const Type *Ty, ///< The type to sign extend to const std::string &NameStr = "", ///< A name for the new instruction Instruction *InsertBefore = 0 ///< Where to insert the new instruction ); /// @brief Constructor with insert-at-end-of-block semantics SExtInst( Value *S, ///< The value to be sign extended const Type *Ty, ///< The type to sign extend to const std::string &NameStr, ///< A name for the new instruction BasicBlock *InsertAtEnd ///< The block to insert the instruction into ); /// @brief Clone an identical SExtInst virtual CastInst *clone() const; /// @brief Methods for support type inquiry through isa, cast, and dyn_cast: static inline bool classof(const SExtInst *) { return true; } static inline bool classof(const Instruction *I) { return I->getOpcode() == SExt; } static inline bool classof(const Value *V) { return isa(V) && classof(cast(V)); } }; //===----------------------------------------------------------------------===// // FPTruncInst Class //===----------------------------------------------------------------------===// /// @brief This class represents a truncation of floating point types. class FPTruncInst : public CastInst { FPTruncInst(const FPTruncInst &CI) : CastInst(CI.getType(), FPTrunc, CI.getOperand(0)) { } public: /// @brief Constructor with insert-before-instruction semantics FPTruncInst( Value *S, ///< The value to be truncated const Type *Ty, ///< The type to truncate to const std::string &NameStr = "", ///< A name for the new instruction Instruction *InsertBefore = 0 ///< Where to insert the new instruction ); /// @brief Constructor with insert-before-instruction semantics FPTruncInst( Value *S, ///< The value to be truncated const Type *Ty, ///< The type to truncate to const std::string &NameStr, ///< A name for the new instruction BasicBlock *InsertAtEnd ///< The block to insert the instruction into ); /// @brief Clone an identical FPTruncInst virtual CastInst *clone() const; /// @brief Methods for support type inquiry through isa, cast, and dyn_cast: static inline bool classof(const FPTruncInst *) { return true; } static inline bool classof(const Instruction *I) { return I->getOpcode() == FPTrunc; } static inline bool classof(const Value *V) { return isa(V) && classof(cast(V)); } }; //===----------------------------------------------------------------------===// // FPExtInst Class //===----------------------------------------------------------------------===// /// @brief This class represents an extension of floating point types. class FPExtInst : public CastInst { FPExtInst(const FPExtInst &CI) : CastInst(CI.getType(), FPExt, CI.getOperand(0)) { } public: /// @brief Constructor with insert-before-instruction semantics FPExtInst( Value *S, ///< The value to be extended const Type *Ty, ///< The type to extend to const std::string &NameStr = "", ///< A name for the new instruction Instruction *InsertBefore = 0 ///< Where to insert the new instruction ); /// @brief Constructor with insert-at-end-of-block semantics FPExtInst( Value *S, ///< The value to be extended const Type *Ty, ///< The type to extend to const std::string &NameStr, ///< A name for the new instruction BasicBlock *InsertAtEnd ///< The block to insert the instruction into ); /// @brief Clone an identical FPExtInst virtual CastInst *clone() const; /// @brief Methods for support type inquiry through isa, cast, and dyn_cast: static inline bool classof(const FPExtInst *) { return true; } static inline bool classof(const Instruction *I) { return I->getOpcode() == FPExt; } static inline bool classof(const Value *V) { return isa(V) && classof(cast(V)); } }; //===----------------------------------------------------------------------===// // UIToFPInst Class //===----------------------------------------------------------------------===// /// @brief This class represents a cast unsigned integer to floating point. class UIToFPInst : public CastInst { UIToFPInst(const UIToFPInst &CI) : CastInst(CI.getType(), UIToFP, CI.getOperand(0)) { } public: /// @brief Constructor with insert-before-instruction semantics UIToFPInst( Value *S, ///< The value to be converted const Type *Ty, ///< The type to convert to const std::string &NameStr = "", ///< A name for the new instruction Instruction *InsertBefore = 0 ///< Where to insert the new instruction ); /// @brief Constructor with insert-at-end-of-block semantics UIToFPInst( Value *S, ///< The value to be converted const Type *Ty, ///< The type to convert to const std::string &NameStr, ///< A name for the new instruction BasicBlock *InsertAtEnd ///< The block to insert the instruction into ); /// @brief Clone an identical UIToFPInst virtual CastInst *clone() const; /// @brief Methods for support type inquiry through isa, cast, and dyn_cast: static inline bool classof(const UIToFPInst *) { return true; } static inline bool classof(const Instruction *I) { return I->getOpcode() == UIToFP; } static inline bool classof(const Value *V) { return isa(V) && classof(cast(V)); } }; //===----------------------------------------------------------------------===// // SIToFPInst Class //===----------------------------------------------------------------------===// /// @brief This class represents a cast from signed integer to floating point. class SIToFPInst : public CastInst { SIToFPInst(const SIToFPInst &CI) : CastInst(CI.getType(), SIToFP, CI.getOperand(0)) { } public: /// @brief Constructor with insert-before-instruction semantics SIToFPInst( Value *S, ///< The value to be converted const Type *Ty, ///< The type to convert to const std::string &NameStr = "", ///< A name for the new instruction Instruction *InsertBefore = 0 ///< Where to insert the new instruction ); /// @brief Constructor with insert-at-end-of-block semantics SIToFPInst( Value *S, ///< The value to be converted const Type *Ty, ///< The type to convert to const std::string &NameStr, ///< A name for the new instruction BasicBlock *InsertAtEnd ///< The block to insert the instruction into ); /// @brief Clone an identical SIToFPInst virtual CastInst *clone() const; /// @brief Methods for support type inquiry through isa, cast, and dyn_cast: static inline bool classof(const SIToFPInst *) { return true; } static inline bool classof(const Instruction *I) { return I->getOpcode() == SIToFP; } static inline bool classof(const Value *V) { return isa(V) && classof(cast(V)); } }; //===----------------------------------------------------------------------===// // FPToUIInst Class //===----------------------------------------------------------------------===// /// @brief This class represents a cast from floating point to unsigned integer class FPToUIInst : public CastInst { FPToUIInst(const FPToUIInst &CI) : CastInst(CI.getType(), FPToUI, CI.getOperand(0)) { } public: /// @brief Constructor with insert-before-instruction semantics FPToUIInst( Value *S, ///< The value to be converted const Type *Ty, ///< The type to convert to const std::string &NameStr = "", ///< A name for the new instruction Instruction *InsertBefore = 0 ///< Where to insert the new instruction ); /// @brief Constructor with insert-at-end-of-block semantics FPToUIInst( Value *S, ///< The value to be converted const Type *Ty, ///< The type to convert to const std::string &NameStr, ///< A name for the new instruction BasicBlock *InsertAtEnd ///< Where to insert the new instruction ); /// @brief Clone an identical FPToUIInst virtual CastInst *clone() const; /// @brief Methods for support type inquiry through isa, cast, and dyn_cast: static inline bool classof(const FPToUIInst *) { return true; } static inline bool classof(const Instruction *I) { return I->getOpcode() == FPToUI; } static inline bool classof(const Value *V) { return isa(V) && classof(cast(V)); } }; //===----------------------------------------------------------------------===// // FPToSIInst Class //===----------------------------------------------------------------------===// /// @brief This class represents a cast from floating point to signed integer. class FPToSIInst : public CastInst { FPToSIInst(const FPToSIInst &CI) : CastInst(CI.getType(), FPToSI, CI.getOperand(0)) { } public: /// @brief Constructor with insert-before-instruction semantics FPToSIInst( Value *S, ///< The value to be converted const Type *Ty, ///< The type to convert to const std::string &NameStr = "", ///< A name for the new instruction Instruction *InsertBefore = 0 ///< Where to insert the new instruction ); /// @brief Constructor with insert-at-end-of-block semantics FPToSIInst( Value *S, ///< The value to be converted const Type *Ty, ///< The type to convert to const std::string &NameStr, ///< A name for the new instruction BasicBlock *InsertAtEnd ///< The block to insert the instruction into ); /// @brief Clone an identical FPToSIInst virtual CastInst *clone() const; /// @brief Methods for support type inquiry through isa, cast, and dyn_cast: static inline bool classof(const FPToSIInst *) { return true; } static inline bool classof(const Instruction *I) { return I->getOpcode() == FPToSI; } static inline bool classof(const Value *V) { return isa(V) && classof(cast(V)); } }; //===----------------------------------------------------------------------===// // IntToPtrInst Class //===----------------------------------------------------------------------===// /// @brief This class represents a cast from an integer to a pointer. class IntToPtrInst : public CastInst { IntToPtrInst(const IntToPtrInst &CI) : CastInst(CI.getType(), IntToPtr, CI.getOperand(0)) { } public: /// @brief Constructor with insert-before-instruction semantics IntToPtrInst( Value *S, ///< The value to be converted const Type *Ty, ///< The type to convert to const std::string &NameStr = "", ///< A name for the new instruction Instruction *InsertBefore = 0 ///< Where to insert the new instruction ); /// @brief Constructor with insert-at-end-of-block semantics IntToPtrInst( Value *S, ///< The value to be converted const Type *Ty, ///< The type to convert to const std::string &NameStr, ///< A name for the new instruction BasicBlock *InsertAtEnd ///< The block to insert the instruction into ); /// @brief Clone an identical IntToPtrInst virtual CastInst *clone() const; // Methods for support type inquiry through isa, cast, and dyn_cast: static inline bool classof(const IntToPtrInst *) { return true; } static inline bool classof(const Instruction *I) { return I->getOpcode() == IntToPtr; } static inline bool classof(const Value *V) { return isa(V) && classof(cast(V)); } }; //===----------------------------------------------------------------------===// // PtrToIntInst Class //===----------------------------------------------------------------------===// /// @brief This class represents a cast from a pointer to an integer class PtrToIntInst : public CastInst { PtrToIntInst(const PtrToIntInst &CI) : CastInst(CI.getType(), PtrToInt, CI.getOperand(0)) { } public: /// @brief Constructor with insert-before-instruction semantics PtrToIntInst( Value *S, ///< The value to be converted const Type *Ty, ///< The type to convert to const std::string &NameStr = "", ///< A name for the new instruction Instruction *InsertBefore = 0 ///< Where to insert the new instruction ); /// @brief Constructor with insert-at-end-of-block semantics PtrToIntInst( Value *S, ///< The value to be converted const Type *Ty, ///< The type to convert to const std::string &NameStr, ///< A name for the new instruction BasicBlock *InsertAtEnd ///< The block to insert the instruction into ); /// @brief Clone an identical PtrToIntInst virtual CastInst *clone() const; // Methods for support type inquiry through isa, cast, and dyn_cast: static inline bool classof(const PtrToIntInst *) { return true; } static inline bool classof(const Instruction *I) { return I->getOpcode() == PtrToInt; } static inline bool classof(const Value *V) { return isa(V) && classof(cast(V)); } }; //===----------------------------------------------------------------------===// // BitCastInst Class //===----------------------------------------------------------------------===// /// @brief This class represents a no-op cast from one type to another. class BitCastInst : public CastInst { BitCastInst(const BitCastInst &CI) : CastInst(CI.getType(), BitCast, CI.getOperand(0)) { } public: /// @brief Constructor with insert-before-instruction semantics BitCastInst( Value *S, ///< The value to be casted const Type *Ty, ///< The type to casted to const std::string &NameStr = "", ///< A name for the new instruction Instruction *InsertBefore = 0 ///< Where to insert the new instruction ); /// @brief Constructor with insert-at-end-of-block semantics BitCastInst( Value *S, ///< The value to be casted const Type *Ty, ///< The type to casted to const std::string &NameStr, ///< A name for the new instruction BasicBlock *InsertAtEnd ///< The block to insert the instruction into ); /// @brief Clone an identical BitCastInst virtual CastInst *clone() const; // Methods for support type inquiry through isa, cast, and dyn_cast: static inline bool classof(const BitCastInst *) { return true; } static inline bool classof(const Instruction *I) { return I->getOpcode() == BitCast; } static inline bool classof(const Value *V) { return isa(V) && classof(cast(V)); } }; } // End llvm namespace #endif