//===-- MachineFunction.cpp -----------------------------------------------===// // // Collect native machine code information for a function. This allows // target-specific information about the generated code to be stored with each // function. // //===----------------------------------------------------------------------===// #include "llvm/CodeGen/MachineFunction.h" #include "llvm/CodeGen/MachineInstr.h" #include "llvm/CodeGen/MachineCodeForInstruction.h" #include "llvm/CodeGen/SSARegMap.h" #include "llvm/Target/TargetMachine.h" #include "llvm/Target/MachineFrameInfo.h" #include "llvm/Target/MachineCacheInfo.h" #include "llvm/Function.h" #include "llvm/iOther.h" #include "llvm/Pass.h" #include const int INVALID_FRAME_OFFSET = INT_MAX; // std::numeric_limits::max(); static AnnotationID MF_AID( AnnotationManager::getID("CodeGen::MachineCodeForFunction")); //===---------------------------------------------------------------------===// // Code generation/destruction passes //===---------------------------------------------------------------------===// namespace { class ConstructMachineFunction : public FunctionPass { TargetMachine &Target; public: ConstructMachineFunction(TargetMachine &T) : Target(T) {} const char *getPassName() const { return "ConstructMachineFunction"; } bool runOnFunction(Function &F) { MachineFunction::construct(&F, Target).CalculateArgSize(); return false; } }; struct DestroyMachineFunction : public FunctionPass { const char *getPassName() const { return "FreeMachineFunction"; } static void freeMachineCode(Instruction &I) { MachineCodeForInstruction::destroy(&I); } bool runOnFunction(Function &F) { for (Function::iterator FI = F.begin(), FE = F.end(); FI != FE; ++FI) for (BasicBlock::iterator I = FI->begin(), E = FI->end(); I != E; ++I) MachineCodeForInstruction::get(I).dropAllReferences(); for (Function::iterator FI = F.begin(), FE = F.end(); FI != FE; ++FI) for_each(FI->begin(), FI->end(), freeMachineCode); return false; } }; struct Printer : public FunctionPass { const char *getPassName() const { return "MachineFunction Printer"; } virtual void getAnalysisUsage(AnalysisUsage &AU) const { AU.setPreservesAll(); } bool runOnFunction(Function &F) { MachineFunction::get(&F).dump(); return false; } }; } Pass *createMachineCodeConstructionPass(TargetMachine &Target) { return new ConstructMachineFunction(Target); } Pass *createMachineCodeDestructionPass() { return new DestroyMachineFunction(); } Pass *createMachineFunctionPrinterPass() { return new Printer(); } //===---------------------------------------------------------------------===// // MachineFunction implementation //===---------------------------------------------------------------------===// MachineFunction::MachineFunction(const Function *F, const TargetMachine& target) : Annotation(MF_AID), Fn(F), Target(target) { SSARegMapping = new SSARegMap(); // FIXME: move state into another class staticStackSize = automaticVarsSize = regSpillsSize = 0; maxOptionalArgsSize = maxOptionalNumArgs = currentTmpValuesSize = 0; maxTmpValuesSize = 0; compiledAsLeaf = spillsAreaFrozen = automaticVarsAreaFrozen = false; } MachineFunction::~MachineFunction() { delete SSARegMapping; } void MachineFunction::dump() const { print(std::cerr); } void MachineFunction::print(std::ostream &OS) const { OS << "\n" << *(Value*)Fn->getReturnType() << " \"" << Fn->getName()<< "\"\n"; for (const_iterator BB = begin(); BB != end(); ++BB) { BasicBlock *LBB = BB->getBasicBlock(); OS << "\n" << LBB->getName() << " (" << (const void*)LBB << "):\n"; for (MachineBasicBlock::const_iterator I = BB->begin(); I != BB->end();++I){ OS << "\t"; (*I)->print(OS, Target); } } OS << "\nEnd function \"" << Fn->getName() << "\"\n\n"; } // The next two methods are used to construct and to retrieve // the MachineCodeForFunction object for the given function. // construct() -- Allocates and initializes for a given function and target // get() -- Returns a handle to the object. // This should not be called before "construct()" // for a given Function. // MachineFunction& MachineFunction::construct(const Function *Fn, const TargetMachine &Tar) { assert(Fn->getAnnotation(MF_AID) == 0 && "Object already exists for this function!"); MachineFunction* mcInfo = new MachineFunction(Fn, Tar); Fn->addAnnotation(mcInfo); return *mcInfo; } void MachineFunction::destruct(const Function *Fn) { bool Deleted = Fn->deleteAnnotation(MF_AID); assert(Deleted && "Machine code did not exist for function!"); } MachineFunction& MachineFunction::get(const Function *F) { MachineFunction *mc = (MachineFunction*)F->getAnnotation(MF_AID); assert(mc && "Call construct() method first to allocate the object"); return *mc; } void MachineFunction::clearSSARegMap() { delete SSARegMapping; SSARegMapping = 0; } static unsigned ComputeMaxOptionalArgsSize(const TargetMachine& target, const Function *F, unsigned &maxOptionalNumArgs) { const MachineFrameInfo& frameInfo = target.getFrameInfo(); unsigned maxSize = 0; for (Function::const_iterator BB = F->begin(), BBE = F->end(); BB !=BBE; ++BB) for (BasicBlock::const_iterator I = BB->begin(), E = BB->end(); I != E; ++I) if (const CallInst *callInst = dyn_cast(&*I)) { unsigned numOperands = callInst->getNumOperands() - 1; int numExtra = (int)numOperands-frameInfo.getNumFixedOutgoingArgs(); if (numExtra <= 0) continue; unsigned int sizeForThisCall; if (frameInfo.argsOnStackHaveFixedSize()) { int argSize = frameInfo.getSizeOfEachArgOnStack(); sizeForThisCall = numExtra * (unsigned) argSize; } else { assert(0 && "UNTESTED CODE: Size per stack argument is not " "fixed on this architecture: use actual arg sizes to " "compute MaxOptionalArgsSize"); sizeForThisCall = 0; for (unsigned i = 0; i < numOperands; ++i) sizeForThisCall += target.DataLayout.getTypeSize(callInst-> getOperand(i)->getType()); } if (maxSize < sizeForThisCall) maxSize = sizeForThisCall; if ((int)maxOptionalNumArgs < numExtra) maxOptionalNumArgs = (unsigned) numExtra; } return maxSize; } // Align data larger than one L1 cache line on L1 cache line boundaries. // Align all smaller data on the next higher 2^x boundary (4, 8, ...), // but not higher than the alignment of the largest type we support // (currently a double word). -- see class TargetData). // // This function is similar to the corresponding function in EmitAssembly.cpp // but they are unrelated. This one does not align at more than a // double-word boundary whereas that one might. // inline unsigned int SizeToAlignment(unsigned int size, const TargetMachine& target) { unsigned short cacheLineSize = target.getCacheInfo().getCacheLineSize(1); if (size > (unsigned) cacheLineSize / 2) return cacheLineSize; else for (unsigned sz=1; /*no condition*/; sz *= 2) if (sz >= size || sz >= target.DataLayout.getDoubleAlignment()) return sz; } void MachineFunction::CalculateArgSize() { maxOptionalArgsSize = ComputeMaxOptionalArgsSize(Target, Fn, maxOptionalNumArgs); staticStackSize = maxOptionalArgsSize + Target.getFrameInfo().getMinStackFrameSize(); } int MachineFunction::computeOffsetforLocalVar(const TargetMachine& target, const Value* val, unsigned int& getPaddedSize, unsigned int sizeToUse) { if (sizeToUse == 0) sizeToUse = target.findOptimalStorageSize(val->getType()); unsigned int align = SizeToAlignment(sizeToUse, target); bool growUp; int firstOffset = target.getFrameInfo().getFirstAutomaticVarOffset(*this, growUp); int offset = growUp? firstOffset + getAutomaticVarsSize() : firstOffset - (getAutomaticVarsSize() + sizeToUse); int aligned = target.getFrameInfo().adjustAlignment(offset, growUp, align); getPaddedSize = sizeToUse + abs(aligned - offset); return aligned; } int MachineFunction::allocateLocalVar(const TargetMachine& target, const Value* val, unsigned int sizeToUse) { assert(! automaticVarsAreaFrozen && "Size of auto vars area has been used to compute an offset so " "no more automatic vars should be allocated!"); // Check if we've allocated a stack slot for this value already // int offset = getOffset(val); if (offset == INVALID_FRAME_OFFSET) { unsigned int getPaddedSize; offset = computeOffsetforLocalVar(target, val, getPaddedSize, sizeToUse); offsets[val] = offset; incrementAutomaticVarsSize(getPaddedSize); } return offset; } int MachineFunction::allocateSpilledValue(const TargetMachine& target, const Type* type) { assert(! spillsAreaFrozen && "Size of reg spills area has been used to compute an offset so " "no more register spill slots should be allocated!"); unsigned int size = target.DataLayout.getTypeSize(type); unsigned char align = target.DataLayout.getTypeAlignment(type); bool growUp; int firstOffset = target.getFrameInfo().getRegSpillAreaOffset(*this, growUp); int offset = growUp? firstOffset + getRegSpillsSize() : firstOffset - (getRegSpillsSize() + size); int aligned = target.getFrameInfo().adjustAlignment(offset, growUp, align); size += abs(aligned - offset); // include alignment padding in size incrementRegSpillsSize(size); // update size of reg. spills area return aligned; } int MachineFunction::pushTempValue(const TargetMachine& target, unsigned int size) { unsigned int align = SizeToAlignment(size, target); bool growUp; int firstOffset = target.getFrameInfo().getTmpAreaOffset(*this, growUp); int offset = growUp? firstOffset + currentTmpValuesSize : firstOffset - (currentTmpValuesSize + size); int aligned = target.getFrameInfo().adjustAlignment(offset, growUp, align); size += abs(aligned - offset); // include alignment padding in size incrementTmpAreaSize(size); // update "current" size of tmp area return aligned; } void MachineFunction::popAllTempValues(const TargetMachine& target) { resetTmpAreaSize(); // clear tmp area to reuse } int MachineFunction::getOffset(const Value* val) const { hash_map::const_iterator pair = offsets.find(val); return (pair == offsets.end()) ? INVALID_FRAME_OFFSET : pair->second; }