//===-- ELFWriter.cpp - Target-independent ELF Writer code ----------------===// // // The LLVM Compiler Infrastructure // // This file was developed by the LLVM research group and is distributed under // the University of Illinois Open Source License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// // // This file implements the target-independent ELF writer. This file writes out // the ELF file in the following order: // // #1. ELF Header // #2. '.text' section // #3. '.data' section // #4. '.bss' section (conceptual position in file) // ... // #X. '.shstrtab' section // #Y. Section Table // // The entries in the section table are laid out as: // #0. Null entry [required] // #1. ".text" entry - the program code // #2. ".data" entry - global variables with initializers. [ if needed ] // #3. ".bss" entry - global variables without initializers. [ if needed ] // ... // #N. ".shstrtab" entry - String table for the section names. // // NOTE: This code should eventually be extended to support 64-bit ELF (this // won't be hard), but we haven't done so yet! // //===----------------------------------------------------------------------===// #include "llvm/CodeGen/ELFWriter.h" #include "llvm/Module.h" #include "llvm/Target/TargetMachine.h" using namespace llvm; ELFWriter::ELFWriter(std::ostream &o, TargetMachine &tm) : O(o), TM(tm) { e_machine = 0; // e_machine defaults to 'No Machine' e_flags = 0; // e_flags defaults to 0, no flags. is64Bit = TM.getTargetData().getPointerSizeInBits() == 64; isLittleEndian = TM.getTargetData().isLittleEndian(); } // doInitialization - Emit the file header and all of the global variables for // the module to the ELF file. bool ELFWriter::doInitialization(Module &M) { outbyte(0x7F); // EI_MAG0 outbyte('E'); // EI_MAG1 outbyte('L'); // EI_MAG2 outbyte('F'); // EI_MAG3 outbyte(is64Bit ? 2 : 1); // EI_CLASS outbyte(isLittleEndian ? 1 : 2); // EI_DATA outbyte(1); // EI_VERSION for (unsigned i = OutputBuffer.size(); i != 16; ++i) outbyte(0); // EI_PAD up to 16 bytes. // This should change for shared objects. outhalf(1); // e_type = ET_REL outhalf(e_machine); // e_machine = whatever the target wants outword(1); // e_version = 1 outaddr(0); // e_entry = 0 -> no entry point in .o file outaddr(0); // e_phoff = 0 -> no program header for .o ELFHeader_e_shoff_Offset = OutputBuffer.size(); outaddr(0); // e_shoff outword(e_flags); // e_flags = whatever the target wants assert(!is64Bit && "These sizes need to be adjusted for 64-bit!"); outhalf(52); // e_ehsize = ELF header size outhalf(0); // e_phentsize = prog header entry size outhalf(0); // e_phnum = # prog header entries = 0 outhalf(40); // e_shentsize = sect header entry size ELFHeader_e_shnum_Offset = OutputBuffer.size(); outhalf(0); // e_shnum = # of section header ents ELFHeader_e_shstrndx_Offset = OutputBuffer.size(); outhalf(0); // e_shstrndx = Section # of '.shstrtab' // Add the null section. SectionList.push_back(ELFSection()); // Start up the symbol table. The first entry in the symtab is the null // entry. SymbolTable.push_back(ELFSym(0)); // FIXME: Should start the .text section. return false; } void ELFWriter::EmitGlobal(GlobalVariable *GV, ELFSection &DataSection, ELFSection &BSSSection) { // If this is an external global, emit it... assert(GV->hasInitializer() && "FIXME: unimp"); // If this global has a zero initializer, it is part of the .bss or common // section. if (GV->getInitializer()->isNullValue()) { // If this global is part of the common block, add it now. Variables are // part of the common block if they are zero initialized and allowed to be // merged with other symbols. if (GV->hasLinkOnceLinkage() || GV->hasWeakLinkage()) { ELFSym CommonSym(GV); // Value for common symbols is the alignment required. const Type *GVType = (const Type*)GV->getType(); CommonSym.Value = TM.getTargetData().getTypeAlignment(GVType); CommonSym.Size = TM.getTargetData().getTypeSize(GVType); CommonSym.SetBind(ELFSym::STB_GLOBAL); CommonSym.SetType(ELFSym::STT_OBJECT); // TODO SOMEDAY: add ELF visibility. CommonSym.SectionIdx = ELFSection::SHN_COMMON; SymbolTable.push_back(CommonSym); return; } // FIXME: Implement the .bss section. return; } // FIXME: handle .rodata //assert(!GV->isConstant() && "unimp"); // FIXME: handle .data //assert(0 && "unimp"); } bool ELFWriter::runOnMachineFunction(MachineFunction &MF) { return false; } /// doFinalization - Now that the module has been completely processed, emit /// the ELF file to 'O'. bool ELFWriter::doFinalization(Module &M) { // Okay, the .text section has now been finalized. // FIXME: finalize the .text section. // Okay, the ELF header and .text sections have been completed, build the // .data, .bss, and "common" sections next. ELFSection DataSection(".data", OutputBuffer.size()); ELFSection BSSSection (".bss"); for (Module::global_iterator I = M.global_begin(), E = M.global_end(); I != E; ++I) EmitGlobal(I, DataSection, BSSSection); // If the .data section is nonempty, add it to our list. if (DataSection.Size) { DataSection.Align = 4; // FIXME: Compute! // FIXME: Set the right flags and stuff. SectionList.push_back(DataSection); } // If the .bss section is nonempty, add it to our list. if (BSSSection.Size) { BSSSection.Offset = OutputBuffer.size(); BSSSection.Align = 4; // FIXME: Compute! // FIXME: Set the right flags and stuff. SectionList.push_back(BSSSection); } // Emit the symbol table now, if non-empty. EmitSymbolTable(); // FIXME: Emit the relocations now. // Emit the string table for the sections in the ELF file we have. EmitSectionTableStringTable(); // Emit the .o file section table. EmitSectionTable(); // Emit the .o file to the specified stream. O.write((char*)&OutputBuffer[0], OutputBuffer.size()); // Free the output buffer. std::vector().swap(OutputBuffer); return false; } /// EmitSymbolTable - If the current symbol table is non-empty, emit the string /// table for it and then the symbol table itself. void ELFWriter::EmitSymbolTable() { if (SymbolTable.size() == 1) return; // Only the null entry. // FIXME: compact all local symbols to the start of the symtab. unsigned FirstNonLocalSymbol = 1; SectionList.push_back(ELFSection(".strtab", OutputBuffer.size())); ELFSection &StrTab = SectionList.back(); StrTab.Type = ELFSection::SHT_STRTAB; StrTab.Align = 1; // Set the zero'th symbol to a null byte, as required. outbyte(0); SymbolTable[0].NameIdx = 0; unsigned Index = 1; for (unsigned i = 1, e = SymbolTable.size(); i != e; ++i) { // FIXME: USE A MANGLER!! const std::string &Name = SymbolTable[i].GV->getName(); if (Name.empty()) { SymbolTable[i].NameIdx = 0; } else { SymbolTable[i].NameIdx = Index; // Add the name to the output buffer, including the null terminator. OutputBuffer.insert(OutputBuffer.end(), Name.begin(), Name.end()); // Add a null terminator. OutputBuffer.push_back(0); // Keep track of the number of bytes emitted to this section. Index += Name.size()+1; } } StrTab.Size = OutputBuffer.size()-StrTab.Offset; // Now that we have emitted the string table and know the offset into the // string table of each symbol, emit the symbol table itself. assert(!is64Bit && "Should this be 8 byte aligned for 64-bit?" " (check .Align below also)"); align(4); SectionList.push_back(ELFSection(".symtab", OutputBuffer.size())); ELFSection &SymTab = SectionList.back(); SymTab.Type = ELFSection::SHT_SYMTAB; SymTab.Align = 4; // FIXME: check for ELF64 SymTab.Link = SectionList.size()-2; // Section Index of .strtab. SymTab.Info = FirstNonLocalSymbol; // First non-STB_LOCAL symbol. SymTab.EntSize = 16; // Size of each symtab entry. FIXME: wrong for ELF64 assert(!is64Bit && "check this!"); for (unsigned i = 0, e = SymbolTable.size(); i != e; ++i) { ELFSym &Sym = SymbolTable[i]; outword(Sym.NameIdx); outaddr(Sym.Value); outword(Sym.Size); outbyte(Sym.Info); outbyte(Sym.Other); outhalf(Sym.SectionIdx); } SymTab.Size = OutputBuffer.size()-SymTab.Offset; } /// EmitSectionTableStringTable - This method adds and emits a section for the /// ELF Section Table string table: the string table that holds all of the /// section names. void ELFWriter::EmitSectionTableStringTable() { // First step: add the section for the string table to the list of sections: SectionList.push_back(ELFSection(".shstrtab", OutputBuffer.size())); SectionList.back().Type = ELFSection::SHT_STRTAB; // Now that we know which section number is the .shstrtab section, update the // e_shstrndx entry in the ELF header. fixhalf(SectionList.size()-1, ELFHeader_e_shstrndx_Offset); // Set the NameIdx of each section in the string table and emit the bytes for // the string table. unsigned Index = 0; for (unsigned i = 0, e = SectionList.size(); i != e; ++i) { // Set the index into the table. Note if we have lots of entries with // common suffixes, we could memoize them here if we cared. SectionList[i].NameIdx = Index; // Add the name to the output buffer, including the null terminator. OutputBuffer.insert(OutputBuffer.end(), SectionList[i].Name.begin(), SectionList[i].Name.end()); // Add a null terminator. OutputBuffer.push_back(0); // Keep track of the number of bytes emitted to this section. Index += SectionList[i].Name.size()+1; } // Set the size of .shstrtab now that we know what it is. SectionList.back().Size = Index; } /// EmitSectionTable - Now that we have emitted the entire contents of the file /// (all of the sections), emit the section table which informs the reader where /// the boundaries are. void ELFWriter::EmitSectionTable() { // Now that all of the sections have been emitted, set the e_shnum entry in // the ELF header. fixhalf(SectionList.size(), ELFHeader_e_shnum_Offset); // Now that we know the offset in the file of the section table (which we emit // next), update the e_shoff address in the ELF header. fixaddr(OutputBuffer.size(), ELFHeader_e_shoff_Offset); // Emit all of the section table entries. for (unsigned i = 0, e = SectionList.size(); i != e; ++i) { const ELFSection &S = SectionList[i]; outword(S.NameIdx); // sh_name - Symbol table name idx outword(S.Type); // sh_type - Section contents & semantics outword(S.Flags); // sh_flags - Section flags. outaddr(S.Addr); // sh_addr - The mem address this section appears in. outaddr(S.Offset); // sh_offset - The offset from the start of the file. outword(S.Size); // sh_size - The section size. outword(S.Link); // sh_link - Section header table index link. outword(S.Info); // sh_info - Auxillary information. outword(S.Align); // sh_addralign - Alignment of section. outword(S.EntSize); // sh_entsize - Size of each entry in the section. } // Release the memory allocated for the section list. std::vector().swap(SectionList); }