//===- LazyCallGraphTest.cpp - Unit tests for the lazy CG analysis --------===// // // The LLVM Compiler Infrastructure // // This file is distributed under the University of Illinois Open Source // License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// #include "llvm/Analysis/LazyCallGraph.h" #include "llvm/AsmParser/Parser.h" #include "llvm/IR/Function.h" #include "llvm/IR/LLVMContext.h" #include "llvm/IR/Module.h" #include "llvm/Support/ErrorHandling.h" #include "llvm/Support/SourceMgr.h" #include "gtest/gtest.h" #include using namespace llvm; namespace { std::unique_ptr parseAssembly(const char *Assembly) { auto M = make_unique("Module", getGlobalContext()); SMDiagnostic Error; bool Parsed = ParseAssemblyString(Assembly, M.get(), Error, M->getContext()) == M.get(); std::string ErrMsg; raw_string_ostream OS(ErrMsg); Error.print("", OS); // A failure here means that the test itself is buggy. if (!Parsed) report_fatal_error(OS.str().c_str()); return M; } // IR forming a call graph with a diamond of triangle-shaped SCCs: // // d1 // / \ // d3--d2 // / \ // b1 c1 // / \ / \ // b3--b2 c3--c2 // \ / // a1 // / \ // a3--a2 // // All call edges go up between SCCs, and clockwise around the SCC. static const char DiamondOfTriangles[] = "define void @a1() {\n" "entry:\n" " call void @a2()\n" " call void @b2()\n" " call void @c3()\n" " ret void\n" "}\n" "define void @a2() {\n" "entry:\n" " call void @a3()\n" " ret void\n" "}\n" "define void @a3() {\n" "entry:\n" " call void @a1()\n" " ret void\n" "}\n" "define void @b1() {\n" "entry:\n" " call void @b2()\n" " call void @d3()\n" " ret void\n" "}\n" "define void @b2() {\n" "entry:\n" " call void @b3()\n" " ret void\n" "}\n" "define void @b3() {\n" "entry:\n" " call void @b1()\n" " ret void\n" "}\n" "define void @c1() {\n" "entry:\n" " call void @c2()\n" " call void @d2()\n" " ret void\n" "}\n" "define void @c2() {\n" "entry:\n" " call void @c3()\n" " ret void\n" "}\n" "define void @c3() {\n" "entry:\n" " call void @c1()\n" " ret void\n" "}\n" "define void @d1() {\n" "entry:\n" " call void @d2()\n" " ret void\n" "}\n" "define void @d2() {\n" "entry:\n" " call void @d3()\n" " ret void\n" "}\n" "define void @d3() {\n" "entry:\n" " call void @d1()\n" " ret void\n" "}\n"; TEST(LazyCallGraphTest, BasicGraphFormation) { std::unique_ptr M = parseAssembly(DiamondOfTriangles); LazyCallGraph CG(*M); // The order of the entry nodes should be stable w.r.t. the source order of // the IR, and everything in our module is an entry node, so just directly // build variables for each node. auto I = CG.begin(); LazyCallGraph::Node *A1 = *I++; EXPECT_EQ("a1", A1->getFunction().getName()); LazyCallGraph::Node *A2 = *I++; EXPECT_EQ("a2", A2->getFunction().getName()); LazyCallGraph::Node *A3 = *I++; EXPECT_EQ("a3", A3->getFunction().getName()); LazyCallGraph::Node *B1 = *I++; EXPECT_EQ("b1", B1->getFunction().getName()); LazyCallGraph::Node *B2 = *I++; EXPECT_EQ("b2", B2->getFunction().getName()); LazyCallGraph::Node *B3 = *I++; EXPECT_EQ("b3", B3->getFunction().getName()); LazyCallGraph::Node *C1 = *I++; EXPECT_EQ("c1", C1->getFunction().getName()); LazyCallGraph::Node *C2 = *I++; EXPECT_EQ("c2", C2->getFunction().getName()); LazyCallGraph::Node *C3 = *I++; EXPECT_EQ("c3", C3->getFunction().getName()); LazyCallGraph::Node *D1 = *I++; EXPECT_EQ("d1", D1->getFunction().getName()); LazyCallGraph::Node *D2 = *I++; EXPECT_EQ("d2", D2->getFunction().getName()); LazyCallGraph::Node *D3 = *I++; EXPECT_EQ("d3", D3->getFunction().getName()); EXPECT_EQ(CG.end(), I); // Build vectors and sort them for the rest of the assertions to make them // independent of order. std::vector Nodes; for (LazyCallGraph::Node *N : *A1) Nodes.push_back(N->getFunction().getName()); std::sort(Nodes.begin(), Nodes.end()); EXPECT_EQ("a2", Nodes[0]); EXPECT_EQ("b2", Nodes[1]); EXPECT_EQ("c3", Nodes[2]); Nodes.clear(); EXPECT_EQ(A2->end(), std::next(A2->begin())); EXPECT_EQ("a3", A2->begin()->getFunction().getName()); EXPECT_EQ(A3->end(), std::next(A3->begin())); EXPECT_EQ("a1", A3->begin()->getFunction().getName()); for (LazyCallGraph::Node *N : *B1) Nodes.push_back(N->getFunction().getName()); std::sort(Nodes.begin(), Nodes.end()); EXPECT_EQ("b2", Nodes[0]); EXPECT_EQ("d3", Nodes[1]); Nodes.clear(); EXPECT_EQ(B2->end(), std::next(B2->begin())); EXPECT_EQ("b3", B2->begin()->getFunction().getName()); EXPECT_EQ(B3->end(), std::next(B3->begin())); EXPECT_EQ("b1", B3->begin()->getFunction().getName()); for (LazyCallGraph::Node *N : *C1) Nodes.push_back(N->getFunction().getName()); std::sort(Nodes.begin(), Nodes.end()); EXPECT_EQ("c2", Nodes[0]); EXPECT_EQ("d2", Nodes[1]); Nodes.clear(); EXPECT_EQ(C2->end(), std::next(C2->begin())); EXPECT_EQ("c3", C2->begin()->getFunction().getName()); EXPECT_EQ(C3->end(), std::next(C3->begin())); EXPECT_EQ("c1", C3->begin()->getFunction().getName()); EXPECT_EQ(D1->end(), std::next(D1->begin())); EXPECT_EQ("d2", D1->begin()->getFunction().getName()); EXPECT_EQ(D2->end(), std::next(D2->begin())); EXPECT_EQ("d3", D2->begin()->getFunction().getName()); EXPECT_EQ(D3->end(), std::next(D3->begin())); EXPECT_EQ("d1", D3->begin()->getFunction().getName()); // Now lets look at the SCCs. auto SCCI = CG.postorder_scc_begin(); LazyCallGraph::SCC *D = *SCCI++; for (LazyCallGraph::Node *N : *D) Nodes.push_back(N->getFunction().getName()); std::sort(Nodes.begin(), Nodes.end()); EXPECT_EQ("d1", Nodes[0]); EXPECT_EQ("d2", Nodes[1]); EXPECT_EQ("d3", Nodes[2]); EXPECT_EQ(3u, Nodes.size()); Nodes.clear(); LazyCallGraph::SCC *C = *SCCI++; for (LazyCallGraph::Node *N : *C) Nodes.push_back(N->getFunction().getName()); std::sort(Nodes.begin(), Nodes.end()); EXPECT_EQ("c1", Nodes[0]); EXPECT_EQ("c2", Nodes[1]); EXPECT_EQ("c3", Nodes[2]); EXPECT_EQ(3u, Nodes.size()); Nodes.clear(); LazyCallGraph::SCC *B = *SCCI++; for (LazyCallGraph::Node *N : *B) Nodes.push_back(N->getFunction().getName()); std::sort(Nodes.begin(), Nodes.end()); EXPECT_EQ("b1", Nodes[0]); EXPECT_EQ("b2", Nodes[1]); EXPECT_EQ("b3", Nodes[2]); EXPECT_EQ(3u, Nodes.size()); Nodes.clear(); LazyCallGraph::SCC *A = *SCCI++; for (LazyCallGraph::Node *N : *A) Nodes.push_back(N->getFunction().getName()); std::sort(Nodes.begin(), Nodes.end()); EXPECT_EQ("a1", Nodes[0]); EXPECT_EQ("a2", Nodes[1]); EXPECT_EQ("a3", Nodes[2]); EXPECT_EQ(3u, Nodes.size()); Nodes.clear(); EXPECT_EQ(CG.postorder_scc_end(), SCCI); } static Function &lookupFunction(Module &M, StringRef Name) { for (Function &F : M) if (F.getName() == Name) return F; report_fatal_error("Couldn't find function!"); } TEST(LazyCallGraphTest, MultiArmSCC) { // Two interlocking cycles. The really useful thing about this SCC is that it // will require Tarjan's DFS to backtrack and finish processing all of the // children of each node in the SCC. std::unique_ptr M = parseAssembly( "define void @a() {\n" "entry:\n" " call void @b()\n" " call void @d()\n" " ret void\n" "}\n" "define void @b() {\n" "entry:\n" " call void @c()\n" " ret void\n" "}\n" "define void @c() {\n" "entry:\n" " call void @a()\n" " ret void\n" "}\n" "define void @d() {\n" "entry:\n" " call void @e()\n" " ret void\n" "}\n" "define void @e() {\n" "entry:\n" " call void @a()\n" " ret void\n" "}\n"); LazyCallGraph CG(*M); // Force the graph to be fully expanded. auto SCCI = CG.postorder_scc_begin(); LazyCallGraph::SCC *SCC = *SCCI++; EXPECT_EQ(CG.postorder_scc_end(), SCCI); LazyCallGraph::Node &A = *CG.lookup(lookupFunction(*M, "a")); LazyCallGraph::Node &B = *CG.lookup(lookupFunction(*M, "b")); LazyCallGraph::Node &C = *CG.lookup(lookupFunction(*M, "c")); LazyCallGraph::Node &D = *CG.lookup(lookupFunction(*M, "d")); LazyCallGraph::Node &E = *CG.lookup(lookupFunction(*M, "e")); EXPECT_EQ(SCC, CG.lookupSCC(A)); EXPECT_EQ(SCC, CG.lookupSCC(B)); EXPECT_EQ(SCC, CG.lookupSCC(C)); EXPECT_EQ(SCC, CG.lookupSCC(D)); EXPECT_EQ(SCC, CG.lookupSCC(E)); } TEST(LazyCallGraphTest, InterSCCEdgeRemoval) { std::unique_ptr M = parseAssembly( "define void @a() {\n" "entry:\n" " call void @b()\n" " ret void\n" "}\n" "define void @b() {\n" "entry:\n" " ret void\n" "}\n"); LazyCallGraph CG(*M); // Force the graph to be fully expanded. for (LazyCallGraph::SCC *C : CG.postorder_sccs()) (void)C; LazyCallGraph::Node &A = *CG.lookup(lookupFunction(*M, "a")); LazyCallGraph::Node &B = *CG.lookup(lookupFunction(*M, "b")); LazyCallGraph::SCC &AC = *CG.lookupSCC(A); LazyCallGraph::SCC &BC = *CG.lookupSCC(B); EXPECT_EQ("b", A.begin()->getFunction().getName()); EXPECT_EQ(B.end(), B.begin()); EXPECT_EQ(&AC, *BC.parent_begin()); CG.removeEdge(A, lookupFunction(*M, "b")); EXPECT_EQ(A.end(), A.begin()); EXPECT_EQ(B.end(), B.begin()); EXPECT_EQ(BC.parent_end(), BC.parent_begin()); } TEST(LazyCallGraphTest, IntraSCCEdgeRemoval) { // A nice fully connected (including self-edges) SCC. std::unique_ptr M1 = parseAssembly( "define void @a() {\n" "entry:\n" " call void @a()\n" " call void @b()\n" " call void @c()\n" " ret void\n" "}\n" "define void @b() {\n" "entry:\n" " call void @a()\n" " call void @b()\n" " call void @c()\n" " ret void\n" "}\n" "define void @c() {\n" "entry:\n" " call void @a()\n" " call void @b()\n" " call void @c()\n" " ret void\n" "}\n"); LazyCallGraph CG1(*M1); // Force the graph to be fully expanded. auto SCCI = CG1.postorder_scc_begin(); LazyCallGraph::SCC *SCC = *SCCI++; EXPECT_EQ(CG1.postorder_scc_end(), SCCI); LazyCallGraph::Node &A = *CG1.lookup(lookupFunction(*M1, "a")); LazyCallGraph::Node &B = *CG1.lookup(lookupFunction(*M1, "b")); LazyCallGraph::Node &C = *CG1.lookup(lookupFunction(*M1, "c")); EXPECT_EQ(SCC, CG1.lookupSCC(A)); EXPECT_EQ(SCC, CG1.lookupSCC(B)); EXPECT_EQ(SCC, CG1.lookupSCC(C)); // Remove the edge from b -> a, which should leave the 3 functions still in // a single connected component because of a -> b -> c -> a. CG1.removeEdge(B, A.getFunction()); EXPECT_EQ(SCC, CG1.lookupSCC(A)); EXPECT_EQ(SCC, CG1.lookupSCC(B)); EXPECT_EQ(SCC, CG1.lookupSCC(C)); // Remove the edge from c -> a, which should leave 'a' in the original SCC // and form a new SCC for 'b' and 'c'. CG1.removeEdge(C, A.getFunction()); EXPECT_EQ(SCC, CG1.lookupSCC(A)); EXPECT_EQ(1, std::distance(SCC->begin(), SCC->end())); LazyCallGraph::SCC *SCC2 = CG1.lookupSCC(B); EXPECT_EQ(SCC2, CG1.lookupSCC(C)); } }