//===-- MCJIT.cpp - MC-based Just-in-Time Compiler ------------------------===// // // The LLVM Compiler Infrastructure // // This file is distributed under the University of Illinois Open Source // License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// #include "MCJIT.h" #include "MCJITMemoryManager.h" #include "llvm/DerivedTypes.h" #include "llvm/Function.h" #include "llvm/ExecutionEngine/GenericValue.h" #include "llvm/ExecutionEngine/JITMemoryManager.h" #include "llvm/ExecutionEngine/MCJIT.h" #include "llvm/ExecutionEngine/ObjectBuffer.h" #include "llvm/ExecutionEngine/ObjectImage.h" #include "llvm/MC/MCAsmInfo.h" #include "llvm/Support/ErrorHandling.h" #include "llvm/Support/DynamicLibrary.h" #include "llvm/Support/MemoryBuffer.h" #include "llvm/Support/MutexGuard.h" #include "llvm/DataLayout.h" using namespace llvm; namespace { static struct RegisterJIT { RegisterJIT() { MCJIT::Register(); } } JITRegistrator; } extern "C" void LLVMLinkInMCJIT() { } ExecutionEngine *MCJIT::createJIT(Module *M, std::string *ErrorStr, JITMemoryManager *JMM, bool GVsWithCode, TargetMachine *TM) { // Try to register the program as a source of symbols to resolve against. // // FIXME: Don't do this here. sys::DynamicLibrary::LoadLibraryPermanently(0, NULL); return new MCJIT(M, TM, new MCJITMemoryManager(JMM), GVsWithCode); } MCJIT::MCJIT(Module *m, TargetMachine *tm, RTDyldMemoryManager *MM, bool AllocateGVsWithCode) : ExecutionEngine(m), TM(tm), Ctx(0), MemMgr(MM), Dyld(MM), isCompiled(false), M(m) { setDataLayout(TM->getDataLayout()); } MCJIT::~MCJIT() { delete MemMgr; delete TM; } void MCJIT::emitObject(Module *m) { /// Currently, MCJIT only supports a single module and the module passed to /// this function call is expected to be the contained module. The module /// is passed as a parameter here to prepare for multiple module support in /// the future. assert(M == m); // Get a thread lock to make sure we aren't trying to compile multiple times MutexGuard locked(lock); // FIXME: Track compilation state on a per-module basis when multiple modules // are supported. // Re-compilation is not supported if (isCompiled) return; PassManager PM; PM.add(new DataLayout(*TM->getDataLayout())); // The RuntimeDyld will take ownership of this shortly OwningPtr Buffer(new ObjectBufferStream()); // Turn the machine code intermediate representation into bytes in memory // that may be executed. if (TM->addPassesToEmitMC(PM, Ctx, Buffer->getOStream(), false)) { report_fatal_error("Target does not support MC emission!"); } // Initialize passes. PM.run(*m); // Flush the output buffer to get the generated code into memory Buffer->flush(); // Load the object into the dynamic linker. // handing off ownership of the buffer LoadedObject.reset(Dyld.loadObject(Buffer.take())); if (!LoadedObject) report_fatal_error(Dyld.getErrorString()); // Resolve any relocations. Dyld.resolveRelocations(); // FIXME: Make this optional, maybe even move it to a JIT event listener LoadedObject->registerWithDebugger(); // FIXME: Add support for per-module compilation state isCompiled = true; } void *MCJIT::getPointerToBasicBlock(BasicBlock *BB) { report_fatal_error("not yet implemented"); } void *MCJIT::getPointerToFunction(Function *F) { // FIXME: This should really return a uint64_t since it's a pointer in the // target address space, not our local address space. That's part of the // ExecutionEngine interface, though. Fix that when the old JIT finally // dies. // FIXME: Add support for per-module compilation state if (!isCompiled) emitObject(M); if (F->isDeclaration() || F->hasAvailableExternallyLinkage()) { bool AbortOnFailure = !F->hasExternalWeakLinkage(); void *Addr = getPointerToNamedFunction(F->getName(), AbortOnFailure); addGlobalMapping(F, Addr); return Addr; } // FIXME: Should the Dyld be retaining module information? Probably not. // FIXME: Should we be using the mangler for this? Probably. // // This is the accessor for the target address, so make sure to check the // load address of the symbol, not the local address. StringRef BaseName = F->getName(); if (BaseName[0] == '\1') return (void*)Dyld.getSymbolLoadAddress(BaseName.substr(1)); return (void*)Dyld.getSymbolLoadAddress((TM->getMCAsmInfo()->getGlobalPrefix() + BaseName).str()); } void *MCJIT::recompileAndRelinkFunction(Function *F) { report_fatal_error("not yet implemented"); } void MCJIT::freeMachineCodeForFunction(Function *F) { report_fatal_error("not yet implemented"); } GenericValue MCJIT::runFunction(Function *F, const std::vector &ArgValues) { assert(F && "Function *F was null at entry to run()"); void *FPtr = getPointerToFunction(F); assert(FPtr && "Pointer to fn's code was null after getPointerToFunction"); FunctionType *FTy = F->getFunctionType(); Type *RetTy = FTy->getReturnType(); assert((FTy->getNumParams() == ArgValues.size() || (FTy->isVarArg() && FTy->getNumParams() <= ArgValues.size())) && "Wrong number of arguments passed into function!"); assert(FTy->getNumParams() == ArgValues.size() && "This doesn't support passing arguments through varargs (yet)!"); // Handle some common cases first. These cases correspond to common `main' // prototypes. if (RetTy->isIntegerTy(32) || RetTy->isVoidTy()) { switch (ArgValues.size()) { case 3: if (FTy->getParamType(0)->isIntegerTy(32) && FTy->getParamType(1)->isPointerTy() && FTy->getParamType(2)->isPointerTy()) { int (*PF)(int, char **, const char **) = (int(*)(int, char **, const char **))(intptr_t)FPtr; // Call the function. GenericValue rv; rv.IntVal = APInt(32, PF(ArgValues[0].IntVal.getZExtValue(), (char **)GVTOP(ArgValues[1]), (const char **)GVTOP(ArgValues[2]))); return rv; } break; case 2: if (FTy->getParamType(0)->isIntegerTy(32) && FTy->getParamType(1)->isPointerTy()) { int (*PF)(int, char **) = (int(*)(int, char **))(intptr_t)FPtr; // Call the function. GenericValue rv; rv.IntVal = APInt(32, PF(ArgValues[0].IntVal.getZExtValue(), (char **)GVTOP(ArgValues[1]))); return rv; } break; case 1: if (FTy->getNumParams() == 1 && FTy->getParamType(0)->isIntegerTy(32)) { GenericValue rv; int (*PF)(int) = (int(*)(int))(intptr_t)FPtr; rv.IntVal = APInt(32, PF(ArgValues[0].IntVal.getZExtValue())); return rv; } break; } } // Handle cases where no arguments are passed first. if (ArgValues.empty()) { GenericValue rv; switch (RetTy->getTypeID()) { default: llvm_unreachable("Unknown return type for function call!"); case Type::IntegerTyID: { unsigned BitWidth = cast(RetTy)->getBitWidth(); if (BitWidth == 1) rv.IntVal = APInt(BitWidth, ((bool(*)())(intptr_t)FPtr)()); else if (BitWidth <= 8) rv.IntVal = APInt(BitWidth, ((char(*)())(intptr_t)FPtr)()); else if (BitWidth <= 16) rv.IntVal = APInt(BitWidth, ((short(*)())(intptr_t)FPtr)()); else if (BitWidth <= 32) rv.IntVal = APInt(BitWidth, ((int(*)())(intptr_t)FPtr)()); else if (BitWidth <= 64) rv.IntVal = APInt(BitWidth, ((int64_t(*)())(intptr_t)FPtr)()); else llvm_unreachable("Integer types > 64 bits not supported"); return rv; } case Type::VoidTyID: rv.IntVal = APInt(32, ((int(*)())(intptr_t)FPtr)()); return rv; case Type::FloatTyID: rv.FloatVal = ((float(*)())(intptr_t)FPtr)(); return rv; case Type::DoubleTyID: rv.DoubleVal = ((double(*)())(intptr_t)FPtr)(); return rv; case Type::X86_FP80TyID: case Type::FP128TyID: case Type::PPC_FP128TyID: llvm_unreachable("long double not supported yet"); case Type::PointerTyID: return PTOGV(((void*(*)())(intptr_t)FPtr)()); } } llvm_unreachable("Full-featured argument passing not supported yet!"); } void *MCJIT::getPointerToNamedFunction(const std::string &Name, bool AbortOnFailure) { // FIXME: Add support for per-module compilation state if (!isCompiled) emitObject(M); if (!isSymbolSearchingDisabled() && MemMgr) { void *ptr = MemMgr->getPointerToNamedFunction(Name, false); if (ptr) return ptr; } /// If a LazyFunctionCreator is installed, use it to get/create the function. if (LazyFunctionCreator) if (void *RP = LazyFunctionCreator(Name)) return RP; if (AbortOnFailure) { report_fatal_error("Program used external function '"+Name+ "' which could not be resolved!"); } return 0; }