//===-- InstSelectSimple.cpp - A simple instruction selector for x86 ------===// // // The LLVM Compiler Infrastructure // // This file was developed by the LLVM research group and is distributed under // the University of Illinois Open Source License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// // // This file defines a simple peephole instruction selector for the x86 target // //===----------------------------------------------------------------------===// #include "X86.h" #include "X86InstrBuilder.h" #include "X86InstrInfo.h" #include "llvm/Constants.h" #include "llvm/DerivedTypes.h" #include "llvm/Function.h" #include "llvm/Instructions.h" #include "llvm/IntrinsicLowering.h" #include "llvm/Pass.h" #include "llvm/CodeGen/MachineConstantPool.h" #include "llvm/CodeGen/MachineFrameInfo.h" #include "llvm/CodeGen/MachineFunction.h" #include "llvm/CodeGen/SSARegMap.h" #include "llvm/Target/MRegisterInfo.h" #include "llvm/Target/TargetMachine.h" #include "llvm/Support/GetElementPtrTypeIterator.h" #include "llvm/Support/InstVisitor.h" #include "Support/Statistic.h" using namespace llvm; namespace { Statistic<> NumFPKill("x86-codegen", "Number of FP_REG_KILL instructions added"); /// TypeClass - Used by the X86 backend to group LLVM types by their basic X86 /// Representation. /// enum TypeClass { cByte, cShort, cInt, cFP, cLong }; } /// getClass - Turn a primitive type into a "class" number which is based on the /// size of the type, and whether or not it is floating point. /// static inline TypeClass getClass(const Type *Ty) { switch (Ty->getPrimitiveID()) { case Type::SByteTyID: case Type::UByteTyID: return cByte; // Byte operands are class #0 case Type::ShortTyID: case Type::UShortTyID: return cShort; // Short operands are class #1 case Type::IntTyID: case Type::UIntTyID: case Type::PointerTyID: return cInt; // Int's and pointers are class #2 case Type::FloatTyID: case Type::DoubleTyID: return cFP; // Floating Point is #3 case Type::LongTyID: case Type::ULongTyID: return cLong; // Longs are class #4 default: assert(0 && "Invalid type to getClass!"); return cByte; // not reached } } // getClassB - Just like getClass, but treat boolean values as bytes. static inline TypeClass getClassB(const Type *Ty) { if (Ty == Type::BoolTy) return cByte; return getClass(Ty); } namespace { struct ISel : public FunctionPass, InstVisitor { TargetMachine &TM; MachineFunction *F; // The function we are compiling into MachineBasicBlock *BB; // The current MBB we are compiling int VarArgsFrameIndex; // FrameIndex for start of varargs area int ReturnAddressIndex; // FrameIndex for the return address std::map RegMap; // Mapping between Val's and SSA Regs // MBBMap - Mapping between LLVM BB -> Machine BB std::map MBBMap; // AllocaMap - Mapping from fixed sized alloca instructions to the // FrameIndex for the alloca. std::map AllocaMap; ISel(TargetMachine &tm) : TM(tm), F(0), BB(0) {} /// runOnFunction - Top level implementation of instruction selection for /// the entire function. /// bool runOnFunction(Function &Fn) { // First pass over the function, lower any unknown intrinsic functions // with the IntrinsicLowering class. LowerUnknownIntrinsicFunctionCalls(Fn); F = &MachineFunction::construct(&Fn, TM); // Create all of the machine basic blocks for the function... for (Function::iterator I = Fn.begin(), E = Fn.end(); I != E; ++I) F->getBasicBlockList().push_back(MBBMap[I] = new MachineBasicBlock(I)); BB = &F->front(); // Set up a frame object for the return address. This is used by the // llvm.returnaddress & llvm.frameaddress intrinisics. ReturnAddressIndex = F->getFrameInfo()->CreateFixedObject(4, -4); // Copy incoming arguments off of the stack... LoadArgumentsToVirtualRegs(Fn); // Instruction select everything except PHI nodes visit(Fn); // Select the PHI nodes SelectPHINodes(); // Insert the FP_REG_KILL instructions into blocks that need them. InsertFPRegKills(); RegMap.clear(); MBBMap.clear(); AllocaMap.clear(); F = 0; // We always build a machine code representation for the function return true; } virtual const char *getPassName() const { return "X86 Simple Instruction Selection"; } /// visitBasicBlock - This method is called when we are visiting a new basic /// block. This simply creates a new MachineBasicBlock to emit code into /// and adds it to the current MachineFunction. Subsequent visit* for /// instructions will be invoked for all instructions in the basic block. /// void visitBasicBlock(BasicBlock &LLVM_BB) { BB = MBBMap[&LLVM_BB]; } /// LowerUnknownIntrinsicFunctionCalls - This performs a prepass over the /// function, lowering any calls to unknown intrinsic functions into the /// equivalent LLVM code. /// void LowerUnknownIntrinsicFunctionCalls(Function &F); /// LoadArgumentsToVirtualRegs - Load all of the arguments to this function /// from the stack into virtual registers. /// void LoadArgumentsToVirtualRegs(Function &F); /// SelectPHINodes - Insert machine code to generate phis. This is tricky /// because we have to generate our sources into the source basic blocks, /// not the current one. /// void SelectPHINodes(); /// InsertFPRegKills - Insert FP_REG_KILL instructions into basic blocks /// that need them. This only occurs due to the floating point stackifier /// not being aggressive enough to handle arbitrary global stackification. /// void InsertFPRegKills(); // Visitation methods for various instructions. These methods simply emit // fixed X86 code for each instruction. // // Control flow operators void visitReturnInst(ReturnInst &RI); void visitBranchInst(BranchInst &BI); struct ValueRecord { Value *Val; unsigned Reg; const Type *Ty; ValueRecord(unsigned R, const Type *T) : Val(0), Reg(R), Ty(T) {} ValueRecord(Value *V) : Val(V), Reg(0), Ty(V->getType()) {} }; void doCall(const ValueRecord &Ret, MachineInstr *CallMI, const std::vector &Args); void visitCallInst(CallInst &I); void visitIntrinsicCall(Intrinsic::ID ID, CallInst &I); // Arithmetic operators void visitSimpleBinary(BinaryOperator &B, unsigned OpcodeClass); void visitAdd(BinaryOperator &B) { visitSimpleBinary(B, 0); } void visitSub(BinaryOperator &B) { visitSimpleBinary(B, 1); } void visitMul(BinaryOperator &B); void visitDiv(BinaryOperator &B) { visitDivRem(B); } void visitRem(BinaryOperator &B) { visitDivRem(B); } void visitDivRem(BinaryOperator &B); // Bitwise operators void visitAnd(BinaryOperator &B) { visitSimpleBinary(B, 2); } void visitOr (BinaryOperator &B) { visitSimpleBinary(B, 3); } void visitXor(BinaryOperator &B) { visitSimpleBinary(B, 4); } // Comparison operators... void visitSetCondInst(SetCondInst &I); unsigned EmitComparison(unsigned OpNum, Value *Op0, Value *Op1, MachineBasicBlock *MBB, MachineBasicBlock::iterator MBBI); void visitSelectInst(SelectInst &SI); // Memory Instructions void visitLoadInst(LoadInst &I); void visitStoreInst(StoreInst &I); void visitGetElementPtrInst(GetElementPtrInst &I); void visitAllocaInst(AllocaInst &I); void visitMallocInst(MallocInst &I); void visitFreeInst(FreeInst &I); // Other operators void visitShiftInst(ShiftInst &I); void visitPHINode(PHINode &I) {} // PHI nodes handled by second pass void visitCastInst(CastInst &I); void visitVANextInst(VANextInst &I); void visitVAArgInst(VAArgInst &I); void visitInstruction(Instruction &I) { std::cerr << "Cannot instruction select: " << I; abort(); } /// promote32 - Make a value 32-bits wide, and put it somewhere. /// void promote32(unsigned targetReg, const ValueRecord &VR); /// getAddressingMode - Get the addressing mode to use to address the /// specified value. The returned value should be used with addFullAddress. void getAddressingMode(Value *Addr, unsigned &BaseReg, unsigned &Scale, unsigned &IndexReg, unsigned &Disp); /// getGEPIndex - This is used to fold GEP instructions into X86 addressing /// expressions. void getGEPIndex(MachineBasicBlock *MBB, MachineBasicBlock::iterator IP, std::vector &GEPOps, std::vector &GEPTypes, unsigned &BaseReg, unsigned &Scale, unsigned &IndexReg, unsigned &Disp); /// isGEPFoldable - Return true if the specified GEP can be completely /// folded into the addressing mode of a load/store or lea instruction. bool isGEPFoldable(MachineBasicBlock *MBB, Value *Src, User::op_iterator IdxBegin, User::op_iterator IdxEnd, unsigned &BaseReg, unsigned &Scale, unsigned &IndexReg, unsigned &Disp); /// emitGEPOperation - Common code shared between visitGetElementPtrInst and /// constant expression GEP support. /// void emitGEPOperation(MachineBasicBlock *BB, MachineBasicBlock::iterator IP, Value *Src, User::op_iterator IdxBegin, User::op_iterator IdxEnd, unsigned TargetReg); /// emitCastOperation - Common code shared between visitCastInst and /// constant expression cast support. /// void emitCastOperation(MachineBasicBlock *BB,MachineBasicBlock::iterator IP, Value *Src, const Type *DestTy, unsigned TargetReg); /// emitSimpleBinaryOperation - Common code shared between visitSimpleBinary /// and constant expression support. /// void emitSimpleBinaryOperation(MachineBasicBlock *BB, MachineBasicBlock::iterator IP, Value *Op0, Value *Op1, unsigned OperatorClass, unsigned TargetReg); /// emitBinaryFPOperation - This method handles emission of floating point /// Add (0), Sub (1), Mul (2), and Div (3) operations. void emitBinaryFPOperation(MachineBasicBlock *BB, MachineBasicBlock::iterator IP, Value *Op0, Value *Op1, unsigned OperatorClass, unsigned TargetReg); void emitMultiply(MachineBasicBlock *BB, MachineBasicBlock::iterator IP, Value *Op0, Value *Op1, unsigned TargetReg); void doMultiply(MachineBasicBlock *MBB, MachineBasicBlock::iterator MBBI, unsigned DestReg, const Type *DestTy, unsigned Op0Reg, unsigned Op1Reg); void doMultiplyConst(MachineBasicBlock *MBB, MachineBasicBlock::iterator MBBI, unsigned DestReg, const Type *DestTy, unsigned Op0Reg, unsigned Op1Val); void emitDivRemOperation(MachineBasicBlock *BB, MachineBasicBlock::iterator IP, Value *Op0, Value *Op1, bool isDiv, unsigned TargetReg); /// emitSetCCOperation - Common code shared between visitSetCondInst and /// constant expression support. /// void emitSetCCOperation(MachineBasicBlock *BB, MachineBasicBlock::iterator IP, Value *Op0, Value *Op1, unsigned Opcode, unsigned TargetReg); /// emitShiftOperation - Common code shared between visitShiftInst and /// constant expression support. /// void emitShiftOperation(MachineBasicBlock *MBB, MachineBasicBlock::iterator IP, Value *Op, Value *ShiftAmount, bool isLeftShift, const Type *ResultTy, unsigned DestReg); /// emitSelectOperation - Common code shared between visitSelectInst and the /// constant expression support. void emitSelectOperation(MachineBasicBlock *MBB, MachineBasicBlock::iterator IP, Value *Cond, Value *TrueVal, Value *FalseVal, unsigned DestReg); /// copyConstantToRegister - Output the instructions required to put the /// specified constant into the specified register. /// void copyConstantToRegister(MachineBasicBlock *MBB, MachineBasicBlock::iterator MBBI, Constant *C, unsigned Reg); /// makeAnotherReg - This method returns the next register number we haven't /// yet used. /// /// Long values are handled somewhat specially. They are always allocated /// as pairs of 32 bit integer values. The register number returned is the /// lower 32 bits of the long value, and the regNum+1 is the upper 32 bits /// of the long value. /// unsigned makeAnotherReg(const Type *Ty) { assert(dynamic_cast(TM.getRegisterInfo()) && "Current target doesn't have X86 reg info??"); const X86RegisterInfo *MRI = static_cast(TM.getRegisterInfo()); if (Ty == Type::LongTy || Ty == Type::ULongTy) { const TargetRegisterClass *RC = MRI->getRegClassForType(Type::IntTy); // Create the lower part F->getSSARegMap()->createVirtualRegister(RC); // Create the upper part. return F->getSSARegMap()->createVirtualRegister(RC)-1; } // Add the mapping of regnumber => reg class to MachineFunction const TargetRegisterClass *RC = MRI->getRegClassForType(Ty); return F->getSSARegMap()->createVirtualRegister(RC); } /// getReg - This method turns an LLVM value into a register number. /// unsigned getReg(Value &V) { return getReg(&V); } // Allow references unsigned getReg(Value *V) { // Just append to the end of the current bb. MachineBasicBlock::iterator It = BB->end(); return getReg(V, BB, It); } unsigned getReg(Value *V, MachineBasicBlock *MBB, MachineBasicBlock::iterator IPt); /// getFixedSizedAllocaFI - Return the frame index for a fixed sized alloca /// that is to be statically allocated with the initial stack frame /// adjustment. unsigned getFixedSizedAllocaFI(AllocaInst *AI); }; } /// dyn_castFixedAlloca - If the specified value is a fixed size alloca /// instruction in the entry block, return it. Otherwise, return a null /// pointer. static AllocaInst *dyn_castFixedAlloca(Value *V) { if (AllocaInst *AI = dyn_cast(V)) { BasicBlock *BB = AI->getParent(); if (isa(AI->getArraySize()) && BB ==&BB->getParent()->front()) return AI; } return 0; } /// getReg - This method turns an LLVM value into a register number. /// unsigned ISel::getReg(Value *V, MachineBasicBlock *MBB, MachineBasicBlock::iterator IPt) { // If this operand is a constant, emit the code to copy the constant into // the register here... // if (Constant *C = dyn_cast(V)) { unsigned Reg = makeAnotherReg(V->getType()); copyConstantToRegister(MBB, IPt, C, Reg); return Reg; } else if (GlobalValue *GV = dyn_cast(V)) { unsigned Reg = makeAnotherReg(V->getType()); // Move the address of the global into the register BuildMI(*MBB, IPt, X86::MOV32ri, 1, Reg).addGlobalAddress(GV); return Reg; } else if (CastInst *CI = dyn_cast(V)) { // Do not emit noop casts at all. if (getClassB(CI->getType()) == getClassB(CI->getOperand(0)->getType())) return getReg(CI->getOperand(0), MBB, IPt); } else if (AllocaInst *AI = dyn_castFixedAlloca(V)) { // If the alloca address couldn't be folded into the instruction addressing, // emit an explicit LEA as appropriate. unsigned Reg = makeAnotherReg(V->getType()); unsigned FI = getFixedSizedAllocaFI(AI); addFrameReference(BuildMI(*MBB, IPt, X86::LEA32r, 4, Reg), FI); return Reg; } unsigned &Reg = RegMap[V]; if (Reg == 0) { Reg = makeAnotherReg(V->getType()); RegMap[V] = Reg; } return Reg; } /// getFixedSizedAllocaFI - Return the frame index for a fixed sized alloca /// that is to be statically allocated with the initial stack frame /// adjustment. unsigned ISel::getFixedSizedAllocaFI(AllocaInst *AI) { // Already computed this? std::map::iterator I = AllocaMap.lower_bound(AI); if (I != AllocaMap.end() && I->first == AI) return I->second; const Type *Ty = AI->getAllocatedType(); ConstantUInt *CUI = cast(AI->getArraySize()); unsigned TySize = TM.getTargetData().getTypeSize(Ty); TySize *= CUI->getValue(); // Get total allocated size... unsigned Alignment = TM.getTargetData().getTypeAlignment(Ty); // Create a new stack object using the frame manager... int FrameIdx = F->getFrameInfo()->CreateStackObject(TySize, Alignment); AllocaMap.insert(I, std::make_pair(AI, FrameIdx)); return FrameIdx; } /// copyConstantToRegister - Output the instructions required to put the /// specified constant into the specified register. /// void ISel::copyConstantToRegister(MachineBasicBlock *MBB, MachineBasicBlock::iterator IP, Constant *C, unsigned R) { if (ConstantExpr *CE = dyn_cast(C)) { unsigned Class = 0; switch (CE->getOpcode()) { case Instruction::GetElementPtr: emitGEPOperation(MBB, IP, CE->getOperand(0), CE->op_begin()+1, CE->op_end(), R); return; case Instruction::Cast: emitCastOperation(MBB, IP, CE->getOperand(0), CE->getType(), R); return; case Instruction::Xor: ++Class; // FALL THROUGH case Instruction::Or: ++Class; // FALL THROUGH case Instruction::And: ++Class; // FALL THROUGH case Instruction::Sub: ++Class; // FALL THROUGH case Instruction::Add: emitSimpleBinaryOperation(MBB, IP, CE->getOperand(0), CE->getOperand(1), Class, R); return; case Instruction::Mul: emitMultiply(MBB, IP, CE->getOperand(0), CE->getOperand(1), R); return; case Instruction::Div: case Instruction::Rem: emitDivRemOperation(MBB, IP, CE->getOperand(0), CE->getOperand(1), CE->getOpcode() == Instruction::Div, R); return; case Instruction::SetNE: case Instruction::SetEQ: case Instruction::SetLT: case Instruction::SetGT: case Instruction::SetLE: case Instruction::SetGE: emitSetCCOperation(MBB, IP, CE->getOperand(0), CE->getOperand(1), CE->getOpcode(), R); return; case Instruction::Shl: case Instruction::Shr: emitShiftOperation(MBB, IP, CE->getOperand(0), CE->getOperand(1), CE->getOpcode() == Instruction::Shl, CE->getType(), R); return; case Instruction::Select: emitSelectOperation(MBB, IP, CE->getOperand(0), CE->getOperand(1), CE->getOperand(2), R); return; default: std::cerr << "Offending expr: " << C << "\n"; assert(0 && "Constant expression not yet handled!\n"); } } if (C->getType()->isIntegral()) { unsigned Class = getClassB(C->getType()); if (Class == cLong) { // Copy the value into the register pair. uint64_t Val = cast(C)->getRawValue(); BuildMI(*MBB, IP, X86::MOV32ri, 1, R).addImm(Val & 0xFFFFFFFF); BuildMI(*MBB, IP, X86::MOV32ri, 1, R+1).addImm(Val >> 32); return; } assert(Class <= cInt && "Type not handled yet!"); static const unsigned IntegralOpcodeTab[] = { X86::MOV8ri, X86::MOV16ri, X86::MOV32ri }; if (C->getType() == Type::BoolTy) { BuildMI(*MBB, IP, X86::MOV8ri, 1, R).addImm(C == ConstantBool::True); } else { ConstantInt *CI = cast(C); BuildMI(*MBB, IP, IntegralOpcodeTab[Class],1,R).addImm(CI->getRawValue()); } } else if (ConstantFP *CFP = dyn_cast(C)) { if (CFP->isExactlyValue(+0.0)) BuildMI(*MBB, IP, X86::FLD0, 0, R); else if (CFP->isExactlyValue(+1.0)) BuildMI(*MBB, IP, X86::FLD1, 0, R); else { // Otherwise we need to spill the constant to memory... MachineConstantPool *CP = F->getConstantPool(); unsigned CPI = CP->getConstantPoolIndex(CFP); const Type *Ty = CFP->getType(); assert(Ty == Type::FloatTy || Ty == Type::DoubleTy && "Unknown FP type!"); unsigned LoadOpcode = Ty == Type::FloatTy ? X86::FLD32m : X86::FLD64m; addConstantPoolReference(BuildMI(*MBB, IP, LoadOpcode, 4, R), CPI); } } else if (isa(C)) { // Copy zero (null pointer) to the register. BuildMI(*MBB, IP, X86::MOV32ri, 1, R).addImm(0); } else if (ConstantPointerRef *CPR = dyn_cast(C)) { BuildMI(*MBB, IP, X86::MOV32ri, 1, R).addGlobalAddress(CPR->getValue()); } else { std::cerr << "Offending constant: " << C << "\n"; assert(0 && "Type not handled yet!"); } } /// LoadArgumentsToVirtualRegs - Load all of the arguments to this function from /// the stack into virtual registers. /// void ISel::LoadArgumentsToVirtualRegs(Function &Fn) { // Emit instructions to load the arguments... On entry to a function on the // X86, the stack frame looks like this: // // [ESP] -- return address // [ESP + 4] -- first argument (leftmost lexically) // [ESP + 8] -- second argument, if first argument is four bytes in size // ... // unsigned ArgOffset = 0; // Frame mechanisms handle retaddr slot MachineFrameInfo *MFI = F->getFrameInfo(); for (Function::aiterator I = Fn.abegin(), E = Fn.aend(); I != E; ++I) { bool ArgLive = !I->use_empty(); unsigned Reg = ArgLive ? getReg(*I) : 0; int FI; // Frame object index switch (getClassB(I->getType())) { case cByte: if (ArgLive) { FI = MFI->CreateFixedObject(1, ArgOffset); addFrameReference(BuildMI(BB, X86::MOV8rm, 4, Reg), FI); } break; case cShort: if (ArgLive) { FI = MFI->CreateFixedObject(2, ArgOffset); addFrameReference(BuildMI(BB, X86::MOV16rm, 4, Reg), FI); } break; case cInt: if (ArgLive) { FI = MFI->CreateFixedObject(4, ArgOffset); addFrameReference(BuildMI(BB, X86::MOV32rm, 4, Reg), FI); } break; case cLong: if (ArgLive) { FI = MFI->CreateFixedObject(8, ArgOffset); addFrameReference(BuildMI(BB, X86::MOV32rm, 4, Reg), FI); addFrameReference(BuildMI(BB, X86::MOV32rm, 4, Reg+1), FI, 4); } ArgOffset += 4; // longs require 4 additional bytes break; case cFP: if (ArgLive) { unsigned Opcode; if (I->getType() == Type::FloatTy) { Opcode = X86::FLD32m; FI = MFI->CreateFixedObject(4, ArgOffset); } else { Opcode = X86::FLD64m; FI = MFI->CreateFixedObject(8, ArgOffset); } addFrameReference(BuildMI(BB, Opcode, 4, Reg), FI); } if (I->getType() == Type::DoubleTy) ArgOffset += 4; // doubles require 4 additional bytes break; default: assert(0 && "Unhandled argument type!"); } ArgOffset += 4; // Each argument takes at least 4 bytes on the stack... } // If the function takes variable number of arguments, add a frame offset for // the start of the first vararg value... this is used to expand // llvm.va_start. if (Fn.getFunctionType()->isVarArg()) VarArgsFrameIndex = MFI->CreateFixedObject(1, ArgOffset); } /// SelectPHINodes - Insert machine code to generate phis. This is tricky /// because we have to generate our sources into the source basic blocks, not /// the current one. /// void ISel::SelectPHINodes() { const TargetInstrInfo &TII = TM.getInstrInfo(); const Function &LF = *F->getFunction(); // The LLVM function... for (Function::const_iterator I = LF.begin(), E = LF.end(); I != E; ++I) { const BasicBlock *BB = I; MachineBasicBlock &MBB = *MBBMap[I]; // Loop over all of the PHI nodes in the LLVM basic block... MachineBasicBlock::iterator PHIInsertPoint = MBB.begin(); for (BasicBlock::const_iterator I = BB->begin(); PHINode *PN = const_cast(dyn_cast(I)); ++I) { // Create a new machine instr PHI node, and insert it. unsigned PHIReg = getReg(*PN); MachineInstr *PhiMI = BuildMI(MBB, PHIInsertPoint, X86::PHI, PN->getNumOperands(), PHIReg); MachineInstr *LongPhiMI = 0; if (PN->getType() == Type::LongTy || PN->getType() == Type::ULongTy) LongPhiMI = BuildMI(MBB, PHIInsertPoint, X86::PHI, PN->getNumOperands(), PHIReg+1); // PHIValues - Map of blocks to incoming virtual registers. We use this // so that we only initialize one incoming value for a particular block, // even if the block has multiple entries in the PHI node. // std::map PHIValues; for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) { MachineBasicBlock *PredMBB = MBBMap[PN->getIncomingBlock(i)]; unsigned ValReg; std::map::iterator EntryIt = PHIValues.lower_bound(PredMBB); if (EntryIt != PHIValues.end() && EntryIt->first == PredMBB) { // We already inserted an initialization of the register for this // predecessor. Recycle it. ValReg = EntryIt->second; } else { // Get the incoming value into a virtual register. // Value *Val = PN->getIncomingValue(i); // If this is a constant or GlobalValue, we may have to insert code // into the basic block to compute it into a virtual register. if ((isa(Val) && !isa(Val)) || isa(Val)) { // Simple constants get emitted at the end of the basic block, // before any terminator instructions. We "know" that the code to // move a constant into a register will never clobber any flags. ValReg = getReg(Val, PredMBB, PredMBB->getFirstTerminator()); } else { // Because we don't want to clobber any values which might be in // physical registers with the computation of this constant (which // might be arbitrarily complex if it is a constant expression), // just insert the computation at the top of the basic block. MachineBasicBlock::iterator PI = PredMBB->begin(); // Skip over any PHI nodes though! while (PI != PredMBB->end() && PI->getOpcode() == X86::PHI) ++PI; ValReg = getReg(Val, PredMBB, PI); } // Remember that we inserted a value for this PHI for this predecessor PHIValues.insert(EntryIt, std::make_pair(PredMBB, ValReg)); } PhiMI->addRegOperand(ValReg); PhiMI->addMachineBasicBlockOperand(PredMBB); if (LongPhiMI) { LongPhiMI->addRegOperand(ValReg+1); LongPhiMI->addMachineBasicBlockOperand(PredMBB); } } // Now that we emitted all of the incoming values for the PHI node, make // sure to reposition the InsertPoint after the PHI that we just added. // This is needed because we might have inserted a constant into this // block, right after the PHI's which is before the old insert point! PHIInsertPoint = LongPhiMI ? LongPhiMI : PhiMI; ++PHIInsertPoint; } } } /// RequiresFPRegKill - The floating point stackifier pass cannot insert /// compensation code on critical edges. As such, it requires that we kill all /// FP registers on the exit from any blocks that either ARE critical edges, or /// branch to a block that has incoming critical edges. /// /// Note that this kill instruction will eventually be eliminated when /// restrictions in the stackifier are relaxed. /// static bool RequiresFPRegKill(const MachineBasicBlock *MBB) { #if 0 const BasicBlock *BB = MBB->getBasicBlock (); for (succ_const_iterator SI = succ_begin(BB), E = succ_end(BB); SI!=E; ++SI) { const BasicBlock *Succ = *SI; pred_const_iterator PI = pred_begin(Succ), PE = pred_end(Succ); ++PI; // Block have at least one predecessory if (PI != PE) { // If it has exactly one, this isn't crit edge // If this block has more than one predecessor, check all of the // predecessors to see if they have multiple successors. If so, then the // block we are analyzing needs an FPRegKill. for (PI = pred_begin(Succ); PI != PE; ++PI) { const BasicBlock *Pred = *PI; succ_const_iterator SI2 = succ_begin(Pred); ++SI2; // There must be at least one successor of this block. if (SI2 != succ_end(Pred)) return true; // Yes, we must insert the kill on this edge. } } } // If we got this far, there is no need to insert the kill instruction. return false; #else return true; #endif } // InsertFPRegKills - Insert FP_REG_KILL instructions into basic blocks that // need them. This only occurs due to the floating point stackifier not being // aggressive enough to handle arbitrary global stackification. // // Currently we insert an FP_REG_KILL instruction into each block that uses or // defines a floating point virtual register. // // When the global register allocators (like linear scan) finally update live // variable analysis, we can keep floating point values in registers across // portions of the CFG that do not involve critical edges. This will be a big // win, but we are waiting on the global allocators before we can do this. // // With a bit of work, the floating point stackifier pass can be enhanced to // break critical edges as needed (to make a place to put compensation code), // but this will require some infrastructure improvements as well. // void ISel::InsertFPRegKills() { SSARegMap &RegMap = *F->getSSARegMap(); for (MachineFunction::iterator BB = F->begin(), E = F->end(); BB != E; ++BB) { for (MachineBasicBlock::iterator I = BB->begin(), E = BB->end(); I!=E; ++I) for (unsigned i = 0, e = I->getNumOperands(); i != e; ++i) { MachineOperand& MO = I->getOperand(i); if (MO.isRegister() && MO.getReg()) { unsigned Reg = MO.getReg(); if (MRegisterInfo::isVirtualRegister(Reg)) if (RegMap.getRegClass(Reg)->getSize() == 10) goto UsesFPReg; } } // If we haven't found an FP register use or def in this basic block, check // to see if any of our successors has an FP PHI node, which will cause a // copy to be inserted into this block. for (MachineBasicBlock::const_succ_iterator SI = BB->succ_begin(), SE = BB->succ_end(); SI != SE; ++SI) { MachineBasicBlock *SBB = *SI; for (MachineBasicBlock::iterator I = SBB->begin(); I != SBB->end() && I->getOpcode() == X86::PHI; ++I) { if (RegMap.getRegClass(I->getOperand(0).getReg())->getSize() == 10) goto UsesFPReg; } } continue; UsesFPReg: // Okay, this block uses an FP register. If the block has successors (ie, // it's not an unwind/return), insert the FP_REG_KILL instruction. if (BB->succ_size () && RequiresFPRegKill(BB)) { BuildMI(*BB, BB->getFirstTerminator(), X86::FP_REG_KILL, 0); ++NumFPKill; } } } void ISel::getAddressingMode(Value *Addr, unsigned &BaseReg, unsigned &Scale, unsigned &IndexReg, unsigned &Disp) { BaseReg = 0; Scale = 1; IndexReg = 0; Disp = 0; if (GetElementPtrInst *GEP = dyn_cast(Addr)) { if (isGEPFoldable(BB, GEP->getOperand(0), GEP->op_begin()+1, GEP->op_end(), BaseReg, Scale, IndexReg, Disp)) return; } else if (ConstantExpr *CE = dyn_cast(Addr)) { if (CE->getOpcode() == Instruction::GetElementPtr) if (isGEPFoldable(BB, CE->getOperand(0), CE->op_begin()+1, CE->op_end(), BaseReg, Scale, IndexReg, Disp)) return; } // If it's not foldable, reset addr mode. BaseReg = getReg(Addr); Scale = 1; IndexReg = 0; Disp = 0; } // canFoldSetCCIntoBranchOrSelect - Return the setcc instruction if we can fold // it into the conditional branch or select instruction which is the only user // of the cc instruction. This is the case if the conditional branch is the // only user of the setcc, and if the setcc is in the same basic block as the // conditional branch. We also don't handle long arguments below, so we reject // them here as well. // static SetCondInst *canFoldSetCCIntoBranchOrSelect(Value *V) { if (SetCondInst *SCI = dyn_cast(V)) if (SCI->hasOneUse()) { Instruction *User = cast(SCI->use_back()); if ((isa(User) || isa(User)) && SCI->getParent() == User->getParent() && (getClassB(SCI->getOperand(0)->getType()) != cLong || SCI->getOpcode() == Instruction::SetEQ || SCI->getOpcode() == Instruction::SetNE)) return SCI; } return 0; } // Return a fixed numbering for setcc instructions which does not depend on the // order of the opcodes. // static unsigned getSetCCNumber(unsigned Opcode) { switch(Opcode) { default: assert(0 && "Unknown setcc instruction!"); case Instruction::SetEQ: return 0; case Instruction::SetNE: return 1; case Instruction::SetLT: return 2; case Instruction::SetGE: return 3; case Instruction::SetGT: return 4; case Instruction::SetLE: return 5; } } // LLVM -> X86 signed X86 unsigned // ----- ---------- ------------ // seteq -> sete sete // setne -> setne setne // setlt -> setl setb // setge -> setge setae // setgt -> setg seta // setle -> setle setbe // ---- // sets // Used by comparison with 0 optimization // setns static const unsigned SetCCOpcodeTab[2][8] = { { X86::SETEr, X86::SETNEr, X86::SETBr, X86::SETAEr, X86::SETAr, X86::SETBEr, 0, 0 }, { X86::SETEr, X86::SETNEr, X86::SETLr, X86::SETGEr, X86::SETGr, X86::SETLEr, X86::SETSr, X86::SETNSr }, }; // EmitComparison - This function emits a comparison of the two operands, // returning the extended setcc code to use. unsigned ISel::EmitComparison(unsigned OpNum, Value *Op0, Value *Op1, MachineBasicBlock *MBB, MachineBasicBlock::iterator IP) { // The arguments are already supposed to be of the same type. const Type *CompTy = Op0->getType(); unsigned Class = getClassB(CompTy); unsigned Op0r = getReg(Op0, MBB, IP); // Special case handling of: cmp R, i if (isa(Op1)) { if (OpNum < 2) // seteq/setne -> test BuildMI(*MBB, IP, X86::TEST32rr, 2).addReg(Op0r).addReg(Op0r); else BuildMI(*MBB, IP, X86::CMP32ri, 2).addReg(Op0r).addImm(0); return OpNum; } else if (ConstantInt *CI = dyn_cast(Op1)) { if (Class == cByte || Class == cShort || Class == cInt) { unsigned Op1v = CI->getRawValue(); // Mask off any upper bits of the constant, if there are any... Op1v &= (1ULL << (8 << Class)) - 1; // If this is a comparison against zero, emit more efficient code. We // can't handle unsigned comparisons against zero unless they are == or // !=. These should have been strength reduced already anyway. if (Op1v == 0 && (CompTy->isSigned() || OpNum < 2)) { static const unsigned TESTTab[] = { X86::TEST8rr, X86::TEST16rr, X86::TEST32rr }; BuildMI(*MBB, IP, TESTTab[Class], 2).addReg(Op0r).addReg(Op0r); if (OpNum == 2) return 6; // Map jl -> js if (OpNum == 3) return 7; // Map jg -> jns return OpNum; } static const unsigned CMPTab[] = { X86::CMP8ri, X86::CMP16ri, X86::CMP32ri }; BuildMI(*MBB, IP, CMPTab[Class], 2).addReg(Op0r).addImm(Op1v); return OpNum; } else { assert(Class == cLong && "Unknown integer class!"); unsigned LowCst = CI->getRawValue(); unsigned HiCst = CI->getRawValue() >> 32; if (OpNum < 2) { // seteq, setne unsigned LoTmp = Op0r; if (LowCst != 0) { LoTmp = makeAnotherReg(Type::IntTy); BuildMI(*MBB, IP, X86::XOR32ri, 2, LoTmp).addReg(Op0r).addImm(LowCst); } unsigned HiTmp = Op0r+1; if (HiCst != 0) { HiTmp = makeAnotherReg(Type::IntTy); BuildMI(*MBB, IP, X86::XOR32ri, 2,HiTmp).addReg(Op0r+1).addImm(HiCst); } unsigned FinalTmp = makeAnotherReg(Type::IntTy); BuildMI(*MBB, IP, X86::OR32rr, 2, FinalTmp).addReg(LoTmp).addReg(HiTmp); return OpNum; } else { // Emit a sequence of code which compares the high and low parts once // each, then uses a conditional move to handle the overflow case. For // example, a setlt for long would generate code like this: // // AL = lo(op1) < lo(op2) // Always unsigned comparison // BL = hi(op1) < hi(op2) // Signedness depends on operands // dest = hi(op1) == hi(op2) ? BL : AL; // // FIXME: This would be much better if we had hierarchical register // classes! Until then, hardcode registers so that we can deal with // their aliases (because we don't have conditional byte moves). // BuildMI(*MBB, IP, X86::CMP32ri, 2).addReg(Op0r).addImm(LowCst); BuildMI(*MBB, IP, SetCCOpcodeTab[0][OpNum], 0, X86::AL); BuildMI(*MBB, IP, X86::CMP32ri, 2).addReg(Op0r+1).addImm(HiCst); BuildMI(*MBB, IP, SetCCOpcodeTab[CompTy->isSigned()][OpNum], 0,X86::BL); BuildMI(*MBB, IP, X86::IMPLICIT_DEF, 0, X86::BH); BuildMI(*MBB, IP, X86::IMPLICIT_DEF, 0, X86::AH); BuildMI(*MBB, IP, X86::CMOVE16rr, 2, X86::BX).addReg(X86::BX) .addReg(X86::AX); // NOTE: visitSetCondInst knows that the value is dumped into the BL // register at this point for long values... return OpNum; } } } // Special case handling of comparison against +/- 0.0 if (ConstantFP *CFP = dyn_cast(Op1)) if (CFP->isExactlyValue(+0.0) || CFP->isExactlyValue(-0.0)) { BuildMI(*MBB, IP, X86::FTST, 1).addReg(Op0r); BuildMI(*MBB, IP, X86::FNSTSW8r, 0); BuildMI(*MBB, IP, X86::SAHF, 1); return OpNum; } unsigned Op1r = getReg(Op1, MBB, IP); switch (Class) { default: assert(0 && "Unknown type class!"); // Emit: cmp , (do the comparison). We can // compare 8-bit with 8-bit, 16-bit with 16-bit, 32-bit with // 32-bit. case cByte: BuildMI(*MBB, IP, X86::CMP8rr, 2).addReg(Op0r).addReg(Op1r); break; case cShort: BuildMI(*MBB, IP, X86::CMP16rr, 2).addReg(Op0r).addReg(Op1r); break; case cInt: BuildMI(*MBB, IP, X86::CMP32rr, 2).addReg(Op0r).addReg(Op1r); break; case cFP: if (0) { // for processors prior to the P6 BuildMI(*MBB, IP, X86::FpUCOM, 2).addReg(Op0r).addReg(Op1r); BuildMI(*MBB, IP, X86::FNSTSW8r, 0); BuildMI(*MBB, IP, X86::SAHF, 1); } else { BuildMI(*MBB, IP, X86::FpUCOMI, 2).addReg(Op0r).addReg(Op1r); } break; case cLong: if (OpNum < 2) { // seteq, setne unsigned LoTmp = makeAnotherReg(Type::IntTy); unsigned HiTmp = makeAnotherReg(Type::IntTy); unsigned FinalTmp = makeAnotherReg(Type::IntTy); BuildMI(*MBB, IP, X86::XOR32rr, 2, LoTmp).addReg(Op0r).addReg(Op1r); BuildMI(*MBB, IP, X86::XOR32rr, 2, HiTmp).addReg(Op0r+1).addReg(Op1r+1); BuildMI(*MBB, IP, X86::OR32rr, 2, FinalTmp).addReg(LoTmp).addReg(HiTmp); break; // Allow the sete or setne to be generated from flags set by OR } else { // Emit a sequence of code which compares the high and low parts once // each, then uses a conditional move to handle the overflow case. For // example, a setlt for long would generate code like this: // // AL = lo(op1) < lo(op2) // Signedness depends on operands // BL = hi(op1) < hi(op2) // Always unsigned comparison // dest = hi(op1) == hi(op2) ? BL : AL; // // FIXME: This would be much better if we had hierarchical register // classes! Until then, hardcode registers so that we can deal with their // aliases (because we don't have conditional byte moves). // BuildMI(*MBB, IP, X86::CMP32rr, 2).addReg(Op0r).addReg(Op1r); BuildMI(*MBB, IP, SetCCOpcodeTab[0][OpNum], 0, X86::AL); BuildMI(*MBB, IP, X86::CMP32rr, 2).addReg(Op0r+1).addReg(Op1r+1); BuildMI(*MBB, IP, SetCCOpcodeTab[CompTy->isSigned()][OpNum], 0, X86::BL); BuildMI(*MBB, IP, X86::IMPLICIT_DEF, 0, X86::BH); BuildMI(*MBB, IP, X86::IMPLICIT_DEF, 0, X86::AH); BuildMI(*MBB, IP, X86::CMOVE16rr, 2, X86::BX).addReg(X86::BX) .addReg(X86::AX); // NOTE: visitSetCondInst knows that the value is dumped into the BL // register at this point for long values... return OpNum; } } return OpNum; } /// SetCC instructions - Here we just emit boilerplate code to set a byte-sized /// register, then move it to wherever the result should be. /// void ISel::visitSetCondInst(SetCondInst &I) { if (canFoldSetCCIntoBranchOrSelect(&I)) return; // Fold this into a branch or select. unsigned DestReg = getReg(I); MachineBasicBlock::iterator MII = BB->end(); emitSetCCOperation(BB, MII, I.getOperand(0), I.getOperand(1), I.getOpcode(), DestReg); } /// emitSetCCOperation - Common code shared between visitSetCondInst and /// constant expression support. /// void ISel::emitSetCCOperation(MachineBasicBlock *MBB, MachineBasicBlock::iterator IP, Value *Op0, Value *Op1, unsigned Opcode, unsigned TargetReg) { unsigned OpNum = getSetCCNumber(Opcode); OpNum = EmitComparison(OpNum, Op0, Op1, MBB, IP); const Type *CompTy = Op0->getType(); unsigned CompClass = getClassB(CompTy); bool isSigned = CompTy->isSigned() && CompClass != cFP; if (CompClass != cLong || OpNum < 2) { // Handle normal comparisons with a setcc instruction... BuildMI(*MBB, IP, SetCCOpcodeTab[isSigned][OpNum], 0, TargetReg); } else { // Handle long comparisons by copying the value which is already in BL into // the register we want... BuildMI(*MBB, IP, X86::MOV8rr, 1, TargetReg).addReg(X86::BL); } } void ISel::visitSelectInst(SelectInst &SI) { unsigned DestReg = getReg(SI); MachineBasicBlock::iterator MII = BB->end(); emitSelectOperation(BB, MII, SI.getCondition(), SI.getTrueValue(), SI.getFalseValue(), DestReg); } /// emitSelect - Common code shared between visitSelectInst and the constant /// expression support. void ISel::emitSelectOperation(MachineBasicBlock *MBB, MachineBasicBlock::iterator IP, Value *Cond, Value *TrueVal, Value *FalseVal, unsigned DestReg) { unsigned SelectClass = getClassB(TrueVal->getType()); // We don't support 8-bit conditional moves. If we have incoming constants, // transform them into 16-bit constants to avoid having a run-time conversion. if (SelectClass == cByte) { if (Constant *T = dyn_cast(TrueVal)) TrueVal = ConstantExpr::getCast(T, Type::ShortTy); if (Constant *F = dyn_cast(FalseVal)) FalseVal = ConstantExpr::getCast(F, Type::ShortTy); } unsigned TrueReg = getReg(TrueVal, MBB, IP); unsigned FalseReg = getReg(FalseVal, MBB, IP); if (TrueReg == FalseReg) { static const unsigned Opcode[] = { X86::MOV8rr, X86::MOV16rr, X86::MOV32rr, X86::FpMOV, X86::MOV32rr }; BuildMI(*MBB, IP, Opcode[SelectClass], 1, DestReg).addReg(TrueReg); if (SelectClass == cLong) BuildMI(*MBB, IP, X86::MOV32rr, 1, DestReg+1).addReg(TrueReg+1); return; } unsigned Opcode; if (SetCondInst *SCI = canFoldSetCCIntoBranchOrSelect(Cond)) { // We successfully folded the setcc into the select instruction. unsigned OpNum = getSetCCNumber(SCI->getOpcode()); OpNum = EmitComparison(OpNum, SCI->getOperand(0), SCI->getOperand(1), MBB, IP); const Type *CompTy = SCI->getOperand(0)->getType(); bool isSigned = CompTy->isSigned() && getClassB(CompTy) != cFP; // LLVM -> X86 signed X86 unsigned // ----- ---------- ------------ // seteq -> cmovNE cmovNE // setne -> cmovE cmovE // setlt -> cmovGE cmovAE // setge -> cmovL cmovB // setgt -> cmovLE cmovBE // setle -> cmovG cmovA // ---- // cmovNS // Used by comparison with 0 optimization // cmovS switch (SelectClass) { default: assert(0 && "Unknown value class!"); case cFP: { // Annoyingly, we don't have a full set of floating point conditional // moves. :( static const unsigned OpcodeTab[2][8] = { { X86::FCMOVNE, X86::FCMOVE, X86::FCMOVAE, X86::FCMOVB, X86::FCMOVBE, X86::FCMOVA, 0, 0 }, { X86::FCMOVNE, X86::FCMOVE, 0, 0, 0, 0, 0, 0 }, }; Opcode = OpcodeTab[isSigned][OpNum]; // If opcode == 0, we hit a case that we don't support. Output a setcc // and compare the result against zero. if (Opcode == 0) { unsigned CompClass = getClassB(CompTy); unsigned CondReg; if (CompClass != cLong || OpNum < 2) { CondReg = makeAnotherReg(Type::BoolTy); // Handle normal comparisons with a setcc instruction... BuildMI(*MBB, IP, SetCCOpcodeTab[isSigned][OpNum], 0, CondReg); } else { // Long comparisons end up in the BL register. CondReg = X86::BL; } BuildMI(*MBB, IP, X86::TEST8rr, 2).addReg(CondReg).addReg(CondReg); Opcode = X86::FCMOVE; } break; } case cByte: case cShort: { static const unsigned OpcodeTab[2][8] = { { X86::CMOVNE16rr, X86::CMOVE16rr, X86::CMOVAE16rr, X86::CMOVB16rr, X86::CMOVBE16rr, X86::CMOVA16rr, 0, 0 }, { X86::CMOVNE16rr, X86::CMOVE16rr, X86::CMOVGE16rr, X86::CMOVL16rr, X86::CMOVLE16rr, X86::CMOVG16rr, X86::CMOVNS16rr, X86::CMOVS16rr }, }; Opcode = OpcodeTab[isSigned][OpNum]; break; } case cInt: case cLong: { static const unsigned OpcodeTab[2][8] = { { X86::CMOVNE32rr, X86::CMOVE32rr, X86::CMOVAE32rr, X86::CMOVB32rr, X86::CMOVBE32rr, X86::CMOVA32rr, 0, 0 }, { X86::CMOVNE32rr, X86::CMOVE32rr, X86::CMOVGE32rr, X86::CMOVL32rr, X86::CMOVLE32rr, X86::CMOVG32rr, X86::CMOVNS32rr, X86::CMOVS32rr }, }; Opcode = OpcodeTab[isSigned][OpNum]; break; } } } else { // Get the value being branched on, and use it to set the condition codes. unsigned CondReg = getReg(Cond, MBB, IP); BuildMI(*MBB, IP, X86::TEST8rr, 2).addReg(CondReg).addReg(CondReg); switch (SelectClass) { default: assert(0 && "Unknown value class!"); case cFP: Opcode = X86::FCMOVE; break; case cByte: case cShort: Opcode = X86::CMOVE16rr; break; case cInt: case cLong: Opcode = X86::CMOVE32rr; break; } } unsigned RealDestReg = DestReg; // Annoyingly enough, X86 doesn't HAVE 8-bit conditional moves. Because of // this, we have to promote the incoming values to 16 bits, perform a 16-bit // cmove, then truncate the result. if (SelectClass == cByte) { DestReg = makeAnotherReg(Type::ShortTy); if (getClassB(TrueVal->getType()) == cByte) { // Promote the true value, by storing it into AL, and reading from AX. BuildMI(*MBB, IP, X86::MOV8rr, 1, X86::AL).addReg(TrueReg); BuildMI(*MBB, IP, X86::MOV8ri, 1, X86::AH).addImm(0); TrueReg = makeAnotherReg(Type::ShortTy); BuildMI(*MBB, IP, X86::MOV16rr, 1, TrueReg).addReg(X86::AX); } if (getClassB(FalseVal->getType()) == cByte) { // Promote the true value, by storing it into CL, and reading from CX. BuildMI(*MBB, IP, X86::MOV8rr, 1, X86::CL).addReg(FalseReg); BuildMI(*MBB, IP, X86::MOV8ri, 1, X86::CH).addImm(0); FalseReg = makeAnotherReg(Type::ShortTy); BuildMI(*MBB, IP, X86::MOV16rr, 1, FalseReg).addReg(X86::CX); } } BuildMI(*MBB, IP, Opcode, 2, DestReg).addReg(TrueReg).addReg(FalseReg); switch (SelectClass) { case cByte: // We did the computation with 16-bit registers. Truncate back to our // result by copying into AX then copying out AL. BuildMI(*MBB, IP, X86::MOV16rr, 1, X86::AX).addReg(DestReg); BuildMI(*MBB, IP, X86::MOV8rr, 1, RealDestReg).addReg(X86::AL); break; case cLong: // Move the upper half of the value as well. BuildMI(*MBB, IP, Opcode, 2,DestReg+1).addReg(TrueReg+1).addReg(FalseReg+1); break; } } /// promote32 - Emit instructions to turn a narrow operand into a 32-bit-wide /// operand, in the specified target register. /// void ISel::promote32(unsigned targetReg, const ValueRecord &VR) { bool isUnsigned = VR.Ty->isUnsigned() || VR.Ty == Type::BoolTy; Value *Val = VR.Val; const Type *Ty = VR.Ty; if (Val) { if (Constant *C = dyn_cast(Val)) { Val = ConstantExpr::getCast(C, Type::IntTy); Ty = Type::IntTy; } // If this is a simple constant, just emit a MOVri directly to avoid the // copy. if (ConstantInt *CI = dyn_cast(Val)) { int TheVal = CI->getRawValue() & 0xFFFFFFFF; BuildMI(BB, X86::MOV32ri, 1, targetReg).addImm(TheVal); return; } } // Make sure we have the register number for this value... unsigned Reg = Val ? getReg(Val) : VR.Reg; switch (getClassB(Ty)) { case cByte: // Extend value into target register (8->32) if (isUnsigned) BuildMI(BB, X86::MOVZX32rr8, 1, targetReg).addReg(Reg); else BuildMI(BB, X86::MOVSX32rr8, 1, targetReg).addReg(Reg); break; case cShort: // Extend value into target register (16->32) if (isUnsigned) BuildMI(BB, X86::MOVZX32rr16, 1, targetReg).addReg(Reg); else BuildMI(BB, X86::MOVSX32rr16, 1, targetReg).addReg(Reg); break; case cInt: // Move value into target register (32->32) BuildMI(BB, X86::MOV32rr, 1, targetReg).addReg(Reg); break; default: assert(0 && "Unpromotable operand class in promote32"); } } /// 'ret' instruction - Here we are interested in meeting the x86 ABI. As such, /// we have the following possibilities: /// /// ret void: No return value, simply emit a 'ret' instruction /// ret sbyte, ubyte : Extend value into EAX and return /// ret short, ushort: Extend value into EAX and return /// ret int, uint : Move value into EAX and return /// ret pointer : Move value into EAX and return /// ret long, ulong : Move value into EAX/EDX and return /// ret float/double : Top of FP stack /// void ISel::visitReturnInst(ReturnInst &I) { if (I.getNumOperands() == 0) { BuildMI(BB, X86::RET, 0); // Just emit a 'ret' instruction return; } Value *RetVal = I.getOperand(0); switch (getClassB(RetVal->getType())) { case cByte: // integral return values: extend or move into EAX and return case cShort: case cInt: promote32(X86::EAX, ValueRecord(RetVal)); // Declare that EAX is live on exit BuildMI(BB, X86::IMPLICIT_USE, 2).addReg(X86::EAX).addReg(X86::ESP); break; case cFP: { // Floats & Doubles: Return in ST(0) unsigned RetReg = getReg(RetVal); BuildMI(BB, X86::FpSETRESULT, 1).addReg(RetReg); // Declare that top-of-stack is live on exit BuildMI(BB, X86::IMPLICIT_USE, 2).addReg(X86::ST0).addReg(X86::ESP); break; } case cLong: { unsigned RetReg = getReg(RetVal); BuildMI(BB, X86::MOV32rr, 1, X86::EAX).addReg(RetReg); BuildMI(BB, X86::MOV32rr, 1, X86::EDX).addReg(RetReg+1); // Declare that EAX & EDX are live on exit BuildMI(BB, X86::IMPLICIT_USE, 3).addReg(X86::EAX).addReg(X86::EDX) .addReg(X86::ESP); break; } default: visitInstruction(I); } // Emit a 'ret' instruction BuildMI(BB, X86::RET, 0); } // getBlockAfter - Return the basic block which occurs lexically after the // specified one. static inline BasicBlock *getBlockAfter(BasicBlock *BB) { Function::iterator I = BB; ++I; // Get iterator to next block return I != BB->getParent()->end() ? &*I : 0; } /// visitBranchInst - Handle conditional and unconditional branches here. Note /// that since code layout is frozen at this point, that if we are trying to /// jump to a block that is the immediate successor of the current block, we can /// just make a fall-through (but we don't currently). /// void ISel::visitBranchInst(BranchInst &BI) { // Update machine-CFG edges BB->addSuccessor (MBBMap[BI.getSuccessor(0)]); if (BI.isConditional()) BB->addSuccessor (MBBMap[BI.getSuccessor(1)]); BasicBlock *NextBB = getBlockAfter(BI.getParent()); // BB after current one if (!BI.isConditional()) { // Unconditional branch? if (BI.getSuccessor(0) != NextBB) BuildMI(BB, X86::JMP, 1).addPCDisp(BI.getSuccessor(0)); return; } // See if we can fold the setcc into the branch itself... SetCondInst *SCI = canFoldSetCCIntoBranchOrSelect(BI.getCondition()); if (SCI == 0) { // Nope, cannot fold setcc into this branch. Emit a branch on a condition // computed some other way... unsigned condReg = getReg(BI.getCondition()); BuildMI(BB, X86::TEST8rr, 2).addReg(condReg).addReg(condReg); if (BI.getSuccessor(1) == NextBB) { if (BI.getSuccessor(0) != NextBB) BuildMI(BB, X86::JNE, 1).addPCDisp(BI.getSuccessor(0)); } else { BuildMI(BB, X86::JE, 1).addPCDisp(BI.getSuccessor(1)); if (BI.getSuccessor(0) != NextBB) BuildMI(BB, X86::JMP, 1).addPCDisp(BI.getSuccessor(0)); } return; } unsigned OpNum = getSetCCNumber(SCI->getOpcode()); MachineBasicBlock::iterator MII = BB->end(); OpNum = EmitComparison(OpNum, SCI->getOperand(0), SCI->getOperand(1), BB,MII); const Type *CompTy = SCI->getOperand(0)->getType(); bool isSigned = CompTy->isSigned() && getClassB(CompTy) != cFP; // LLVM -> X86 signed X86 unsigned // ----- ---------- ------------ // seteq -> je je // setne -> jne jne // setlt -> jl jb // setge -> jge jae // setgt -> jg ja // setle -> jle jbe // ---- // js // Used by comparison with 0 optimization // jns static const unsigned OpcodeTab[2][8] = { { X86::JE, X86::JNE, X86::JB, X86::JAE, X86::JA, X86::JBE, 0, 0 }, { X86::JE, X86::JNE, X86::JL, X86::JGE, X86::JG, X86::JLE, X86::JS, X86::JNS }, }; if (BI.getSuccessor(0) != NextBB) { BuildMI(BB, OpcodeTab[isSigned][OpNum], 1).addPCDisp(BI.getSuccessor(0)); if (BI.getSuccessor(1) != NextBB) BuildMI(BB, X86::JMP, 1).addPCDisp(BI.getSuccessor(1)); } else { // Change to the inverse condition... if (BI.getSuccessor(1) != NextBB) { OpNum ^= 1; BuildMI(BB, OpcodeTab[isSigned][OpNum], 1).addPCDisp(BI.getSuccessor(1)); } } } /// doCall - This emits an abstract call instruction, setting up the arguments /// and the return value as appropriate. For the actual function call itself, /// it inserts the specified CallMI instruction into the stream. /// void ISel::doCall(const ValueRecord &Ret, MachineInstr *CallMI, const std::vector &Args) { // Count how many bytes are to be pushed on the stack... unsigned NumBytes = 0; if (!Args.empty()) { for (unsigned i = 0, e = Args.size(); i != e; ++i) switch (getClassB(Args[i].Ty)) { case cByte: case cShort: case cInt: NumBytes += 4; break; case cLong: NumBytes += 8; break; case cFP: NumBytes += Args[i].Ty == Type::FloatTy ? 4 : 8; break; default: assert(0 && "Unknown class!"); } // Adjust the stack pointer for the new arguments... BuildMI(BB, X86::ADJCALLSTACKDOWN, 1).addImm(NumBytes); // Arguments go on the stack in reverse order, as specified by the ABI. unsigned ArgOffset = 0; for (unsigned i = 0, e = Args.size(); i != e; ++i) { unsigned ArgReg; switch (getClassB(Args[i].Ty)) { case cByte: if (Args[i].Val && isa(Args[i].Val)) { addRegOffset(BuildMI(BB, X86::MOV32mi, 5), X86::ESP, ArgOffset) .addImm(Args[i].Val == ConstantBool::True); break; } // FALL THROUGH case cShort: if (Args[i].Val && isa(Args[i].Val)) { // Zero/Sign extend constant, then stuff into memory. ConstantInt *Val = cast(Args[i].Val); Val = cast(ConstantExpr::getCast(Val, Type::IntTy)); addRegOffset(BuildMI(BB, X86::MOV32mi, 5), X86::ESP, ArgOffset) .addImm(Val->getRawValue() & 0xFFFFFFFF); } else { // Promote arg to 32 bits wide into a temporary register... ArgReg = makeAnotherReg(Type::UIntTy); promote32(ArgReg, Args[i]); addRegOffset(BuildMI(BB, X86::MOV32mr, 5), X86::ESP, ArgOffset).addReg(ArgReg); } break; case cInt: if (Args[i].Val && isa(Args[i].Val)) { unsigned Val = cast(Args[i].Val)->getRawValue(); addRegOffset(BuildMI(BB, X86::MOV32mi, 5), X86::ESP, ArgOffset).addImm(Val); } else if (Args[i].Val && isa(Args[i].Val)) { addRegOffset(BuildMI(BB, X86::MOV32mi, 5), X86::ESP, ArgOffset).addImm(0); } else { ArgReg = Args[i].Val ? getReg(Args[i].Val) : Args[i].Reg; addRegOffset(BuildMI(BB, X86::MOV32mr, 5), X86::ESP, ArgOffset).addReg(ArgReg); } break; case cLong: if (Args[i].Val && isa(Args[i].Val)) { uint64_t Val = cast(Args[i].Val)->getRawValue(); addRegOffset(BuildMI(BB, X86::MOV32mi, 5), X86::ESP, ArgOffset).addImm(Val & ~0U); addRegOffset(BuildMI(BB, X86::MOV32mi, 5), X86::ESP, ArgOffset+4).addImm(Val >> 32ULL); } else { ArgReg = Args[i].Val ? getReg(Args[i].Val) : Args[i].Reg; addRegOffset(BuildMI(BB, X86::MOV32mr, 5), X86::ESP, ArgOffset).addReg(ArgReg); addRegOffset(BuildMI(BB, X86::MOV32mr, 5), X86::ESP, ArgOffset+4).addReg(ArgReg+1); } ArgOffset += 4; // 8 byte entry, not 4. break; case cFP: ArgReg = Args[i].Val ? getReg(Args[i].Val) : Args[i].Reg; if (Args[i].Ty == Type::FloatTy) { addRegOffset(BuildMI(BB, X86::FST32m, 5), X86::ESP, ArgOffset).addReg(ArgReg); } else { assert(Args[i].Ty == Type::DoubleTy && "Unknown FP type!"); addRegOffset(BuildMI(BB, X86::FST64m, 5), X86::ESP, ArgOffset).addReg(ArgReg); ArgOffset += 4; // 8 byte entry, not 4. } break; default: assert(0 && "Unknown class!"); } ArgOffset += 4; } } else { BuildMI(BB, X86::ADJCALLSTACKDOWN, 1).addImm(0); } BB->push_back(CallMI); BuildMI(BB, X86::ADJCALLSTACKUP, 1).addImm(NumBytes); // If there is a return value, scavenge the result from the location the call // leaves it in... // if (Ret.Ty != Type::VoidTy) { unsigned DestClass = getClassB(Ret.Ty); switch (DestClass) { case cByte: case cShort: case cInt: { // Integral results are in %eax, or the appropriate portion // thereof. static const unsigned regRegMove[] = { X86::MOV8rr, X86::MOV16rr, X86::MOV32rr }; static const unsigned AReg[] = { X86::AL, X86::AX, X86::EAX }; BuildMI(BB, regRegMove[DestClass], 1, Ret.Reg).addReg(AReg[DestClass]); break; } case cFP: // Floating-point return values live in %ST(0) BuildMI(BB, X86::FpGETRESULT, 1, Ret.Reg); break; case cLong: // Long values are left in EDX:EAX BuildMI(BB, X86::MOV32rr, 1, Ret.Reg).addReg(X86::EAX); BuildMI(BB, X86::MOV32rr, 1, Ret.Reg+1).addReg(X86::EDX); break; default: assert(0 && "Unknown class!"); } } } /// visitCallInst - Push args on stack and do a procedure call instruction. void ISel::visitCallInst(CallInst &CI) { MachineInstr *TheCall; if (Function *F = CI.getCalledFunction()) { // Is it an intrinsic function call? if (Intrinsic::ID ID = (Intrinsic::ID)F->getIntrinsicID()) { visitIntrinsicCall(ID, CI); // Special intrinsics are not handled here return; } // Emit a CALL instruction with PC-relative displacement. TheCall = BuildMI(X86::CALLpcrel32, 1).addGlobalAddress(F, true); } else { // Emit an indirect call... unsigned Reg = getReg(CI.getCalledValue()); TheCall = BuildMI(X86::CALL32r, 1).addReg(Reg); } std::vector Args; for (unsigned i = 1, e = CI.getNumOperands(); i != e; ++i) Args.push_back(ValueRecord(CI.getOperand(i))); unsigned DestReg = CI.getType() != Type::VoidTy ? getReg(CI) : 0; doCall(ValueRecord(DestReg, CI.getType()), TheCall, Args); } /// LowerUnknownIntrinsicFunctionCalls - This performs a prepass over the /// function, lowering any calls to unknown intrinsic functions into the /// equivalent LLVM code. /// void ISel::LowerUnknownIntrinsicFunctionCalls(Function &F) { for (Function::iterator BB = F.begin(), E = F.end(); BB != E; ++BB) for (BasicBlock::iterator I = BB->begin(), E = BB->end(); I != E; ) if (CallInst *CI = dyn_cast(I++)) if (Function *F = CI->getCalledFunction()) switch (F->getIntrinsicID()) { case Intrinsic::not_intrinsic: case Intrinsic::vastart: case Intrinsic::vacopy: case Intrinsic::vaend: case Intrinsic::returnaddress: case Intrinsic::frameaddress: case Intrinsic::memcpy: case Intrinsic::memset: case Intrinsic::readport: case Intrinsic::writeport: // We directly implement these intrinsics break; case Intrinsic::readio: { // On X86, memory operations are in-order. Lower this intrinsic // into a volatile load. Instruction *Before = CI->getPrev(); LoadInst * LI = new LoadInst (CI->getOperand(1), "", true, CI); CI->replaceAllUsesWith (LI); BB->getInstList().erase (CI); break; } case Intrinsic::writeio: { // On X86, memory operations are in-order. Lower this intrinsic // into a volatile store. Instruction *Before = CI->getPrev(); StoreInst * LI = new StoreInst (CI->getOperand(1), CI->getOperand(2), true, CI); CI->replaceAllUsesWith (LI); BB->getInstList().erase (CI); break; } default: // All other intrinsic calls we must lower. Instruction *Before = CI->getPrev(); TM.getIntrinsicLowering().LowerIntrinsicCall(CI); if (Before) { // Move iterator to instruction after call I = Before; ++I; } else { I = BB->begin(); } } } void ISel::visitIntrinsicCall(Intrinsic::ID ID, CallInst &CI) { unsigned TmpReg1, TmpReg2; switch (ID) { case Intrinsic::vastart: // Get the address of the first vararg value... TmpReg1 = getReg(CI); addFrameReference(BuildMI(BB, X86::LEA32r, 5, TmpReg1), VarArgsFrameIndex); return; case Intrinsic::vacopy: TmpReg1 = getReg(CI); TmpReg2 = getReg(CI.getOperand(1)); BuildMI(BB, X86::MOV32rr, 1, TmpReg1).addReg(TmpReg2); return; case Intrinsic::vaend: return; // Noop on X86 case Intrinsic::returnaddress: case Intrinsic::frameaddress: TmpReg1 = getReg(CI); if (cast(CI.getOperand(1))->isNullValue()) { if (ID == Intrinsic::returnaddress) { // Just load the return address addFrameReference(BuildMI(BB, X86::MOV32rm, 4, TmpReg1), ReturnAddressIndex); } else { addFrameReference(BuildMI(BB, X86::LEA32r, 4, TmpReg1), ReturnAddressIndex, -4); } } else { // Values other than zero are not implemented yet. BuildMI(BB, X86::MOV32ri, 1, TmpReg1).addImm(0); } return; case Intrinsic::memcpy: { assert(CI.getNumOperands() == 5 && "Illegal llvm.memcpy call!"); unsigned Align = 1; if (ConstantInt *AlignC = dyn_cast(CI.getOperand(4))) { Align = AlignC->getRawValue(); if (Align == 0) Align = 1; } // Turn the byte code into # iterations unsigned CountReg; unsigned Opcode; switch (Align & 3) { case 2: // WORD aligned if (ConstantInt *I = dyn_cast(CI.getOperand(3))) { CountReg = getReg(ConstantUInt::get(Type::UIntTy, I->getRawValue()/2)); } else { CountReg = makeAnotherReg(Type::IntTy); unsigned ByteReg = getReg(CI.getOperand(3)); BuildMI(BB, X86::SHR32ri, 2, CountReg).addReg(ByteReg).addImm(1); } Opcode = X86::REP_MOVSW; break; case 0: // DWORD aligned if (ConstantInt *I = dyn_cast(CI.getOperand(3))) { CountReg = getReg(ConstantUInt::get(Type::UIntTy, I->getRawValue()/4)); } else { CountReg = makeAnotherReg(Type::IntTy); unsigned ByteReg = getReg(CI.getOperand(3)); BuildMI(BB, X86::SHR32ri, 2, CountReg).addReg(ByteReg).addImm(2); } Opcode = X86::REP_MOVSD; break; default: // BYTE aligned CountReg = getReg(CI.getOperand(3)); Opcode = X86::REP_MOVSB; break; } // No matter what the alignment is, we put the source in ESI, the // destination in EDI, and the count in ECX. TmpReg1 = getReg(CI.getOperand(1)); TmpReg2 = getReg(CI.getOperand(2)); BuildMI(BB, X86::MOV32rr, 1, X86::ECX).addReg(CountReg); BuildMI(BB, X86::MOV32rr, 1, X86::EDI).addReg(TmpReg1); BuildMI(BB, X86::MOV32rr, 1, X86::ESI).addReg(TmpReg2); BuildMI(BB, Opcode, 0); return; } case Intrinsic::memset: { assert(CI.getNumOperands() == 5 && "Illegal llvm.memset call!"); unsigned Align = 1; if (ConstantInt *AlignC = dyn_cast(CI.getOperand(4))) { Align = AlignC->getRawValue(); if (Align == 0) Align = 1; } // Turn the byte code into # iterations unsigned CountReg; unsigned Opcode; if (ConstantInt *ValC = dyn_cast(CI.getOperand(2))) { unsigned Val = ValC->getRawValue() & 255; // If the value is a constant, then we can potentially use larger copies. switch (Align & 3) { case 2: // WORD aligned if (ConstantInt *I = dyn_cast(CI.getOperand(3))) { CountReg =getReg(ConstantUInt::get(Type::UIntTy, I->getRawValue()/2)); } else { CountReg = makeAnotherReg(Type::IntTy); unsigned ByteReg = getReg(CI.getOperand(3)); BuildMI(BB, X86::SHR32ri, 2, CountReg).addReg(ByteReg).addImm(1); } BuildMI(BB, X86::MOV16ri, 1, X86::AX).addImm((Val << 8) | Val); Opcode = X86::REP_STOSW; break; case 0: // DWORD aligned if (ConstantInt *I = dyn_cast(CI.getOperand(3))) { CountReg =getReg(ConstantUInt::get(Type::UIntTy, I->getRawValue()/4)); } else { CountReg = makeAnotherReg(Type::IntTy); unsigned ByteReg = getReg(CI.getOperand(3)); BuildMI(BB, X86::SHR32ri, 2, CountReg).addReg(ByteReg).addImm(2); } Val = (Val << 8) | Val; BuildMI(BB, X86::MOV32ri, 1, X86::EAX).addImm((Val << 16) | Val); Opcode = X86::REP_STOSD; break; default: // BYTE aligned CountReg = getReg(CI.getOperand(3)); BuildMI(BB, X86::MOV8ri, 1, X86::AL).addImm(Val); Opcode = X86::REP_STOSB; break; } } else { // If it's not a constant value we are storing, just fall back. We could // try to be clever to form 16 bit and 32 bit values, but we don't yet. unsigned ValReg = getReg(CI.getOperand(2)); BuildMI(BB, X86::MOV8rr, 1, X86::AL).addReg(ValReg); CountReg = getReg(CI.getOperand(3)); Opcode = X86::REP_STOSB; } // No matter what the alignment is, we put the source in ESI, the // destination in EDI, and the count in ECX. TmpReg1 = getReg(CI.getOperand(1)); //TmpReg2 = getReg(CI.getOperand(2)); BuildMI(BB, X86::MOV32rr, 1, X86::ECX).addReg(CountReg); BuildMI(BB, X86::MOV32rr, 1, X86::EDI).addReg(TmpReg1); BuildMI(BB, Opcode, 0); return; } case Intrinsic::readport: { // First, determine that the size of the operand falls within the acceptable // range for this architecture. // if (getClassB(CI.getOperand(1)->getType()) != cShort) { std::cerr << "llvm.readport: Address size is not 16 bits\n"; exit(1); } // Now, move the I/O port address into the DX register and use the IN // instruction to get the input data. // unsigned Class = getClass(CI.getCalledFunction()->getReturnType()); unsigned DestReg = getReg(CI); // If the port is a single-byte constant, use the immediate form. if (ConstantInt *C = dyn_cast(CI.getOperand(1))) if ((C->getRawValue() & 255) == C->getRawValue()) { switch (Class) { case cByte: BuildMI(BB, X86::IN8ri, 1).addImm((unsigned char)C->getRawValue()); BuildMI(BB, X86::MOV8rr, 1, DestReg).addReg(X86::AL); return; case cShort: BuildMI(BB, X86::IN16ri, 1).addImm((unsigned char)C->getRawValue()); BuildMI(BB, X86::MOV8rr, 1, DestReg).addReg(X86::AX); return; case cInt: BuildMI(BB, X86::IN32ri, 1).addImm((unsigned char)C->getRawValue()); BuildMI(BB, X86::MOV8rr, 1, DestReg).addReg(X86::EAX); return; } } unsigned Reg = getReg(CI.getOperand(1)); BuildMI(BB, X86::MOV16rr, 1, X86::DX).addReg(Reg); switch (Class) { case cByte: BuildMI(BB, X86::IN8rr, 0); BuildMI(BB, X86::MOV8rr, 1, DestReg).addReg(X86::AL); break; case cShort: BuildMI(BB, X86::IN16rr, 0); BuildMI(BB, X86::MOV8rr, 1, DestReg).addReg(X86::AX); break; case cInt: BuildMI(BB, X86::IN32rr, 0); BuildMI(BB, X86::MOV8rr, 1, DestReg).addReg(X86::EAX); break; default: std::cerr << "Cannot do input on this data type"; exit (1); } return; } case Intrinsic::writeport: { // First, determine that the size of the operand falls within the // acceptable range for this architecture. if (getClass(CI.getOperand(2)->getType()) != cShort) { std::cerr << "llvm.writeport: Address size is not 16 bits\n"; exit(1); } unsigned Class = getClassB(CI.getOperand(1)->getType()); unsigned ValReg = getReg(CI.getOperand(1)); switch (Class) { case cByte: BuildMI(BB, X86::MOV8rr, 1, X86::AL).addReg(ValReg); break; case cShort: BuildMI(BB, X86::MOV16rr, 1, X86::AX).addReg(ValReg); break; case cInt: BuildMI(BB, X86::MOV32rr, 1, X86::EAX).addReg(ValReg); break; default: std::cerr << "llvm.writeport: invalid data type for X86 target"; exit(1); } // If the port is a single-byte constant, use the immediate form. if (ConstantInt *C = dyn_cast(CI.getOperand(2))) if ((C->getRawValue() & 255) == C->getRawValue()) { static const unsigned O[] = { X86::OUT8ir, X86::OUT16ir, X86::OUT32ir }; BuildMI(BB, O[Class], 1).addImm((unsigned char)C->getRawValue()); return; } // Otherwise, move the I/O port address into the DX register and the value // to write into the AL/AX/EAX register. static const unsigned Opc[] = { X86::OUT8rr, X86::OUT16rr, X86::OUT32rr }; unsigned Reg = getReg(CI.getOperand(2)); BuildMI(BB, X86::MOV16rr, 1, X86::DX).addReg(Reg); BuildMI(BB, Opc[Class], 0); return; } default: assert(0 && "Error: unknown intrinsics should have been lowered!"); } } static bool isSafeToFoldLoadIntoInstruction(LoadInst &LI, Instruction &User) { if (LI.getParent() != User.getParent()) return false; BasicBlock::iterator It = &LI; // Check all of the instructions between the load and the user. We should // really use alias analysis here, but for now we just do something simple. for (++It; It != BasicBlock::iterator(&User); ++It) { switch (It->getOpcode()) { case Instruction::Free: case Instruction::Store: case Instruction::Call: case Instruction::Invoke: return false; case Instruction::Load: if (cast(It)->isVolatile() && LI.isVolatile()) return false; break; } } return true; } /// visitSimpleBinary - Implement simple binary operators for integral types... /// OperatorClass is one of: 0 for Add, 1 for Sub, 2 for And, 3 for Or, 4 for /// Xor. /// void ISel::visitSimpleBinary(BinaryOperator &B, unsigned OperatorClass) { unsigned DestReg = getReg(B); MachineBasicBlock::iterator MI = BB->end(); Value *Op0 = B.getOperand(0), *Op1 = B.getOperand(1); unsigned Class = getClassB(B.getType()); // Special case: op Reg, load [mem] if (isa(Op0) && !isa(Op1) && Class != cLong && isSafeToFoldLoadIntoInstruction(*cast(Op0), B)) if (!B.swapOperands()) std::swap(Op0, Op1); // Make sure any loads are in the RHS. if (isa(Op1) && Class != cLong && isSafeToFoldLoadIntoInstruction(*cast(Op1), B)) { unsigned Opcode; if (Class != cFP) { static const unsigned OpcodeTab[][3] = { // Arithmetic operators { X86::ADD8rm, X86::ADD16rm, X86::ADD32rm }, // ADD { X86::SUB8rm, X86::SUB16rm, X86::SUB32rm }, // SUB // Bitwise operators { X86::AND8rm, X86::AND16rm, X86::AND32rm }, // AND { X86:: OR8rm, X86:: OR16rm, X86:: OR32rm }, // OR { X86::XOR8rm, X86::XOR16rm, X86::XOR32rm }, // XOR }; Opcode = OpcodeTab[OperatorClass][Class]; } else { static const unsigned OpcodeTab[][2] = { { X86::FADD32m, X86::FADD64m }, // ADD { X86::FSUB32m, X86::FSUB64m }, // SUB }; const Type *Ty = Op0->getType(); assert(Ty == Type::FloatTy || Ty == Type::DoubleTy && "Unknown FP type!"); Opcode = OpcodeTab[OperatorClass][Ty == Type::DoubleTy]; } unsigned Op0r = getReg(Op0); if (AllocaInst *AI = dyn_castFixedAlloca(cast(Op1)->getOperand(0))) { unsigned FI = getFixedSizedAllocaFI(AI); addFrameReference(BuildMI(BB, Opcode, 5, DestReg).addReg(Op0r), FI); } else { unsigned BaseReg, Scale, IndexReg, Disp; getAddressingMode(cast(Op1)->getOperand(0), BaseReg, Scale, IndexReg, Disp); addFullAddress(BuildMI(BB, Opcode, 5, DestReg).addReg(Op0r), BaseReg, Scale, IndexReg, Disp); } return; } // If this is a floating point subtract, check to see if we can fold the first // operand in. if (Class == cFP && OperatorClass == 1 && isa(Op0) && isSafeToFoldLoadIntoInstruction(*cast(Op0), B)) { const Type *Ty = Op0->getType(); assert(Ty == Type::FloatTy || Ty == Type::DoubleTy && "Unknown FP type!"); unsigned Opcode = Ty == Type::FloatTy ? X86::FSUBR32m : X86::FSUBR64m; unsigned Op1r = getReg(Op1); if (AllocaInst *AI = dyn_castFixedAlloca(cast(Op0)->getOperand(0))) { unsigned FI = getFixedSizedAllocaFI(AI); addFrameReference(BuildMI(BB, Opcode, 5, DestReg).addReg(Op1r), FI); } else { unsigned BaseReg, Scale, IndexReg, Disp; getAddressingMode(cast(Op0)->getOperand(0), BaseReg, Scale, IndexReg, Disp); addFullAddress(BuildMI(BB, Opcode, 5, DestReg).addReg(Op1r), BaseReg, Scale, IndexReg, Disp); } return; } emitSimpleBinaryOperation(BB, MI, Op0, Op1, OperatorClass, DestReg); } /// emitBinaryFPOperation - This method handles emission of floating point /// Add (0), Sub (1), Mul (2), and Div (3) operations. void ISel::emitBinaryFPOperation(MachineBasicBlock *BB, MachineBasicBlock::iterator IP, Value *Op0, Value *Op1, unsigned OperatorClass, unsigned DestReg) { // Special case: op Reg, if (ConstantFP *Op1C = dyn_cast(Op1)) if (!Op1C->isExactlyValue(+0.0) && !Op1C->isExactlyValue(+1.0)) { // Create a constant pool entry for this constant. MachineConstantPool *CP = F->getConstantPool(); unsigned CPI = CP->getConstantPoolIndex(Op1C); const Type *Ty = Op1->getType(); static const unsigned OpcodeTab[][4] = { { X86::FADD32m, X86::FSUB32m, X86::FMUL32m, X86::FDIV32m }, // Float { X86::FADD64m, X86::FSUB64m, X86::FMUL64m, X86::FDIV64m }, // Double }; assert(Ty == Type::FloatTy || Ty == Type::DoubleTy && "Unknown FP type!"); unsigned Opcode = OpcodeTab[Ty != Type::FloatTy][OperatorClass]; unsigned Op0r = getReg(Op0, BB, IP); addConstantPoolReference(BuildMI(*BB, IP, Opcode, 5, DestReg).addReg(Op0r), CPI); return; } // Special case: R1 = op , R2 if (ConstantFP *CFP = dyn_cast(Op0)) if (CFP->isExactlyValue(-0.0) && OperatorClass == 1) { // -0.0 - X === -X unsigned op1Reg = getReg(Op1, BB, IP); BuildMI(*BB, IP, X86::FCHS, 1, DestReg).addReg(op1Reg); return; } else if (!CFP->isExactlyValue(+0.0) && !CFP->isExactlyValue(+1.0)) { // R1 = op CST, R2 --> R1 = opr R2, CST // Create a constant pool entry for this constant. MachineConstantPool *CP = F->getConstantPool(); unsigned CPI = CP->getConstantPoolIndex(CFP); const Type *Ty = CFP->getType(); static const unsigned OpcodeTab[][4] = { { X86::FADD32m, X86::FSUBR32m, X86::FMUL32m, X86::FDIVR32m }, // Float { X86::FADD64m, X86::FSUBR64m, X86::FMUL64m, X86::FDIVR64m }, // Double }; assert(Ty == Type::FloatTy||Ty == Type::DoubleTy && "Unknown FP type!"); unsigned Opcode = OpcodeTab[Ty != Type::FloatTy][OperatorClass]; unsigned Op1r = getReg(Op1, BB, IP); addConstantPoolReference(BuildMI(*BB, IP, Opcode, 5, DestReg).addReg(Op1r), CPI); return; } // General case. static const unsigned OpcodeTab[4] = { X86::FpADD, X86::FpSUB, X86::FpMUL, X86::FpDIV }; unsigned Opcode = OpcodeTab[OperatorClass]; unsigned Op0r = getReg(Op0, BB, IP); unsigned Op1r = getReg(Op1, BB, IP); BuildMI(*BB, IP, Opcode, 2, DestReg).addReg(Op0r).addReg(Op1r); } /// emitSimpleBinaryOperation - Implement simple binary operators for integral /// types... OperatorClass is one of: 0 for Add, 1 for Sub, 2 for And, 3 for /// Or, 4 for Xor. /// /// emitSimpleBinaryOperation - Common code shared between visitSimpleBinary /// and constant expression support. /// void ISel::emitSimpleBinaryOperation(MachineBasicBlock *MBB, MachineBasicBlock::iterator IP, Value *Op0, Value *Op1, unsigned OperatorClass, unsigned DestReg) { unsigned Class = getClassB(Op0->getType()); if (Class == cFP) { assert(OperatorClass < 2 && "No logical ops for FP!"); emitBinaryFPOperation(MBB, IP, Op0, Op1, OperatorClass, DestReg); return; } // sub 0, X -> neg X if (ConstantInt *CI = dyn_cast(Op0)) if (OperatorClass == 1 && CI->isNullValue()) { unsigned op1Reg = getReg(Op1, MBB, IP); static unsigned const NEGTab[] = { X86::NEG8r, X86::NEG16r, X86::NEG32r, 0, X86::NEG32r }; BuildMI(*MBB, IP, NEGTab[Class], 1, DestReg).addReg(op1Reg); if (Class == cLong) { // We just emitted: Dl = neg Sl // Now emit : T = addc Sh, 0 // : Dh = neg T unsigned T = makeAnotherReg(Type::IntTy); BuildMI(*MBB, IP, X86::ADC32ri, 2, T).addReg(op1Reg+1).addImm(0); BuildMI(*MBB, IP, X86::NEG32r, 1, DestReg+1).addReg(T); } return; } // Special case: op Reg, if (ConstantInt *Op1C = dyn_cast(Op1)) { unsigned Op0r = getReg(Op0, MBB, IP); // xor X, -1 -> not X if (OperatorClass == 4 && Op1C->isAllOnesValue()) { static unsigned const NOTTab[] = { X86::NOT8r, X86::NOT16r, X86::NOT32r, 0, X86::NOT32r }; BuildMI(*MBB, IP, NOTTab[Class], 1, DestReg).addReg(Op0r); if (Class == cLong) // Invert the top part too BuildMI(*MBB, IP, X86::NOT32r, 1, DestReg+1).addReg(Op0r+1); return; } // add X, -1 -> dec X if (OperatorClass == 0 && Op1C->isAllOnesValue() && Class != cLong) { // Note that we can't use dec for 64-bit decrements, because it does not // set the carry flag! static unsigned const DECTab[] = { X86::DEC8r, X86::DEC16r, X86::DEC32r }; BuildMI(*MBB, IP, DECTab[Class], 1, DestReg).addReg(Op0r); return; } // add X, 1 -> inc X if (OperatorClass == 0 && Op1C->equalsInt(1) && Class != cLong) { // Note that we can't use inc for 64-bit increments, because it does not // set the carry flag! static unsigned const INCTab[] = { X86::INC8r, X86::INC16r, X86::INC32r }; BuildMI(*MBB, IP, INCTab[Class], 1, DestReg).addReg(Op0r); return; } static const unsigned OpcodeTab[][5] = { // Arithmetic operators { X86::ADD8ri, X86::ADD16ri, X86::ADD32ri, 0, X86::ADD32ri }, // ADD { X86::SUB8ri, X86::SUB16ri, X86::SUB32ri, 0, X86::SUB32ri }, // SUB // Bitwise operators { X86::AND8ri, X86::AND16ri, X86::AND32ri, 0, X86::AND32ri }, // AND { X86:: OR8ri, X86:: OR16ri, X86:: OR32ri, 0, X86::OR32ri }, // OR { X86::XOR8ri, X86::XOR16ri, X86::XOR32ri, 0, X86::XOR32ri }, // XOR }; unsigned Opcode = OpcodeTab[OperatorClass][Class]; unsigned Op1l = cast(Op1C)->getRawValue(); if (Class != cLong) { BuildMI(*MBB, IP, Opcode, 2, DestReg).addReg(Op0r).addImm(Op1l); return; } // If this is a long value and the high or low bits have a special // property, emit some special cases. unsigned Op1h = cast(Op1C)->getRawValue() >> 32LL; // If the constant is zero in the low 32-bits, just copy the low part // across and apply the normal 32-bit operation to the high parts. There // will be no carry or borrow into the top. if (Op1l == 0) { if (OperatorClass != 2) // All but and... BuildMI(*MBB, IP, X86::MOV32rr, 1, DestReg).addReg(Op0r); else BuildMI(*MBB, IP, X86::MOV32ri, 1, DestReg).addImm(0); BuildMI(*MBB, IP, OpcodeTab[OperatorClass][cLong], 2, DestReg+1) .addReg(Op0r+1).addImm(Op1h); return; } // If this is a logical operation and the top 32-bits are zero, just // operate on the lower 32. if (Op1h == 0 && OperatorClass > 1) { BuildMI(*MBB, IP, OpcodeTab[OperatorClass][cLong], 2, DestReg) .addReg(Op0r).addImm(Op1l); if (OperatorClass != 2) // All but and BuildMI(*MBB, IP, X86::MOV32rr, 1, DestReg+1).addReg(Op0r+1); else BuildMI(*MBB, IP, X86::MOV32ri, 1, DestReg+1).addImm(0); return; } // TODO: We could handle lots of other special cases here, such as AND'ing // with 0xFFFFFFFF00000000 -> noop, etc. // Otherwise, code generate the full operation with a constant. static const unsigned TopTab[] = { X86::ADC32ri, X86::SBB32ri, X86::AND32ri, X86::OR32ri, X86::XOR32ri }; BuildMI(*MBB, IP, Opcode, 2, DestReg).addReg(Op0r).addImm(Op1l); BuildMI(*MBB, IP, TopTab[OperatorClass], 2, DestReg+1) .addReg(Op0r+1).addImm(Op1h); return; } // Finally, handle the general case now. static const unsigned OpcodeTab[][5] = { // Arithmetic operators { X86::ADD8rr, X86::ADD16rr, X86::ADD32rr, 0, X86::ADD32rr }, // ADD { X86::SUB8rr, X86::SUB16rr, X86::SUB32rr, 0, X86::SUB32rr }, // SUB // Bitwise operators { X86::AND8rr, X86::AND16rr, X86::AND32rr, 0, X86::AND32rr }, // AND { X86:: OR8rr, X86:: OR16rr, X86:: OR32rr, 0, X86:: OR32rr }, // OR { X86::XOR8rr, X86::XOR16rr, X86::XOR32rr, 0, X86::XOR32rr }, // XOR }; unsigned Opcode = OpcodeTab[OperatorClass][Class]; unsigned Op0r = getReg(Op0, MBB, IP); unsigned Op1r = getReg(Op1, MBB, IP); BuildMI(*MBB, IP, Opcode, 2, DestReg).addReg(Op0r).addReg(Op1r); if (Class == cLong) { // Handle the upper 32 bits of long values... static const unsigned TopTab[] = { X86::ADC32rr, X86::SBB32rr, X86::AND32rr, X86::OR32rr, X86::XOR32rr }; BuildMI(*MBB, IP, TopTab[OperatorClass], 2, DestReg+1).addReg(Op0r+1).addReg(Op1r+1); } } /// doMultiply - Emit appropriate instructions to multiply together the /// registers op0Reg and op1Reg, and put the result in DestReg. The type of the /// result should be given as DestTy. /// void ISel::doMultiply(MachineBasicBlock *MBB, MachineBasicBlock::iterator MBBI, unsigned DestReg, const Type *DestTy, unsigned op0Reg, unsigned op1Reg) { unsigned Class = getClass(DestTy); switch (Class) { case cInt: case cShort: BuildMI(*MBB, MBBI, Class == cInt ? X86::IMUL32rr:X86::IMUL16rr, 2, DestReg) .addReg(op0Reg).addReg(op1Reg); return; case cByte: // Must use the MUL instruction, which forces use of AL... BuildMI(*MBB, MBBI, X86::MOV8rr, 1, X86::AL).addReg(op0Reg); BuildMI(*MBB, MBBI, X86::MUL8r, 1).addReg(op1Reg); BuildMI(*MBB, MBBI, X86::MOV8rr, 1, DestReg).addReg(X86::AL); return; default: case cLong: assert(0 && "doMultiply cannot operate on LONG values!"); } } // ExactLog2 - This function solves for (Val == 1 << (N-1)) and returns N. It // returns zero when the input is not exactly a power of two. static unsigned ExactLog2(unsigned Val) { if (Val == 0 || (Val & (Val-1))) return 0; unsigned Count = 0; while (Val != 1) { Val >>= 1; ++Count; } return Count+1; } /// doMultiplyConst - This function is specialized to efficiently codegen an 8, /// 16, or 32-bit integer multiply by a constant. void ISel::doMultiplyConst(MachineBasicBlock *MBB, MachineBasicBlock::iterator IP, unsigned DestReg, const Type *DestTy, unsigned op0Reg, unsigned ConstRHS) { static const unsigned MOVrrTab[] = {X86::MOV8rr, X86::MOV16rr, X86::MOV32rr}; static const unsigned MOVriTab[] = {X86::MOV8ri, X86::MOV16ri, X86::MOV32ri}; static const unsigned ADDrrTab[] = {X86::ADD8rr, X86::ADD16rr, X86::ADD32rr}; unsigned Class = getClass(DestTy); // Handle special cases here. switch (ConstRHS) { case 0: BuildMI(*MBB, IP, MOVriTab[Class], 1, DestReg).addImm(0); return; case 1: BuildMI(*MBB, IP, MOVrrTab[Class], 1, DestReg).addReg(op0Reg); return; case 2: BuildMI(*MBB, IP, ADDrrTab[Class], 1,DestReg).addReg(op0Reg).addReg(op0Reg); return; case 3: case 5: case 9: if (Class == cInt) { addFullAddress(BuildMI(*MBB, IP, X86::LEA32r, 5, DestReg), op0Reg, ConstRHS-1, op0Reg, 0); return; } } // If the element size is exactly a power of 2, use a shift to get it. if (unsigned Shift = ExactLog2(ConstRHS)) { switch (Class) { default: assert(0 && "Unknown class for this function!"); case cByte: BuildMI(*MBB, IP, X86::SHL32ri,2, DestReg).addReg(op0Reg).addImm(Shift-1); return; case cShort: BuildMI(*MBB, IP, X86::SHL32ri,2, DestReg).addReg(op0Reg).addImm(Shift-1); return; case cInt: BuildMI(*MBB, IP, X86::SHL32ri,2, DestReg).addReg(op0Reg).addImm(Shift-1); return; } } if (Class == cShort) { BuildMI(*MBB, IP, X86::IMUL16rri,2,DestReg).addReg(op0Reg).addImm(ConstRHS); return; } else if (Class == cInt) { BuildMI(*MBB, IP, X86::IMUL32rri,2,DestReg).addReg(op0Reg).addImm(ConstRHS); return; } // Most general case, emit a normal multiply... unsigned TmpReg = makeAnotherReg(DestTy); BuildMI(*MBB, IP, MOVriTab[Class], 1, TmpReg).addImm(ConstRHS); // Emit a MUL to multiply the register holding the index by // elementSize, putting the result in OffsetReg. doMultiply(MBB, IP, DestReg, DestTy, op0Reg, TmpReg); } /// visitMul - Multiplies are not simple binary operators because they must deal /// with the EAX register explicitly. /// void ISel::visitMul(BinaryOperator &I) { unsigned ResultReg = getReg(I); Value *Op0 = I.getOperand(0); Value *Op1 = I.getOperand(1); // Fold loads into floating point multiplies. if (getClass(Op0->getType()) == cFP) { if (isa(Op0) && !isa(Op1)) if (!I.swapOperands()) std::swap(Op0, Op1); // Make sure any loads are in the RHS. if (LoadInst *LI = dyn_cast(Op1)) if (isSafeToFoldLoadIntoInstruction(*LI, I)) { const Type *Ty = Op0->getType(); assert(Ty == Type::FloatTy||Ty == Type::DoubleTy && "Unknown FP type!"); unsigned Opcode = Ty == Type::FloatTy ? X86::FMUL32m : X86::FMUL64m; unsigned Op0r = getReg(Op0); if (AllocaInst *AI = dyn_castFixedAlloca(LI->getOperand(0))) { unsigned FI = getFixedSizedAllocaFI(AI); addFrameReference(BuildMI(BB, Opcode, 5, ResultReg).addReg(Op0r), FI); } else { unsigned BaseReg, Scale, IndexReg, Disp; getAddressingMode(LI->getOperand(0), BaseReg, Scale, IndexReg, Disp); addFullAddress(BuildMI(BB, Opcode, 5, ResultReg).addReg(Op0r), BaseReg, Scale, IndexReg, Disp); } return; } } MachineBasicBlock::iterator IP = BB->end(); emitMultiply(BB, IP, Op0, Op1, ResultReg); } void ISel::emitMultiply(MachineBasicBlock *MBB, MachineBasicBlock::iterator IP, Value *Op0, Value *Op1, unsigned DestReg) { MachineBasicBlock &BB = *MBB; TypeClass Class = getClass(Op0->getType()); // Simple scalar multiply? unsigned Op0Reg = getReg(Op0, &BB, IP); switch (Class) { case cByte: case cShort: case cInt: if (ConstantInt *CI = dyn_cast(Op1)) { unsigned Val = (unsigned)CI->getRawValue(); // Isn't a 64-bit constant doMultiplyConst(&BB, IP, DestReg, Op0->getType(), Op0Reg, Val); } else { unsigned Op1Reg = getReg(Op1, &BB, IP); doMultiply(&BB, IP, DestReg, Op1->getType(), Op0Reg, Op1Reg); } return; case cFP: emitBinaryFPOperation(MBB, IP, Op0, Op1, 2, DestReg); return; case cLong: break; } // Long value. We have to do things the hard way... if (ConstantInt *CI = dyn_cast(Op1)) { unsigned CLow = CI->getRawValue(); unsigned CHi = CI->getRawValue() >> 32; if (CLow == 0) { // If the low part of the constant is all zeros, things are simple. BuildMI(BB, IP, X86::MOV32ri, 1, DestReg).addImm(0); doMultiplyConst(&BB, IP, DestReg+1, Type::UIntTy, Op0Reg, CHi); return; } // Multiply the two low parts... capturing carry into EDX unsigned OverflowReg = 0; if (CLow == 1) { BuildMI(BB, IP, X86::MOV32rr, 1, DestReg).addReg(Op0Reg); } else { unsigned Op1RegL = makeAnotherReg(Type::UIntTy); OverflowReg = makeAnotherReg(Type::UIntTy); BuildMI(BB, IP, X86::MOV32ri, 1, Op1RegL).addImm(CLow); BuildMI(BB, IP, X86::MOV32rr, 1, X86::EAX).addReg(Op0Reg); BuildMI(BB, IP, X86::MUL32r, 1).addReg(Op1RegL); // AL*BL BuildMI(BB, IP, X86::MOV32rr, 1, DestReg).addReg(X86::EAX); // AL*BL BuildMI(BB, IP, X86::MOV32rr, 1, OverflowReg).addReg(X86::EDX); // AL*BL >> 32 } unsigned AHBLReg = makeAnotherReg(Type::UIntTy); // AH*BL doMultiplyConst(&BB, IP, AHBLReg, Type::UIntTy, Op0Reg+1, CLow); unsigned AHBLplusOverflowReg; if (OverflowReg) { AHBLplusOverflowReg = makeAnotherReg(Type::UIntTy); BuildMI(BB, IP, X86::ADD32rr, 2, // AH*BL+(AL*BL >> 32) AHBLplusOverflowReg).addReg(AHBLReg).addReg(OverflowReg); } else { AHBLplusOverflowReg = AHBLReg; } if (CHi == 0) { BuildMI(BB, IP, X86::MOV32rr, 1, DestReg+1).addReg(AHBLplusOverflowReg); } else { unsigned ALBHReg = makeAnotherReg(Type::UIntTy); // AL*BH doMultiplyConst(&BB, IP, ALBHReg, Type::UIntTy, Op0Reg, CHi); BuildMI(BB, IP, X86::ADD32rr, 2, // AL*BH + AH*BL + (AL*BL >> 32) DestReg+1).addReg(AHBLplusOverflowReg).addReg(ALBHReg); } return; } // General 64x64 multiply unsigned Op1Reg = getReg(Op1, &BB, IP); // Multiply the two low parts... capturing carry into EDX BuildMI(BB, IP, X86::MOV32rr, 1, X86::EAX).addReg(Op0Reg); BuildMI(BB, IP, X86::MUL32r, 1).addReg(Op1Reg); // AL*BL unsigned OverflowReg = makeAnotherReg(Type::UIntTy); BuildMI(BB, IP, X86::MOV32rr, 1, DestReg).addReg(X86::EAX); // AL*BL BuildMI(BB, IP, X86::MOV32rr, 1, OverflowReg).addReg(X86::EDX); // AL*BL >> 32 unsigned AHBLReg = makeAnotherReg(Type::UIntTy); // AH*BL BuildMI(BB, IP, X86::IMUL32rr, 2, AHBLReg).addReg(Op0Reg+1).addReg(Op1Reg); unsigned AHBLplusOverflowReg = makeAnotherReg(Type::UIntTy); BuildMI(BB, IP, X86::ADD32rr, 2, // AH*BL+(AL*BL >> 32) AHBLplusOverflowReg).addReg(AHBLReg).addReg(OverflowReg); unsigned ALBHReg = makeAnotherReg(Type::UIntTy); // AL*BH BuildMI(BB, IP, X86::IMUL32rr, 2, ALBHReg).addReg(Op0Reg).addReg(Op1Reg+1); BuildMI(BB, IP, X86::ADD32rr, 2, // AL*BH + AH*BL + (AL*BL >> 32) DestReg+1).addReg(AHBLplusOverflowReg).addReg(ALBHReg); } /// visitDivRem - Handle division and remainder instructions... these /// instruction both require the same instructions to be generated, they just /// select the result from a different register. Note that both of these /// instructions work differently for signed and unsigned operands. /// void ISel::visitDivRem(BinaryOperator &I) { unsigned ResultReg = getReg(I); Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1); // Fold loads into floating point divides. if (getClass(Op0->getType()) == cFP) { if (LoadInst *LI = dyn_cast(Op1)) if (isSafeToFoldLoadIntoInstruction(*LI, I)) { const Type *Ty = Op0->getType(); assert(Ty == Type::FloatTy||Ty == Type::DoubleTy && "Unknown FP type!"); unsigned Opcode = Ty == Type::FloatTy ? X86::FDIV32m : X86::FDIV64m; unsigned Op0r = getReg(Op0); if (AllocaInst *AI = dyn_castFixedAlloca(LI->getOperand(0))) { unsigned FI = getFixedSizedAllocaFI(AI); addFrameReference(BuildMI(BB, Opcode, 5, ResultReg).addReg(Op0r), FI); } else { unsigned BaseReg, Scale, IndexReg, Disp; getAddressingMode(LI->getOperand(0), BaseReg, Scale, IndexReg, Disp); addFullAddress(BuildMI(BB, Opcode, 5, ResultReg).addReg(Op0r), BaseReg, Scale, IndexReg, Disp); } return; } if (LoadInst *LI = dyn_cast(Op0)) if (isSafeToFoldLoadIntoInstruction(*LI, I)) { const Type *Ty = Op0->getType(); assert(Ty == Type::FloatTy||Ty == Type::DoubleTy && "Unknown FP type!"); unsigned Opcode = Ty == Type::FloatTy ? X86::FDIVR32m : X86::FDIVR64m; unsigned Op1r = getReg(Op1); if (AllocaInst *AI = dyn_castFixedAlloca(LI->getOperand(0))) { unsigned FI = getFixedSizedAllocaFI(AI); addFrameReference(BuildMI(BB, Opcode, 5, ResultReg).addReg(Op1r), FI); } else { unsigned BaseReg, Scale, IndexReg, Disp; getAddressingMode(LI->getOperand(0), BaseReg, Scale, IndexReg, Disp); addFullAddress(BuildMI(BB, Opcode, 5, ResultReg).addReg(Op1r), BaseReg, Scale, IndexReg, Disp); } return; } } MachineBasicBlock::iterator IP = BB->end(); emitDivRemOperation(BB, IP, Op0, Op1, I.getOpcode() == Instruction::Div, ResultReg); } void ISel::emitDivRemOperation(MachineBasicBlock *BB, MachineBasicBlock::iterator IP, Value *Op0, Value *Op1, bool isDiv, unsigned ResultReg) { const Type *Ty = Op0->getType(); unsigned Class = getClass(Ty); switch (Class) { case cFP: // Floating point divide if (isDiv) { emitBinaryFPOperation(BB, IP, Op0, Op1, 3, ResultReg); return; } else { // Floating point remainder... unsigned Op0Reg = getReg(Op0, BB, IP); unsigned Op1Reg = getReg(Op1, BB, IP); MachineInstr *TheCall = BuildMI(X86::CALLpcrel32, 1).addExternalSymbol("fmod", true); std::vector Args; Args.push_back(ValueRecord(Op0Reg, Type::DoubleTy)); Args.push_back(ValueRecord(Op1Reg, Type::DoubleTy)); doCall(ValueRecord(ResultReg, Type::DoubleTy), TheCall, Args); } return; case cLong: { static const char *FnName[] = { "__moddi3", "__divdi3", "__umoddi3", "__udivdi3" }; unsigned Op0Reg = getReg(Op0, BB, IP); unsigned Op1Reg = getReg(Op1, BB, IP); unsigned NameIdx = Ty->isUnsigned()*2 + isDiv; MachineInstr *TheCall = BuildMI(X86::CALLpcrel32, 1).addExternalSymbol(FnName[NameIdx], true); std::vector Args; Args.push_back(ValueRecord(Op0Reg, Type::LongTy)); Args.push_back(ValueRecord(Op1Reg, Type::LongTy)); doCall(ValueRecord(ResultReg, Type::LongTy), TheCall, Args); return; } case cByte: case cShort: case cInt: break; // Small integrals, handled below... default: assert(0 && "Unknown class!"); } static const unsigned MovOpcode[]={ X86::MOV8rr, X86::MOV16rr, X86::MOV32rr }; static const unsigned NEGOpcode[] = { X86::NEG8r, X86::NEG16r, X86::NEG32r }; static const unsigned SAROpcode[]={ X86::SAR8ri, X86::SAR16ri, X86::SAR32ri }; static const unsigned SHROpcode[]={ X86::SHR8ri, X86::SHR16ri, X86::SHR32ri }; static const unsigned ADDOpcode[]={ X86::ADD8rr, X86::ADD16rr, X86::ADD32rr }; // Special case signed division by power of 2. if (isDiv) if (ConstantSInt *CI = dyn_cast(Op1)) { assert(Class != cLong && "This doesn't handle 64-bit divides!"); int V = CI->getValue(); if (V == 1) { // X /s 1 => X unsigned Op0Reg = getReg(Op0, BB, IP); BuildMI(*BB, IP, MovOpcode[Class], 1, ResultReg).addReg(Op0Reg); return; } if (V == -1) { // X /s -1 => -X unsigned Op0Reg = getReg(Op0, BB, IP); BuildMI(*BB, IP, NEGOpcode[Class], 1, ResultReg).addReg(Op0Reg); return; } bool isNeg = false; if (V < 0) { // Not a positive power of 2? V = -V; isNeg = true; // Maybe it's a negative power of 2. } if (unsigned Log = ExactLog2(V)) { --Log; unsigned Op0Reg = getReg(Op0, BB, IP); unsigned TmpReg = makeAnotherReg(Op0->getType()); if (Log != 1) BuildMI(*BB, IP, SAROpcode[Class], 2, TmpReg) .addReg(Op0Reg).addImm(Log-1); else BuildMI(*BB, IP, MovOpcode[Class], 1, TmpReg).addReg(Op0Reg); unsigned TmpReg2 = makeAnotherReg(Op0->getType()); BuildMI(*BB, IP, SHROpcode[Class], 2, TmpReg2) .addReg(TmpReg).addImm(32-Log); unsigned TmpReg3 = makeAnotherReg(Op0->getType()); BuildMI(*BB, IP, ADDOpcode[Class], 2, TmpReg3) .addReg(Op0Reg).addReg(TmpReg2); unsigned TmpReg4 = isNeg ? makeAnotherReg(Op0->getType()) : ResultReg; BuildMI(*BB, IP, SAROpcode[Class], 2, TmpReg4) .addReg(Op0Reg).addImm(Log); if (isNeg) BuildMI(*BB, IP, NEGOpcode[Class], 1, ResultReg).addReg(TmpReg4); return; } } static const unsigned Regs[] ={ X86::AL , X86::AX , X86::EAX }; static const unsigned ClrOpcode[]={ X86::MOV8ri, X86::MOV16ri, X86::MOV32ri }; static const unsigned ExtRegs[] ={ X86::AH , X86::DX , X86::EDX }; static const unsigned DivOpcode[][4] = { { X86::DIV8r , X86::DIV16r , X86::DIV32r , 0 }, // Unsigned division { X86::IDIV8r, X86::IDIV16r, X86::IDIV32r, 0 }, // Signed division }; unsigned Reg = Regs[Class]; unsigned ExtReg = ExtRegs[Class]; // Put the first operand into one of the A registers... unsigned Op0Reg = getReg(Op0, BB, IP); unsigned Op1Reg = getReg(Op1, BB, IP); BuildMI(*BB, IP, MovOpcode[Class], 1, Reg).addReg(Op0Reg); if (Ty->isSigned()) { // Emit a sign extension instruction... unsigned ShiftResult = makeAnotherReg(Op0->getType()); BuildMI(*BB, IP, SAROpcode[Class], 2,ShiftResult).addReg(Op0Reg).addImm(31); BuildMI(*BB, IP, MovOpcode[Class], 1, ExtReg).addReg(ShiftResult); // Emit the appropriate divide or remainder instruction... BuildMI(*BB, IP, DivOpcode[1][Class], 1).addReg(Op1Reg); } else { // If unsigned, emit a zeroing instruction... (reg = 0) BuildMI(*BB, IP, ClrOpcode[Class], 2, ExtReg).addImm(0); // Emit the appropriate divide or remainder instruction... BuildMI(*BB, IP, DivOpcode[0][Class], 1).addReg(Op1Reg); } // Figure out which register we want to pick the result out of... unsigned DestReg = isDiv ? Reg : ExtReg; // Put the result into the destination register... BuildMI(*BB, IP, MovOpcode[Class], 1, ResultReg).addReg(DestReg); } /// Shift instructions: 'shl', 'sar', 'shr' - Some special cases here /// for constant immediate shift values, and for constant immediate /// shift values equal to 1. Even the general case is sort of special, /// because the shift amount has to be in CL, not just any old register. /// void ISel::visitShiftInst(ShiftInst &I) { MachineBasicBlock::iterator IP = BB->end (); emitShiftOperation (BB, IP, I.getOperand (0), I.getOperand (1), I.getOpcode () == Instruction::Shl, I.getType (), getReg (I)); } /// emitShiftOperation - Common code shared between visitShiftInst and /// constant expression support. void ISel::emitShiftOperation(MachineBasicBlock *MBB, MachineBasicBlock::iterator IP, Value *Op, Value *ShiftAmount, bool isLeftShift, const Type *ResultTy, unsigned DestReg) { unsigned SrcReg = getReg (Op, MBB, IP); bool isSigned = ResultTy->isSigned (); unsigned Class = getClass (ResultTy); static const unsigned ConstantOperand[][4] = { { X86::SHR8ri, X86::SHR16ri, X86::SHR32ri, X86::SHRD32rri8 }, // SHR { X86::SAR8ri, X86::SAR16ri, X86::SAR32ri, X86::SHRD32rri8 }, // SAR { X86::SHL8ri, X86::SHL16ri, X86::SHL32ri, X86::SHLD32rri8 }, // SHL { X86::SHL8ri, X86::SHL16ri, X86::SHL32ri, X86::SHLD32rri8 }, // SAL = SHL }; static const unsigned NonConstantOperand[][4] = { { X86::SHR8rCL, X86::SHR16rCL, X86::SHR32rCL }, // SHR { X86::SAR8rCL, X86::SAR16rCL, X86::SAR32rCL }, // SAR { X86::SHL8rCL, X86::SHL16rCL, X86::SHL32rCL }, // SHL { X86::SHL8rCL, X86::SHL16rCL, X86::SHL32rCL }, // SAL = SHL }; // Longs, as usual, are handled specially... if (Class == cLong) { // If we have a constant shift, we can generate much more efficient code // than otherwise... // if (ConstantUInt *CUI = dyn_cast(ShiftAmount)) { unsigned Amount = CUI->getValue(); if (Amount < 32) { const unsigned *Opc = ConstantOperand[isLeftShift*2+isSigned]; if (isLeftShift) { BuildMI(*MBB, IP, Opc[3], 3, DestReg+1).addReg(SrcReg+1).addReg(SrcReg).addImm(Amount); BuildMI(*MBB, IP, Opc[2], 2, DestReg).addReg(SrcReg).addImm(Amount); } else { BuildMI(*MBB, IP, Opc[3], 3, DestReg).addReg(SrcReg ).addReg(SrcReg+1).addImm(Amount); BuildMI(*MBB, IP, Opc[2],2,DestReg+1).addReg(SrcReg+1).addImm(Amount); } } else { // Shifting more than 32 bits Amount -= 32; if (isLeftShift) { if (Amount != 0) { BuildMI(*MBB, IP, X86::SHL32ri, 2, DestReg + 1).addReg(SrcReg).addImm(Amount); } else { BuildMI(*MBB, IP, X86::MOV32rr, 1, DestReg+1).addReg(SrcReg); } BuildMI(*MBB, IP, X86::MOV32ri, 1, DestReg).addImm(0); } else { if (Amount != 0) { BuildMI(*MBB, IP, isSigned ? X86::SAR32ri : X86::SHR32ri, 2, DestReg).addReg(SrcReg+1).addImm(Amount); } else { BuildMI(*MBB, IP, X86::MOV32rr, 1, DestReg).addReg(SrcReg+1); } BuildMI(*MBB, IP, X86::MOV32ri, 1, DestReg+1).addImm(0); } } } else { unsigned TmpReg = makeAnotherReg(Type::IntTy); if (!isLeftShift && isSigned) { // If this is a SHR of a Long, then we need to do funny sign extension // stuff. TmpReg gets the value to use as the high-part if we are // shifting more than 32 bits. BuildMI(*MBB, IP, X86::SAR32ri, 2, TmpReg).addReg(SrcReg).addImm(31); } else { // Other shifts use a fixed zero value if the shift is more than 32 // bits. BuildMI(*MBB, IP, X86::MOV32ri, 1, TmpReg).addImm(0); } // Initialize CL with the shift amount... unsigned ShiftAmountReg = getReg(ShiftAmount, MBB, IP); BuildMI(*MBB, IP, X86::MOV8rr, 1, X86::CL).addReg(ShiftAmountReg); unsigned TmpReg2 = makeAnotherReg(Type::IntTy); unsigned TmpReg3 = makeAnotherReg(Type::IntTy); if (isLeftShift) { // TmpReg2 = shld inHi, inLo BuildMI(*MBB, IP, X86::SHLD32rrCL,2,TmpReg2).addReg(SrcReg+1) .addReg(SrcReg); // TmpReg3 = shl inLo, CL BuildMI(*MBB, IP, X86::SHL32rCL, 1, TmpReg3).addReg(SrcReg); // Set the flags to indicate whether the shift was by more than 32 bits. BuildMI(*MBB, IP, X86::TEST8ri, 2).addReg(X86::CL).addImm(32); // DestHi = (>32) ? TmpReg3 : TmpReg2; BuildMI(*MBB, IP, X86::CMOVNE32rr, 2, DestReg+1).addReg(TmpReg2).addReg(TmpReg3); // DestLo = (>32) ? TmpReg : TmpReg3; BuildMI(*MBB, IP, X86::CMOVNE32rr, 2, DestReg).addReg(TmpReg3).addReg(TmpReg); } else { // TmpReg2 = shrd inLo, inHi BuildMI(*MBB, IP, X86::SHRD32rrCL,2,TmpReg2).addReg(SrcReg) .addReg(SrcReg+1); // TmpReg3 = s[ah]r inHi, CL BuildMI(*MBB, IP, isSigned ? X86::SAR32rCL : X86::SHR32rCL, 1, TmpReg3) .addReg(SrcReg+1); // Set the flags to indicate whether the shift was by more than 32 bits. BuildMI(*MBB, IP, X86::TEST8ri, 2).addReg(X86::CL).addImm(32); // DestLo = (>32) ? TmpReg3 : TmpReg2; BuildMI(*MBB, IP, X86::CMOVNE32rr, 2, DestReg).addReg(TmpReg2).addReg(TmpReg3); // DestHi = (>32) ? TmpReg : TmpReg3; BuildMI(*MBB, IP, X86::CMOVNE32rr, 2, DestReg+1).addReg(TmpReg3).addReg(TmpReg); } } return; } if (ConstantUInt *CUI = dyn_cast(ShiftAmount)) { // The shift amount is constant, guaranteed to be a ubyte. Get its value. assert(CUI->getType() == Type::UByteTy && "Shift amount not a ubyte?"); const unsigned *Opc = ConstantOperand[isLeftShift*2+isSigned]; BuildMI(*MBB, IP, Opc[Class], 2, DestReg).addReg(SrcReg).addImm(CUI->getValue()); } else { // The shift amount is non-constant. unsigned ShiftAmountReg = getReg (ShiftAmount, MBB, IP); BuildMI(*MBB, IP, X86::MOV8rr, 1, X86::CL).addReg(ShiftAmountReg); const unsigned *Opc = NonConstantOperand[isLeftShift*2+isSigned]; BuildMI(*MBB, IP, Opc[Class], 1, DestReg).addReg(SrcReg); } } /// visitLoadInst - Implement LLVM load instructions in terms of the x86 'mov' /// instruction. The load and store instructions are the only place where we /// need to worry about the memory layout of the target machine. /// void ISel::visitLoadInst(LoadInst &I) { // Check to see if this load instruction is going to be folded into a binary // instruction, like add. If so, we don't want to emit it. Wouldn't a real // pattern matching instruction selector be nice? unsigned Class = getClassB(I.getType()); if (I.hasOneUse()) { Instruction *User = cast(I.use_back()); switch (User->getOpcode()) { case Instruction::Cast: // If this is a cast from a signed-integer type to a floating point type, // fold the cast here. if (getClass(User->getType()) == cFP && (I.getType() == Type::ShortTy || I.getType() == Type::IntTy || I.getType() == Type::LongTy)) { unsigned DestReg = getReg(User); static const unsigned Opcode[] = { 0/*BYTE*/, X86::FILD16m, X86::FILD32m, 0/*FP*/, X86::FILD64m }; if (AllocaInst *AI = dyn_castFixedAlloca(I.getOperand(0))) { unsigned FI = getFixedSizedAllocaFI(AI); addFrameReference(BuildMI(BB, Opcode[Class], 4, DestReg), FI); } else { unsigned BaseReg = 0, Scale = 1, IndexReg = 0, Disp = 0; getAddressingMode(I.getOperand(0), BaseReg, Scale, IndexReg, Disp); addFullAddress(BuildMI(BB, Opcode[Class], 4, DestReg), BaseReg, Scale, IndexReg, Disp); } return; } else { User = 0; } break; case Instruction::Add: case Instruction::Sub: case Instruction::And: case Instruction::Or: case Instruction::Xor: if (Class == cLong) User = 0; break; case Instruction::Mul: case Instruction::Div: if (Class != cFP) User = 0; break; // Folding only implemented for floating point. default: User = 0; break; } if (User) { // Okay, we found a user. If the load is the first operand and there is // no second operand load, reverse the operand ordering. Note that this // can fail for a subtract (ie, no change will be made). if (!isa(User->getOperand(1))) cast(User)->swapOperands(); // Okay, now that everything is set up, if this load is used by the second // operand, and if there are no instructions that invalidate the load // before the binary operator, eliminate the load. if (User->getOperand(1) == &I && isSafeToFoldLoadIntoInstruction(I, *User)) return; // Eliminate the load! // If this is a floating point sub or div, we won't be able to swap the // operands, but we will still be able to eliminate the load. if (Class == cFP && User->getOperand(0) == &I && !isa(User->getOperand(1)) && (User->getOpcode() == Instruction::Sub || User->getOpcode() == Instruction::Div) && isSafeToFoldLoadIntoInstruction(I, *User)) return; // Eliminate the load! } } static const unsigned Opcodes[] = { X86::MOV8rm, X86::MOV16rm, X86::MOV32rm, X86::FLD32m, X86::MOV32rm }; unsigned Opcode = Opcodes[Class]; if (I.getType() == Type::DoubleTy) Opcode = X86::FLD64m; unsigned DestReg = getReg(I); if (AllocaInst *AI = dyn_castFixedAlloca(I.getOperand(0))) { unsigned FI = getFixedSizedAllocaFI(AI); if (Class == cLong) { addFrameReference(BuildMI(BB, X86::MOV32rm, 4, DestReg), FI); addFrameReference(BuildMI(BB, X86::MOV32rm, 4, DestReg+1), FI, 4); } else { addFrameReference(BuildMI(BB, Opcode, 4, DestReg), FI); } } else { unsigned BaseReg = 0, Scale = 1, IndexReg = 0, Disp = 0; getAddressingMode(I.getOperand(0), BaseReg, Scale, IndexReg, Disp); if (Class == cLong) { addFullAddress(BuildMI(BB, X86::MOV32rm, 4, DestReg), BaseReg, Scale, IndexReg, Disp); addFullAddress(BuildMI(BB, X86::MOV32rm, 4, DestReg+1), BaseReg, Scale, IndexReg, Disp+4); } else { addFullAddress(BuildMI(BB, Opcode, 4, DestReg), BaseReg, Scale, IndexReg, Disp); } } } /// visitStoreInst - Implement LLVM store instructions in terms of the x86 'mov' /// instruction. /// void ISel::visitStoreInst(StoreInst &I) { unsigned BaseReg = ~0U, Scale = ~0U, IndexReg = ~0U, Disp = ~0U; unsigned AllocaFrameIdx = ~0U; if (AllocaInst *AI = dyn_castFixedAlloca(I.getOperand(1))) AllocaFrameIdx = getFixedSizedAllocaFI(AI); else getAddressingMode(I.getOperand(1), BaseReg, Scale, IndexReg, Disp); const Type *ValTy = I.getOperand(0)->getType(); unsigned Class = getClassB(ValTy); if (ConstantInt *CI = dyn_cast(I.getOperand(0))) { uint64_t Val = CI->getRawValue(); if (Class == cLong) { if (AllocaFrameIdx != ~0U) { addFrameReference(BuildMI(BB, X86::MOV32mi, 5), AllocaFrameIdx).addImm(Val & ~0U); addFrameReference(BuildMI(BB, X86::MOV32mi, 5), AllocaFrameIdx, 4).addImm(Val>>32); } else { addFullAddress(BuildMI(BB, X86::MOV32mi, 5), BaseReg, Scale, IndexReg, Disp).addImm(Val & ~0U); addFullAddress(BuildMI(BB, X86::MOV32mi, 5), BaseReg, Scale, IndexReg, Disp+4).addImm(Val>>32); } } else { static const unsigned Opcodes[] = { X86::MOV8mi, X86::MOV16mi, X86::MOV32mi }; unsigned Opcode = Opcodes[Class]; if (AllocaFrameIdx != ~0U) addFrameReference(BuildMI(BB, Opcode, 5), AllocaFrameIdx).addImm(Val); else addFullAddress(BuildMI(BB, Opcode, 5), BaseReg, Scale, IndexReg, Disp).addImm(Val); } } else if (isa(I.getOperand(0))) { if (AllocaFrameIdx != ~0U) addFrameReference(BuildMI(BB, X86::MOV32mi, 5), AllocaFrameIdx).addImm(0); else addFullAddress(BuildMI(BB, X86::MOV32mi, 5), BaseReg, Scale, IndexReg, Disp).addImm(0); } else if (ConstantBool *CB = dyn_cast(I.getOperand(0))) { if (AllocaFrameIdx != ~0U) addFrameReference(BuildMI(BB, X86::MOV8mi, 5), AllocaFrameIdx).addImm(CB->getValue()); else addFullAddress(BuildMI(BB, X86::MOV8mi, 5), BaseReg, Scale, IndexReg, Disp).addImm(CB->getValue()); } else if (ConstantFP *CFP = dyn_cast(I.getOperand(0))) { // Store constant FP values with integer instructions to avoid having to // load the constants from the constant pool then do a store. if (CFP->getType() == Type::FloatTy) { union { unsigned I; float F; } V; V.F = CFP->getValue(); if (AllocaFrameIdx != ~0U) addFrameReference(BuildMI(BB, X86::MOV32mi, 5), AllocaFrameIdx).addImm(V.I); else addFullAddress(BuildMI(BB, X86::MOV32mi, 5), BaseReg, Scale, IndexReg, Disp).addImm(V.I); } else { union { uint64_t I; double F; } V; V.F = CFP->getValue(); if (AllocaFrameIdx != ~0U) { addFrameReference(BuildMI(BB, X86::MOV32mi, 5), AllocaFrameIdx).addImm((unsigned)V.I); addFrameReference(BuildMI(BB, X86::MOV32mi, 5), AllocaFrameIdx, 4).addImm(unsigned(V.I >> 32)); } else { addFullAddress(BuildMI(BB, X86::MOV32mi, 5), BaseReg, Scale, IndexReg, Disp).addImm((unsigned)V.I); addFullAddress(BuildMI(BB, X86::MOV32mi, 5), BaseReg, Scale, IndexReg, Disp+4).addImm( unsigned(V.I >> 32)); } } } else if (Class == cLong) { unsigned ValReg = getReg(I.getOperand(0)); if (AllocaFrameIdx != ~0U) { addFrameReference(BuildMI(BB, X86::MOV32mr, 5), AllocaFrameIdx).addReg(ValReg); addFrameReference(BuildMI(BB, X86::MOV32mr, 5), AllocaFrameIdx, 4).addReg(ValReg+1); } else { addFullAddress(BuildMI(BB, X86::MOV32mr, 5), BaseReg, Scale, IndexReg, Disp).addReg(ValReg); addFullAddress(BuildMI(BB, X86::MOV32mr, 5), BaseReg, Scale, IndexReg, Disp+4).addReg(ValReg+1); } } else { unsigned ValReg = getReg(I.getOperand(0)); static const unsigned Opcodes[] = { X86::MOV8mr, X86::MOV16mr, X86::MOV32mr, X86::FST32m }; unsigned Opcode = Opcodes[Class]; if (ValTy == Type::DoubleTy) Opcode = X86::FST64m; if (AllocaFrameIdx != ~0U) addFrameReference(BuildMI(BB, Opcode, 5), AllocaFrameIdx).addReg(ValReg); else addFullAddress(BuildMI(BB, Opcode, 1+4), BaseReg, Scale, IndexReg, Disp).addReg(ValReg); } } /// visitCastInst - Here we have various kinds of copying with or without sign /// extension going on. /// void ISel::visitCastInst(CastInst &CI) { Value *Op = CI.getOperand(0); unsigned SrcClass = getClassB(Op->getType()); unsigned DestClass = getClassB(CI.getType()); // Noop casts are not emitted: getReg will return the source operand as the // register to use for any uses of the noop cast. if (DestClass == SrcClass) return; // If this is a cast from a 32-bit integer to a Long type, and the only uses // of the case are GEP instructions, then the cast does not need to be // generated explicitly, it will be folded into the GEP. if (DestClass == cLong && SrcClass == cInt) { bool AllUsesAreGEPs = true; for (Value::use_iterator I = CI.use_begin(), E = CI.use_end(); I != E; ++I) if (!isa(*I)) { AllUsesAreGEPs = false; break; } // No need to codegen this cast if all users are getelementptr instrs... if (AllUsesAreGEPs) return; } // If this cast converts a load from a short,int, or long integer to a FP // value, we will have folded this cast away. if (DestClass == cFP && isa(Op) && Op->hasOneUse() && (Op->getType() == Type::ShortTy || Op->getType() == Type::IntTy || Op->getType() == Type::LongTy)) return; unsigned DestReg = getReg(CI); MachineBasicBlock::iterator MI = BB->end(); emitCastOperation(BB, MI, Op, CI.getType(), DestReg); } /// emitCastOperation - Common code shared between visitCastInst and constant /// expression cast support. /// void ISel::emitCastOperation(MachineBasicBlock *BB, MachineBasicBlock::iterator IP, Value *Src, const Type *DestTy, unsigned DestReg) { const Type *SrcTy = Src->getType(); unsigned SrcClass = getClassB(SrcTy); unsigned DestClass = getClassB(DestTy); unsigned SrcReg = getReg(Src, BB, IP); // Implement casts to bool by using compare on the operand followed by set if // not zero on the result. if (DestTy == Type::BoolTy) { switch (SrcClass) { case cByte: BuildMI(*BB, IP, X86::TEST8rr, 2).addReg(SrcReg).addReg(SrcReg); break; case cShort: BuildMI(*BB, IP, X86::TEST16rr, 2).addReg(SrcReg).addReg(SrcReg); break; case cInt: BuildMI(*BB, IP, X86::TEST32rr, 2).addReg(SrcReg).addReg(SrcReg); break; case cLong: { unsigned TmpReg = makeAnotherReg(Type::IntTy); BuildMI(*BB, IP, X86::OR32rr, 2, TmpReg).addReg(SrcReg).addReg(SrcReg+1); break; } case cFP: BuildMI(*BB, IP, X86::FTST, 1).addReg(SrcReg); BuildMI(*BB, IP, X86::FNSTSW8r, 0); BuildMI(*BB, IP, X86::SAHF, 1); break; } // If the zero flag is not set, then the value is true, set the byte to // true. BuildMI(*BB, IP, X86::SETNEr, 1, DestReg); return; } static const unsigned RegRegMove[] = { X86::MOV8rr, X86::MOV16rr, X86::MOV32rr, X86::FpMOV, X86::MOV32rr }; // Implement casts between values of the same type class (as determined by // getClass) by using a register-to-register move. if (SrcClass == DestClass) { if (SrcClass <= cInt || (SrcClass == cFP && SrcTy == DestTy)) { BuildMI(*BB, IP, RegRegMove[SrcClass], 1, DestReg).addReg(SrcReg); } else if (SrcClass == cFP) { if (SrcTy == Type::FloatTy) { // double -> float assert(DestTy == Type::DoubleTy && "Unknown cFP member!"); BuildMI(*BB, IP, X86::FpMOV, 1, DestReg).addReg(SrcReg); } else { // float -> double assert(SrcTy == Type::DoubleTy && DestTy == Type::FloatTy && "Unknown cFP member!"); // Truncate from double to float by storing to memory as short, then // reading it back. unsigned FltAlign = TM.getTargetData().getFloatAlignment(); int FrameIdx = F->getFrameInfo()->CreateStackObject(4, FltAlign); addFrameReference(BuildMI(*BB, IP, X86::FST32m, 5), FrameIdx).addReg(SrcReg); addFrameReference(BuildMI(*BB, IP, X86::FLD32m, 5, DestReg), FrameIdx); } } else if (SrcClass == cLong) { BuildMI(*BB, IP, X86::MOV32rr, 1, DestReg).addReg(SrcReg); BuildMI(*BB, IP, X86::MOV32rr, 1, DestReg+1).addReg(SrcReg+1); } else { assert(0 && "Cannot handle this type of cast instruction!"); abort(); } return; } // Handle cast of SMALLER int to LARGER int using a move with sign extension // or zero extension, depending on whether the source type was signed. if (SrcClass <= cInt && (DestClass <= cInt || DestClass == cLong) && SrcClass < DestClass) { bool isLong = DestClass == cLong; if (isLong) DestClass = cInt; static const unsigned Opc[][4] = { { X86::MOVSX16rr8, X86::MOVSX32rr8, X86::MOVSX32rr16, X86::MOV32rr }, // s { X86::MOVZX16rr8, X86::MOVZX32rr8, X86::MOVZX32rr16, X86::MOV32rr } // u }; bool isUnsigned = SrcTy->isUnsigned() || SrcTy == Type::BoolTy; BuildMI(*BB, IP, Opc[isUnsigned][SrcClass + DestClass - 1], 1, DestReg).addReg(SrcReg); if (isLong) { // Handle upper 32 bits as appropriate... if (isUnsigned) // Zero out top bits... BuildMI(*BB, IP, X86::MOV32ri, 1, DestReg+1).addImm(0); else // Sign extend bottom half... BuildMI(*BB, IP, X86::SAR32ri, 2, DestReg+1).addReg(DestReg).addImm(31); } return; } // Special case long -> int ... if (SrcClass == cLong && DestClass == cInt) { BuildMI(*BB, IP, X86::MOV32rr, 1, DestReg).addReg(SrcReg); return; } // Handle cast of LARGER int to SMALLER int using a move to EAX followed by a // move out of AX or AL. if ((SrcClass <= cInt || SrcClass == cLong) && DestClass <= cInt && SrcClass > DestClass) { static const unsigned AReg[] = { X86::AL, X86::AX, X86::EAX, 0, X86::EAX }; BuildMI(*BB, IP, RegRegMove[SrcClass], 1, AReg[SrcClass]).addReg(SrcReg); BuildMI(*BB, IP, RegRegMove[DestClass], 1, DestReg).addReg(AReg[DestClass]); return; } // Handle casts from integer to floating point now... if (DestClass == cFP) { // Promote the integer to a type supported by FLD. We do this because there // are no unsigned FLD instructions, so we must promote an unsigned value to // a larger signed value, then use FLD on the larger value. // const Type *PromoteType = 0; unsigned PromoteOpcode = 0; unsigned RealDestReg = DestReg; switch (SrcTy->getPrimitiveID()) { case Type::BoolTyID: case Type::SByteTyID: // We don't have the facilities for directly loading byte sized data from // memory (even signed). Promote it to 16 bits. PromoteType = Type::ShortTy; PromoteOpcode = X86::MOVSX16rr8; break; case Type::UByteTyID: PromoteType = Type::ShortTy; PromoteOpcode = X86::MOVZX16rr8; break; case Type::UShortTyID: PromoteType = Type::IntTy; PromoteOpcode = X86::MOVZX32rr16; break; case Type::UIntTyID: { // Make a 64 bit temporary... and zero out the top of it... unsigned TmpReg = makeAnotherReg(Type::LongTy); BuildMI(*BB, IP, X86::MOV32rr, 1, TmpReg).addReg(SrcReg); BuildMI(*BB, IP, X86::MOV32ri, 1, TmpReg+1).addImm(0); SrcTy = Type::LongTy; SrcClass = cLong; SrcReg = TmpReg; break; } case Type::ULongTyID: // Don't fild into the read destination. DestReg = makeAnotherReg(Type::DoubleTy); break; default: // No promotion needed... break; } if (PromoteType) { unsigned TmpReg = makeAnotherReg(PromoteType); BuildMI(*BB, IP, PromoteOpcode, 1, TmpReg).addReg(SrcReg); SrcTy = PromoteType; SrcClass = getClass(PromoteType); SrcReg = TmpReg; } // Spill the integer to memory and reload it from there... int FrameIdx = F->getFrameInfo()->CreateStackObject(SrcTy, TM.getTargetData()); if (SrcClass == cLong) { addFrameReference(BuildMI(*BB, IP, X86::MOV32mr, 5), FrameIdx).addReg(SrcReg); addFrameReference(BuildMI(*BB, IP, X86::MOV32mr, 5), FrameIdx, 4).addReg(SrcReg+1); } else { static const unsigned Op1[] = { X86::MOV8mr, X86::MOV16mr, X86::MOV32mr }; addFrameReference(BuildMI(*BB, IP, Op1[SrcClass], 5), FrameIdx).addReg(SrcReg); } static const unsigned Op2[] = { 0/*byte*/, X86::FILD16m, X86::FILD32m, 0/*FP*/, X86::FILD64m }; addFrameReference(BuildMI(*BB, IP, Op2[SrcClass], 5, DestReg), FrameIdx); // We need special handling for unsigned 64-bit integer sources. If the // input number has the "sign bit" set, then we loaded it incorrectly as a // negative 64-bit number. In this case, add an offset value. if (SrcTy == Type::ULongTy) { // Emit a test instruction to see if the dynamic input value was signed. BuildMI(*BB, IP, X86::TEST32rr, 2).addReg(SrcReg+1).addReg(SrcReg+1); // If the sign bit is set, get a pointer to an offset, otherwise get a // pointer to a zero. MachineConstantPool *CP = F->getConstantPool(); unsigned Zero = makeAnotherReg(Type::IntTy); Constant *Null = Constant::getNullValue(Type::UIntTy); addConstantPoolReference(BuildMI(*BB, IP, X86::LEA32r, 5, Zero), CP->getConstantPoolIndex(Null)); unsigned Offset = makeAnotherReg(Type::IntTy); Constant *OffsetCst = ConstantUInt::get(Type::UIntTy, 0x5f800000); addConstantPoolReference(BuildMI(*BB, IP, X86::LEA32r, 5, Offset), CP->getConstantPoolIndex(OffsetCst)); unsigned Addr = makeAnotherReg(Type::IntTy); BuildMI(*BB, IP, X86::CMOVS32rr, 2, Addr).addReg(Zero).addReg(Offset); // Load the constant for an add. FIXME: this could make an 'fadd' that // reads directly from memory, but we don't support these yet. unsigned ConstReg = makeAnotherReg(Type::DoubleTy); addDirectMem(BuildMI(*BB, IP, X86::FLD32m, 4, ConstReg), Addr); BuildMI(*BB, IP, X86::FpADD, 2, RealDestReg) .addReg(ConstReg).addReg(DestReg); } return; } // Handle casts from floating point to integer now... if (SrcClass == cFP) { // Change the floating point control register to use "round towards zero" // mode when truncating to an integer value. // int CWFrameIdx = F->getFrameInfo()->CreateStackObject(2, 2); addFrameReference(BuildMI(*BB, IP, X86::FNSTCW16m, 4), CWFrameIdx); // Load the old value of the high byte of the control word... unsigned HighPartOfCW = makeAnotherReg(Type::UByteTy); addFrameReference(BuildMI(*BB, IP, X86::MOV8rm, 4, HighPartOfCW), CWFrameIdx, 1); // Set the high part to be round to zero... addFrameReference(BuildMI(*BB, IP, X86::MOV8mi, 5), CWFrameIdx, 1).addImm(12); // Reload the modified control word now... addFrameReference(BuildMI(*BB, IP, X86::FLDCW16m, 4), CWFrameIdx); // Restore the memory image of control word to original value addFrameReference(BuildMI(*BB, IP, X86::MOV8mr, 5), CWFrameIdx, 1).addReg(HighPartOfCW); // We don't have the facilities for directly storing byte sized data to // memory. Promote it to 16 bits. We also must promote unsigned values to // larger classes because we only have signed FP stores. unsigned StoreClass = DestClass; const Type *StoreTy = DestTy; if (StoreClass == cByte || DestTy->isUnsigned()) switch (StoreClass) { case cByte: StoreTy = Type::ShortTy; StoreClass = cShort; break; case cShort: StoreTy = Type::IntTy; StoreClass = cInt; break; case cInt: StoreTy = Type::LongTy; StoreClass = cLong; break; // The following treatment of cLong may not be perfectly right, // but it survives chains of casts of the form // double->ulong->double. case cLong: StoreTy = Type::LongTy; StoreClass = cLong; break; default: assert(0 && "Unknown store class!"); } // Spill the integer to memory and reload it from there... int FrameIdx = F->getFrameInfo()->CreateStackObject(StoreTy, TM.getTargetData()); static const unsigned Op1[] = { 0, X86::FIST16m, X86::FIST32m, 0, X86::FISTP64m }; addFrameReference(BuildMI(*BB, IP, Op1[StoreClass], 5), FrameIdx).addReg(SrcReg); if (DestClass == cLong) { addFrameReference(BuildMI(*BB, IP, X86::MOV32rm, 4, DestReg), FrameIdx); addFrameReference(BuildMI(*BB, IP, X86::MOV32rm, 4, DestReg+1), FrameIdx, 4); } else { static const unsigned Op2[] = { X86::MOV8rm, X86::MOV16rm, X86::MOV32rm }; addFrameReference(BuildMI(*BB, IP, Op2[DestClass], 4, DestReg), FrameIdx); } // Reload the original control word now... addFrameReference(BuildMI(*BB, IP, X86::FLDCW16m, 4), CWFrameIdx); return; } // Anything we haven't handled already, we can't (yet) handle at all. assert(0 && "Unhandled cast instruction!"); abort(); } /// visitVANextInst - Implement the va_next instruction... /// void ISel::visitVANextInst(VANextInst &I) { unsigned VAList = getReg(I.getOperand(0)); unsigned DestReg = getReg(I); unsigned Size; switch (I.getArgType()->getPrimitiveID()) { default: std::cerr << I; assert(0 && "Error: bad type for va_next instruction!"); return; case Type::PointerTyID: case Type::UIntTyID: case Type::IntTyID: Size = 4; break; case Type::ULongTyID: case Type::LongTyID: case Type::DoubleTyID: Size = 8; break; } // Increment the VAList pointer... BuildMI(BB, X86::ADD32ri, 2, DestReg).addReg(VAList).addImm(Size); } void ISel::visitVAArgInst(VAArgInst &I) { unsigned VAList = getReg(I.getOperand(0)); unsigned DestReg = getReg(I); switch (I.getType()->getPrimitiveID()) { default: std::cerr << I; assert(0 && "Error: bad type for va_next instruction!"); return; case Type::PointerTyID: case Type::UIntTyID: case Type::IntTyID: addDirectMem(BuildMI(BB, X86::MOV32rm, 4, DestReg), VAList); break; case Type::ULongTyID: case Type::LongTyID: addDirectMem(BuildMI(BB, X86::MOV32rm, 4, DestReg), VAList); addRegOffset(BuildMI(BB, X86::MOV32rm, 4, DestReg+1), VAList, 4); break; case Type::DoubleTyID: addDirectMem(BuildMI(BB, X86::FLD64m, 4, DestReg), VAList); break; } } /// visitGetElementPtrInst - instruction-select GEP instructions /// void ISel::visitGetElementPtrInst(GetElementPtrInst &I) { // If this GEP instruction will be folded into all of its users, we don't need // to explicitly calculate it! unsigned A, B, C, D; if (isGEPFoldable(0, I.getOperand(0), I.op_begin()+1, I.op_end(), A,B,C,D)) { // Check all of the users of the instruction to see if they are loads and // stores. bool AllWillFold = true; for (Value::use_iterator UI = I.use_begin(), E = I.use_end(); UI != E; ++UI) if (cast(*UI)->getOpcode() != Instruction::Load) if (cast(*UI)->getOpcode() != Instruction::Store || cast(*UI)->getOperand(0) == &I) { AllWillFold = false; break; } // If the instruction is foldable, and will be folded into all users, don't // emit it! if (AllWillFold) return; } unsigned outputReg = getReg(I); emitGEPOperation(BB, BB->end(), I.getOperand(0), I.op_begin()+1, I.op_end(), outputReg); } /// getGEPIndex - Inspect the getelementptr operands specified with GEPOps and /// GEPTypes (the derived types being stepped through at each level). On return /// from this function, if some indexes of the instruction are representable as /// an X86 lea instruction, the machine operands are put into the Ops /// instruction and the consumed indexes are poped from the GEPOps/GEPTypes /// lists. Otherwise, GEPOps.size() is returned. If this returns a an /// addressing mode that only partially consumes the input, the BaseReg input of /// the addressing mode must be left free. /// /// Note that there is one fewer entry in GEPTypes than there is in GEPOps. /// void ISel::getGEPIndex(MachineBasicBlock *MBB, MachineBasicBlock::iterator IP, std::vector &GEPOps, std::vector &GEPTypes, unsigned &BaseReg, unsigned &Scale, unsigned &IndexReg, unsigned &Disp) { const TargetData &TD = TM.getTargetData(); // Clear out the state we are working with... BaseReg = 0; // No base register Scale = 1; // Unit scale IndexReg = 0; // No index register Disp = 0; // No displacement // While there are GEP indexes that can be folded into the current address, // keep processing them. while (!GEPTypes.empty()) { if (const StructType *StTy = dyn_cast(GEPTypes.back())) { // It's a struct access. CUI is the index into the structure, // which names the field. This index must have unsigned type. const ConstantUInt *CUI = cast(GEPOps.back()); // Use the TargetData structure to pick out what the layout of the // structure is in memory. Since the structure index must be constant, we // can get its value and use it to find the right byte offset from the // StructLayout class's list of structure member offsets. Disp += TD.getStructLayout(StTy)->MemberOffsets[CUI->getValue()]; GEPOps.pop_back(); // Consume a GEP operand GEPTypes.pop_back(); } else { // It's an array or pointer access: [ArraySize x ElementType]. const SequentialType *SqTy = cast(GEPTypes.back()); Value *idx = GEPOps.back(); // idx is the index into the array. Unlike with structure // indices, we may not know its actual value at code-generation // time. // If idx is a constant, fold it into the offset. unsigned TypeSize = TD.getTypeSize(SqTy->getElementType()); if (ConstantSInt *CSI = dyn_cast(idx)) { Disp += TypeSize*CSI->getValue(); } else if (ConstantUInt *CUI = dyn_cast(idx)) { Disp += TypeSize*CUI->getValue(); } else { // If the index reg is already taken, we can't handle this index. if (IndexReg) return; // If this is a size that we can handle, then add the index as switch (TypeSize) { case 1: case 2: case 4: case 8: // These are all acceptable scales on X86. Scale = TypeSize; break; default: // Otherwise, we can't handle this scale return; } if (CastInst *CI = dyn_cast(idx)) if (CI->getOperand(0)->getType() == Type::IntTy || CI->getOperand(0)->getType() == Type::UIntTy) idx = CI->getOperand(0); IndexReg = MBB ? getReg(idx, MBB, IP) : 1; } GEPOps.pop_back(); // Consume a GEP operand GEPTypes.pop_back(); } } // GEPTypes is empty, which means we have a single operand left. See if we // can set it as the base register. // // FIXME: When addressing modes are more powerful/correct, we could load // global addresses directly as 32-bit immediates. assert(BaseReg == 0); BaseReg = MBB ? getReg(GEPOps[0], MBB, IP) : 1; GEPOps.pop_back(); // Consume the last GEP operand } /// isGEPFoldable - Return true if the specified GEP can be completely /// folded into the addressing mode of a load/store or lea instruction. bool ISel::isGEPFoldable(MachineBasicBlock *MBB, Value *Src, User::op_iterator IdxBegin, User::op_iterator IdxEnd, unsigned &BaseReg, unsigned &Scale, unsigned &IndexReg, unsigned &Disp) { if (ConstantPointerRef *CPR = dyn_cast(Src)) Src = CPR->getValue(); std::vector GEPOps; GEPOps.resize(IdxEnd-IdxBegin+1); GEPOps[0] = Src; std::copy(IdxBegin, IdxEnd, GEPOps.begin()+1); std::vector GEPTypes; GEPTypes.assign(gep_type_begin(Src->getType(), IdxBegin, IdxEnd), gep_type_end(Src->getType(), IdxBegin, IdxEnd)); MachineBasicBlock::iterator IP; if (MBB) IP = MBB->end(); getGEPIndex(MBB, IP, GEPOps, GEPTypes, BaseReg, Scale, IndexReg, Disp); // We can fold it away iff the getGEPIndex call eliminated all operands. return GEPOps.empty(); } void ISel::emitGEPOperation(MachineBasicBlock *MBB, MachineBasicBlock::iterator IP, Value *Src, User::op_iterator IdxBegin, User::op_iterator IdxEnd, unsigned TargetReg) { const TargetData &TD = TM.getTargetData(); if (ConstantPointerRef *CPR = dyn_cast(Src)) Src = CPR->getValue(); std::vector GEPOps; GEPOps.resize(IdxEnd-IdxBegin+1); GEPOps[0] = Src; std::copy(IdxBegin, IdxEnd, GEPOps.begin()+1); std::vector GEPTypes; GEPTypes.assign(gep_type_begin(Src->getType(), IdxBegin, IdxEnd), gep_type_end(Src->getType(), IdxBegin, IdxEnd)); // Keep emitting instructions until we consume the entire GEP instruction. while (!GEPOps.empty()) { unsigned OldSize = GEPOps.size(); unsigned BaseReg, Scale, IndexReg, Disp; getGEPIndex(MBB, IP, GEPOps, GEPTypes, BaseReg, Scale, IndexReg, Disp); if (GEPOps.size() != OldSize) { // getGEPIndex consumed some of the input. Build an LEA instruction here. unsigned NextTarget = 0; if (!GEPOps.empty()) { assert(BaseReg == 0 && "getGEPIndex should have left the base register open for chaining!"); NextTarget = BaseReg = makeAnotherReg(Type::UIntTy); } if (IndexReg == 0 && Disp == 0) BuildMI(*MBB, IP, X86::MOV32rr, 1, TargetReg).addReg(BaseReg); else addFullAddress(BuildMI(*MBB, IP, X86::LEA32r, 5, TargetReg), BaseReg, Scale, IndexReg, Disp); --IP; TargetReg = NextTarget; } else if (GEPTypes.empty()) { // The getGEPIndex operation didn't want to build an LEA. Check to see if // all operands are consumed but the base pointer. If so, just load it // into the register. if (GlobalValue *GV = dyn_cast(GEPOps[0])) { BuildMI(*MBB, IP, X86::MOV32ri, 1, TargetReg).addGlobalAddress(GV); } else { unsigned BaseReg = getReg(GEPOps[0], MBB, IP); BuildMI(*MBB, IP, X86::MOV32rr, 1, TargetReg).addReg(BaseReg); } break; // we are now done } else { // It's an array or pointer access: [ArraySize x ElementType]. const SequentialType *SqTy = cast(GEPTypes.back()); Value *idx = GEPOps.back(); GEPOps.pop_back(); // Consume a GEP operand GEPTypes.pop_back(); // Many GEP instructions use a [cast (int/uint) to LongTy] as their // operand on X86. Handle this case directly now... if (CastInst *CI = dyn_cast(idx)) if (CI->getOperand(0)->getType() == Type::IntTy || CI->getOperand(0)->getType() == Type::UIntTy) idx = CI->getOperand(0); // We want to add BaseReg to(idxReg * sizeof ElementType). First, we // must find the size of the pointed-to type (Not coincidentally, the next // type is the type of the elements in the array). const Type *ElTy = SqTy->getElementType(); unsigned elementSize = TD.getTypeSize(ElTy); // If idxReg is a constant, we don't need to perform the multiply! if (ConstantInt *CSI = dyn_cast(idx)) { if (!CSI->isNullValue()) { unsigned Offset = elementSize*CSI->getRawValue(); unsigned Reg = makeAnotherReg(Type::UIntTy); BuildMI(*MBB, IP, X86::ADD32ri, 2, TargetReg) .addReg(Reg).addImm(Offset); --IP; // Insert the next instruction before this one. TargetReg = Reg; // Codegen the rest of the GEP into this } } else if (elementSize == 1) { // If the element size is 1, we don't have to multiply, just add unsigned idxReg = getReg(idx, MBB, IP); unsigned Reg = makeAnotherReg(Type::UIntTy); BuildMI(*MBB, IP, X86::ADD32rr, 2,TargetReg).addReg(Reg).addReg(idxReg); --IP; // Insert the next instruction before this one. TargetReg = Reg; // Codegen the rest of the GEP into this } else { unsigned idxReg = getReg(idx, MBB, IP); unsigned OffsetReg = makeAnotherReg(Type::UIntTy); // Make sure we can back the iterator up to point to the first // instruction emitted. MachineBasicBlock::iterator BeforeIt = IP; if (IP == MBB->begin()) BeforeIt = MBB->end(); else --BeforeIt; doMultiplyConst(MBB, IP, OffsetReg, Type::IntTy, idxReg, elementSize); // Emit an ADD to add OffsetReg to the basePtr. unsigned Reg = makeAnotherReg(Type::UIntTy); BuildMI(*MBB, IP, X86::ADD32rr, 2, TargetReg) .addReg(Reg).addReg(OffsetReg); // Step to the first instruction of the multiply. if (BeforeIt == MBB->end()) IP = MBB->begin(); else IP = ++BeforeIt; TargetReg = Reg; // Codegen the rest of the GEP into this } } } } /// visitAllocaInst - If this is a fixed size alloca, allocate space from the /// frame manager, otherwise do it the hard way. /// void ISel::visitAllocaInst(AllocaInst &I) { // If this is a fixed size alloca in the entry block for the function, we // statically stack allocate the space, so we don't need to do anything here. // if (dyn_castFixedAlloca(&I)) return; // Find the data size of the alloca inst's getAllocatedType. const Type *Ty = I.getAllocatedType(); unsigned TySize = TM.getTargetData().getTypeSize(Ty); // Create a register to hold the temporary result of multiplying the type size // constant by the variable amount. unsigned TotalSizeReg = makeAnotherReg(Type::UIntTy); unsigned SrcReg1 = getReg(I.getArraySize()); // TotalSizeReg = mul , MachineBasicBlock::iterator MBBI = BB->end(); doMultiplyConst(BB, MBBI, TotalSizeReg, Type::UIntTy, SrcReg1, TySize); // AddedSize = add , 15 unsigned AddedSizeReg = makeAnotherReg(Type::UIntTy); BuildMI(BB, X86::ADD32ri, 2, AddedSizeReg).addReg(TotalSizeReg).addImm(15); // AlignedSize = and , ~15 unsigned AlignedSize = makeAnotherReg(Type::UIntTy); BuildMI(BB, X86::AND32ri, 2, AlignedSize).addReg(AddedSizeReg).addImm(~15); // Subtract size from stack pointer, thereby allocating some space. BuildMI(BB, X86::SUB32rr, 2, X86::ESP).addReg(X86::ESP).addReg(AlignedSize); // Put a pointer to the space into the result register, by copying // the stack pointer. BuildMI(BB, X86::MOV32rr, 1, getReg(I)).addReg(X86::ESP); // Inform the Frame Information that we have just allocated a variable-sized // object. F->getFrameInfo()->CreateVariableSizedObject(); } /// visitMallocInst - Malloc instructions are code generated into direct calls /// to the library malloc. /// void ISel::visitMallocInst(MallocInst &I) { unsigned AllocSize = TM.getTargetData().getTypeSize(I.getAllocatedType()); unsigned Arg; if (ConstantUInt *C = dyn_cast(I.getOperand(0))) { Arg = getReg(ConstantUInt::get(Type::UIntTy, C->getValue() * AllocSize)); } else { Arg = makeAnotherReg(Type::UIntTy); unsigned Op0Reg = getReg(I.getOperand(0)); MachineBasicBlock::iterator MBBI = BB->end(); doMultiplyConst(BB, MBBI, Arg, Type::UIntTy, Op0Reg, AllocSize); } std::vector Args; Args.push_back(ValueRecord(Arg, Type::UIntTy)); MachineInstr *TheCall = BuildMI(X86::CALLpcrel32, 1).addExternalSymbol("malloc", true); doCall(ValueRecord(getReg(I), I.getType()), TheCall, Args); } /// visitFreeInst - Free instructions are code gen'd to call the free libc /// function. /// void ISel::visitFreeInst(FreeInst &I) { std::vector Args; Args.push_back(ValueRecord(I.getOperand(0))); MachineInstr *TheCall = BuildMI(X86::CALLpcrel32, 1).addExternalSymbol("free", true); doCall(ValueRecord(0, Type::VoidTy), TheCall, Args); } /// createX86SimpleInstructionSelector - This pass converts an LLVM function /// into a machine code representation is a very simple peep-hole fashion. The /// generated code sucks but the implementation is nice and simple. /// FunctionPass *llvm::createX86SimpleInstructionSelector(TargetMachine &TM) { return new ISel(TM); }