//===---- ScheduleDAG.cpp - Implement the ScheduleDAG class ---------------===// // // The LLVM Compiler Infrastructure // // This file was developed by James M. Laskey and is distributed under the // University of Illinois Open Source License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// // // This implements a simple two pass scheduler. The first pass attempts to push // backward any lengthy instructions and critical paths. The second pass packs // instructions into semi-optimal time slots. // //===----------------------------------------------------------------------===// #define DEBUG_TYPE "sched" #include "llvm/Type.h" #include "llvm/CodeGen/ScheduleDAG.h" #include "llvm/CodeGen/MachineConstantPool.h" #include "llvm/CodeGen/MachineFunction.h" #include "llvm/CodeGen/SSARegMap.h" #include "llvm/Target/TargetData.h" #include "llvm/Target/TargetMachine.h" #include "llvm/Target/TargetInstrInfo.h" #include "llvm/Target/TargetLowering.h" #include "llvm/Support/Debug.h" #include "llvm/Support/MathExtras.h" using namespace llvm; /// BuildSchedUnits - Build SUnits from the selection dag that we are input. /// This SUnit graph is similar to the SelectionDAG, but represents flagged /// together nodes with a single SUnit. void ScheduleDAG::BuildSchedUnits() { // Reserve entries in the vector for each of the SUnits we are creating. This // ensure that reallocation of the vector won't happen, so SUnit*'s won't get // invalidated. SUnits.reserve(std::distance(DAG.allnodes_begin(), DAG.allnodes_end())); const InstrItineraryData &InstrItins = TM.getInstrItineraryData(); for (SelectionDAG::allnodes_iterator NI = DAG.allnodes_begin(), E = DAG.allnodes_end(); NI != E; ++NI) { if (isPassiveNode(NI)) // Leaf node, e.g. a TargetImmediate. continue; // If this node has already been processed, stop now. if (SUnitMap[NI]) continue; SUnit *NodeSUnit = NewSUnit(NI); // See if anything is flagged to this node, if so, add them to flagged // nodes. Nodes can have at most one flag input and one flag output. Flags // are required the be the last operand and result of a node. // Scan up, adding flagged preds to FlaggedNodes. SDNode *N = NI; if (N->getNumOperands() && N->getOperand(N->getNumOperands()-1).getValueType() == MVT::Flag) { do { N = N->getOperand(N->getNumOperands()-1).Val; NodeSUnit->FlaggedNodes.push_back(N); SUnitMap[N] = NodeSUnit; } while (N->getNumOperands() && N->getOperand(N->getNumOperands()-1).getValueType()== MVT::Flag); std::reverse(NodeSUnit->FlaggedNodes.begin(), NodeSUnit->FlaggedNodes.end()); } // Scan down, adding this node and any flagged succs to FlaggedNodes if they // have a user of the flag operand. N = NI; while (N->getValueType(N->getNumValues()-1) == MVT::Flag) { SDOperand FlagVal(N, N->getNumValues()-1); // There are either zero or one users of the Flag result. bool HasFlagUse = false; for (SDNode::use_iterator UI = N->use_begin(), E = N->use_end(); UI != E; ++UI) if (FlagVal.isOperand(*UI)) { HasFlagUse = true; NodeSUnit->FlaggedNodes.push_back(N); SUnitMap[N] = NodeSUnit; N = *UI; break; } if (!HasFlagUse) break; } // Now all flagged nodes are in FlaggedNodes and N is the bottom-most node. // Update the SUnit NodeSUnit->Node = N; SUnitMap[N] = NodeSUnit; // Compute the latency for the node. We use the sum of the latencies for // all nodes flagged together into this SUnit. if (InstrItins.isEmpty()) { // No latency information. NodeSUnit->Latency = 1; } else { NodeSUnit->Latency = 0; if (N->isTargetOpcode()) { unsigned SchedClass = TII->getSchedClass(N->getTargetOpcode()); InstrStage *S = InstrItins.begin(SchedClass); InstrStage *E = InstrItins.end(SchedClass); for (; S != E; ++S) NodeSUnit->Latency += S->Cycles; } for (unsigned i = 0, e = NodeSUnit->FlaggedNodes.size(); i != e; ++i) { SDNode *FNode = NodeSUnit->FlaggedNodes[i]; if (FNode->isTargetOpcode()) { unsigned SchedClass = TII->getSchedClass(FNode->getTargetOpcode()); InstrStage *S = InstrItins.begin(SchedClass); InstrStage *E = InstrItins.end(SchedClass); for (; S != E; ++S) NodeSUnit->Latency += S->Cycles; } } } } // Pass 2: add the preds, succs, etc. for (unsigned su = 0, e = SUnits.size(); su != e; ++su) { SUnit *SU = &SUnits[su]; SDNode *MainNode = SU->Node; if (MainNode->isTargetOpcode()) { unsigned Opc = MainNode->getTargetOpcode(); for (unsigned i = 0, ee = TII->getNumOperands(Opc); i != ee; ++i) { if (TII->getOperandConstraint(Opc, i, TOI::TIED_TO) != -1) { SU->isTwoAddress = true; break; } } if (TII->isCommutableInstr(Opc)) SU->isCommutable = true; } // Find all predecessors and successors of the group. // Temporarily add N to make code simpler. SU->FlaggedNodes.push_back(MainNode); for (unsigned n = 0, e = SU->FlaggedNodes.size(); n != e; ++n) { SDNode *N = SU->FlaggedNodes[n]; for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i) { SDNode *OpN = N->getOperand(i).Val; if (isPassiveNode(OpN)) continue; // Not scheduled. SUnit *OpSU = SUnitMap[OpN]; assert(OpSU && "Node has no SUnit!"); if (OpSU == SU) continue; // In the same group. MVT::ValueType OpVT = N->getOperand(i).getValueType(); assert(OpVT != MVT::Flag && "Flagged nodes should be in same sunit!"); bool isChain = OpVT == MVT::Other; if (SU->addPred(OpSU, isChain)) { if (!isChain) { SU->NumPreds++; SU->NumPredsLeft++; } else { SU->NumChainPredsLeft++; } } if (OpSU->addSucc(SU, isChain)) { if (!isChain) { OpSU->NumSuccs++; OpSU->NumSuccsLeft++; } else { OpSU->NumChainSuccsLeft++; } } } } // Remove MainNode from FlaggedNodes again. SU->FlaggedNodes.pop_back(); } return; } static void CalculateDepths(SUnit &SU, unsigned Depth) { if (SU.Depth == 0 || Depth > SU.Depth) { SU.Depth = Depth; for (SUnit::succ_iterator I = SU.Succs.begin(), E = SU.Succs.end(); I != E; ++I) CalculateDepths(*I->first, Depth+1); } } void ScheduleDAG::CalculateDepths() { SUnit *Entry = SUnitMap[DAG.getEntryNode().Val]; ::CalculateDepths(*Entry, 0U); for (unsigned i = 0, e = SUnits.size(); i != e; ++i) if (SUnits[i].Preds.size() == 0 && &SUnits[i] != Entry) { ::CalculateDepths(SUnits[i], 0U); } } static void CalculateHeights(SUnit &SU, unsigned Height) { if (SU.Height == 0 || Height > SU.Height) { SU.Height = Height; for (SUnit::pred_iterator I = SU.Preds.begin(), E = SU.Preds.end(); I != E; ++I) CalculateHeights(*I->first, Height+1); } } void ScheduleDAG::CalculateHeights() { SUnit *Root = SUnitMap[DAG.getRoot().Val]; ::CalculateHeights(*Root, 0U); } /// CountResults - The results of target nodes have register or immediate /// operands first, then an optional chain, and optional flag operands (which do /// not go into the machine instrs.) unsigned ScheduleDAG::CountResults(SDNode *Node) { unsigned N = Node->getNumValues(); while (N && Node->getValueType(N - 1) == MVT::Flag) --N; if (N && Node->getValueType(N - 1) == MVT::Other) --N; // Skip over chain result. return N; } /// CountOperands The inputs to target nodes have any actual inputs first, /// followed by an optional chain operand, then flag operands. Compute the /// number of actual operands that will go into the machine instr. unsigned ScheduleDAG::CountOperands(SDNode *Node) { unsigned N = Node->getNumOperands(); while (N && Node->getOperand(N - 1).getValueType() == MVT::Flag) --N; if (N && Node->getOperand(N - 1).getValueType() == MVT::Other) --N; // Ignore chain if it exists. return N; } static const TargetRegisterClass *getInstrOperandRegClass( const MRegisterInfo *MRI, const TargetInstrInfo *TII, const TargetInstrDescriptor *II, unsigned Op) { if (Op >= II->numOperands) { assert((II->Flags & M_VARIABLE_OPS)&& "Invalid operand # of instruction"); return NULL; } const TargetOperandInfo &toi = II->OpInfo[Op]; return (toi.Flags & M_LOOK_UP_PTR_REG_CLASS) ? TII->getPointerRegClass() : MRI->getRegClass(toi.RegClass); } static unsigned CreateVirtualRegisters(const MRegisterInfo *MRI, MachineInstr *MI, unsigned NumResults, SSARegMap *RegMap, const TargetInstrInfo *TII, const TargetInstrDescriptor &II) { // Create the result registers for this node and add the result regs to // the machine instruction. unsigned ResultReg = RegMap->createVirtualRegister(getInstrOperandRegClass(MRI, TII, &II, 0)); MI->addRegOperand(ResultReg, true); for (unsigned i = 1; i != NumResults; ++i) { const TargetRegisterClass *RC = getInstrOperandRegClass(MRI, TII, &II, i); assert(RC && "Isn't a register operand!"); MI->addRegOperand(RegMap->createVirtualRegister(RC), true); } return ResultReg; } /// getVR - Return the virtual register corresponding to the specified result /// of the specified node. static unsigned getVR(SDOperand Op, DenseMap &VRBaseMap) { DenseMap::iterator I = VRBaseMap.find(Op.Val); assert(I != VRBaseMap.end() && "Node emitted out of order - late"); return I->second + Op.ResNo; } /// AddOperand - Add the specified operand to the specified machine instr. II /// specifies the instruction information for the node, and IIOpNum is the /// operand number (in the II) that we are adding. IIOpNum and II are used for /// assertions only. void ScheduleDAG::AddOperand(MachineInstr *MI, SDOperand Op, unsigned IIOpNum, const TargetInstrDescriptor *II, DenseMap &VRBaseMap) { if (Op.isTargetOpcode()) { // Note that this case is redundant with the final else block, but we // include it because it is the most common and it makes the logic // simpler here. assert(Op.getValueType() != MVT::Other && Op.getValueType() != MVT::Flag && "Chain and flag operands should occur at end of operand list!"); // Get/emit the operand. unsigned VReg = getVR(Op, VRBaseMap); MI->addRegOperand(VReg, false); // Verify that it is right. assert(MRegisterInfo::isVirtualRegister(VReg) && "Not a vreg?"); if (II) { const TargetRegisterClass *RC = getInstrOperandRegClass(MRI, TII, II, IIOpNum); assert(RC && "Don't have operand info for this instruction!"); const TargetRegisterClass *VRC = RegMap->getRegClass(VReg); if (VRC != RC) { cerr << "Register class of operand and regclass of use don't agree!\n"; #ifndef NDEBUG cerr << "Operand = " << IIOpNum << "\n"; cerr << "Op->Val = "; Op.Val->dump(&DAG); cerr << "\n"; cerr << "MI = "; MI->print(cerr); cerr << "VReg = " << VReg << "\n"; cerr << "VReg RegClass size = " << VRC->getSize() << ", align = " << VRC->getAlignment() << "\n"; cerr << "Expected RegClass size = " << RC->getSize() << ", align = " << RC->getAlignment() << "\n"; #endif cerr << "Fatal error, aborting.\n"; abort(); } } } else if (ConstantSDNode *C = dyn_cast(Op)) { MI->addImmOperand(C->getValue()); } else if (RegisterSDNode *R = dyn_cast(Op)) { MI->addRegOperand(R->getReg(), false); } else if (GlobalAddressSDNode *TGA = dyn_cast(Op)) { MI->addGlobalAddressOperand(TGA->getGlobal(), TGA->getOffset()); } else if (BasicBlockSDNode *BB = dyn_cast(Op)) { MI->addMachineBasicBlockOperand(BB->getBasicBlock()); } else if (FrameIndexSDNode *FI = dyn_cast(Op)) { MI->addFrameIndexOperand(FI->getIndex()); } else if (JumpTableSDNode *JT = dyn_cast(Op)) { MI->addJumpTableIndexOperand(JT->getIndex()); } else if (ConstantPoolSDNode *CP = dyn_cast(Op)) { int Offset = CP->getOffset(); unsigned Align = CP->getAlignment(); const Type *Type = CP->getType(); // MachineConstantPool wants an explicit alignment. if (Align == 0) { Align = TM.getTargetData()->getPreferredTypeAlignmentShift(Type); if (Align == 0) { // Alignment of vector types. FIXME! Align = TM.getTargetData()->getTypeSize(Type); Align = Log2_64(Align); } } unsigned Idx; if (CP->isMachineConstantPoolEntry()) Idx = ConstPool->getConstantPoolIndex(CP->getMachineCPVal(), Align); else Idx = ConstPool->getConstantPoolIndex(CP->getConstVal(), Align); MI->addConstantPoolIndexOperand(Idx, Offset); } else if (ExternalSymbolSDNode *ES = dyn_cast(Op)) { MI->addExternalSymbolOperand(ES->getSymbol()); } else { assert(Op.getValueType() != MVT::Other && Op.getValueType() != MVT::Flag && "Chain and flag operands should occur at end of operand list!"); unsigned VReg = getVR(Op, VRBaseMap); MI->addRegOperand(VReg, false); // Verify that it is right. assert(MRegisterInfo::isVirtualRegister(VReg) && "Not a vreg?"); if (II) { const TargetRegisterClass *RC = getInstrOperandRegClass(MRI, TII, II, IIOpNum); assert(RC && "Don't have operand info for this instruction!"); assert(RegMap->getRegClass(VReg) == RC && "Register class of operand and regclass of use don't agree!"); } } } /// EmitNode - Generate machine code for an node and needed dependencies. /// void ScheduleDAG::EmitNode(SDNode *Node, DenseMap &VRBaseMap) { unsigned VRBase = 0; // First virtual register for node // If machine instruction if (Node->isTargetOpcode()) { unsigned Opc = Node->getTargetOpcode(); const TargetInstrDescriptor &II = TII->get(Opc); unsigned NumResults = CountResults(Node); unsigned NodeOperands = CountOperands(Node); unsigned NumMIOperands = NodeOperands + NumResults; #ifndef NDEBUG assert((unsigned(II.numOperands) == NumMIOperands || (II.Flags & M_VARIABLE_OPS)) && "#operands for dag node doesn't match .td file!"); #endif // Create the new machine instruction. MachineInstr *MI = new MachineInstr(II); // Add result register values for things that are defined by this // instruction. // If the node is only used by a CopyToReg and the dest reg is a vreg, use // the CopyToReg'd destination register instead of creating a new vreg. if (NumResults == 1) { for (SDNode::use_iterator UI = Node->use_begin(), E = Node->use_end(); UI != E; ++UI) { SDNode *Use = *UI; if (Use->getOpcode() == ISD::CopyToReg && Use->getOperand(2).Val == Node) { unsigned Reg = cast(Use->getOperand(1))->getReg(); if (MRegisterInfo::isVirtualRegister(Reg)) { VRBase = Reg; MI->addRegOperand(Reg, true); break; } } } } // Otherwise, create new virtual registers. if (NumResults && VRBase == 0) VRBase = CreateVirtualRegisters(MRI, MI, NumResults, RegMap, TII, II); // Emit all of the actual operands of this instruction, adding them to the // instruction as appropriate. for (unsigned i = 0; i != NodeOperands; ++i) AddOperand(MI, Node->getOperand(i), i+NumResults, &II, VRBaseMap); // Commute node if it has been determined to be profitable. if (CommuteSet.count(Node)) { MachineInstr *NewMI = TII->commuteInstruction(MI); if (NewMI == 0) DOUT << "Sched: COMMUTING FAILED!\n"; else { DOUT << "Sched: COMMUTED TO: " << *NewMI; if (MI != NewMI) { delete MI; MI = NewMI; } } } // Now that we have emitted all operands, emit this instruction itself. if ((II.Flags & M_USES_CUSTOM_DAG_SCHED_INSERTION) == 0) { BB->insert(BB->end(), MI); } else { // Insert this instruction into the end of the basic block, potentially // taking some custom action. BB = DAG.getTargetLoweringInfo().InsertAtEndOfBasicBlock(MI, BB); } } else { switch (Node->getOpcode()) { default: #ifndef NDEBUG Node->dump(); #endif assert(0 && "This target-independent node should have been selected!"); case ISD::EntryToken: // fall thru case ISD::TokenFactor: case ISD::LABEL: break; case ISD::CopyToReg: { unsigned InReg; if (RegisterSDNode *R = dyn_cast(Node->getOperand(2))) InReg = R->getReg(); else InReg = getVR(Node->getOperand(2), VRBaseMap); unsigned DestReg = cast(Node->getOperand(1))->getReg(); if (InReg != DestReg) {// Coalesced away the copy? const TargetRegisterClass *TRC = 0; // Get the target register class if (MRegisterInfo::isVirtualRegister(InReg)) { TRC = RegMap->getRegClass(InReg); } else { // Pick the register class of the right type that contains this // physreg. for (MRegisterInfo::regclass_iterator I = MRI->regclass_begin(), E = MRI->regclass_end(); I != E; ++I) if ((*I)->hasType(Node->getOperand(2).getValueType()) && (*I)->contains(InReg)) { TRC = *I; break; } assert(TRC && "Couldn't find register class for reg copy!"); } MRI->copyRegToReg(*BB, BB->end(), DestReg, InReg, TRC); } break; } case ISD::CopyFromReg: { unsigned SrcReg = cast(Node->getOperand(1))->getReg(); if (MRegisterInfo::isVirtualRegister(SrcReg)) { VRBase = SrcReg; // Just use the input register directly! break; } // If the node is only used by a CopyToReg and the dest reg is a vreg, use // the CopyToReg'd destination register instead of creating a new vreg. for (SDNode::use_iterator UI = Node->use_begin(), E = Node->use_end(); UI != E; ++UI) { SDNode *Use = *UI; if (Use->getOpcode() == ISD::CopyToReg && Use->getOperand(2).Val == Node) { unsigned DestReg = cast(Use->getOperand(1))->getReg(); if (MRegisterInfo::isVirtualRegister(DestReg)) { VRBase = DestReg; break; } } } // Figure out the register class to create for the destreg. const TargetRegisterClass *TRC = 0; if (VRBase) { TRC = RegMap->getRegClass(VRBase); } else { // Pick the register class of the right type that contains this physreg. for (MRegisterInfo::regclass_iterator I = MRI->regclass_begin(), E = MRI->regclass_end(); I != E; ++I) if ((*I)->hasType(Node->getValueType(0)) && (*I)->contains(SrcReg)) { TRC = *I; break; } assert(TRC && "Couldn't find register class for reg copy!"); // Create the reg, emit the copy. VRBase = RegMap->createVirtualRegister(TRC); } MRI->copyRegToReg(*BB, BB->end(), VRBase, SrcReg, TRC); break; } case ISD::INLINEASM: { unsigned NumOps = Node->getNumOperands(); if (Node->getOperand(NumOps-1).getValueType() == MVT::Flag) --NumOps; // Ignore the flag operand. // Create the inline asm machine instruction. MachineInstr *MI = new MachineInstr(BB, TII->get(TargetInstrInfo::INLINEASM)); // Add the asm string as an external symbol operand. const char *AsmStr = cast(Node->getOperand(1))->getSymbol(); MI->addExternalSymbolOperand(AsmStr); // Add all of the operand registers to the instruction. for (unsigned i = 2; i != NumOps;) { unsigned Flags = cast(Node->getOperand(i))->getValue(); unsigned NumVals = Flags >> 3; MI->addImmOperand(Flags); ++i; // Skip the ID value. switch (Flags & 7) { default: assert(0 && "Bad flags!"); case 1: // Use of register. for (; NumVals; --NumVals, ++i) { unsigned Reg = cast(Node->getOperand(i))->getReg(); MI->addRegOperand(Reg, false); } break; case 2: // Def of register. for (; NumVals; --NumVals, ++i) { unsigned Reg = cast(Node->getOperand(i))->getReg(); MI->addRegOperand(Reg, true); } break; case 3: { // Immediate. assert(NumVals == 1 && "Unknown immediate value!"); if (ConstantSDNode *CS=dyn_cast(Node->getOperand(i))){ MI->addImmOperand(CS->getValue()); } else { GlobalAddressSDNode *GA = cast(Node->getOperand(i)); MI->addGlobalAddressOperand(GA->getGlobal(), GA->getOffset()); } ++i; break; } case 4: // Addressing mode. // The addressing mode has been selected, just add all of the // operands to the machine instruction. for (; NumVals; --NumVals, ++i) AddOperand(MI, Node->getOperand(i), 0, 0, VRBaseMap); break; } } break; } } } assert(!VRBaseMap.count(Node) && "Node emitted out of order - early"); VRBaseMap[Node] = VRBase; } void ScheduleDAG::EmitNoop() { TII->insertNoop(*BB, BB->end()); } /// EmitSchedule - Emit the machine code in scheduled order. void ScheduleDAG::EmitSchedule() { // If this is the first basic block in the function, and if it has live ins // that need to be copied into vregs, emit the copies into the top of the // block before emitting the code for the block. MachineFunction &MF = DAG.getMachineFunction(); if (&MF.front() == BB && MF.livein_begin() != MF.livein_end()) { for (MachineFunction::livein_iterator LI = MF.livein_begin(), E = MF.livein_end(); LI != E; ++LI) if (LI->second) MRI->copyRegToReg(*MF.begin(), MF.begin()->end(), LI->second, LI->first, RegMap->getRegClass(LI->second)); } // Finally, emit the code for all of the scheduled instructions. DenseMap VRBaseMap; for (unsigned i = 0, e = Sequence.size(); i != e; i++) { if (SUnit *SU = Sequence[i]) { for (unsigned j = 0, ee = SU->FlaggedNodes.size(); j != ee; j++) EmitNode(SU->FlaggedNodes[j], VRBaseMap); EmitNode(SU->Node, VRBaseMap); } else { // Null SUnit* is a noop. EmitNoop(); } } } /// dump - dump the schedule. void ScheduleDAG::dumpSchedule() const { for (unsigned i = 0, e = Sequence.size(); i != e; i++) { if (SUnit *SU = Sequence[i]) SU->dump(&DAG); else cerr << "**** NOOP ****\n"; } } /// Run - perform scheduling. /// MachineBasicBlock *ScheduleDAG::Run() { TII = TM.getInstrInfo(); MRI = TM.getRegisterInfo(); RegMap = BB->getParent()->getSSARegMap(); ConstPool = BB->getParent()->getConstantPool(); Schedule(); return BB; } /// SUnit - Scheduling unit. It's an wrapper around either a single SDNode or /// a group of nodes flagged together. void SUnit::dump(const SelectionDAG *G) const { cerr << "SU(" << NodeNum << "): "; Node->dump(G); cerr << "\n"; if (FlaggedNodes.size() != 0) { for (unsigned i = 0, e = FlaggedNodes.size(); i != e; i++) { cerr << " "; FlaggedNodes[i]->dump(G); cerr << "\n"; } } } void SUnit::dumpAll(const SelectionDAG *G) const { dump(G); cerr << " # preds left : " << NumPredsLeft << "\n"; cerr << " # succs left : " << NumSuccsLeft << "\n"; cerr << " # chain preds left : " << NumChainPredsLeft << "\n"; cerr << " # chain succs left : " << NumChainSuccsLeft << "\n"; cerr << " Latency : " << Latency << "\n"; cerr << " Depth : " << Depth << "\n"; cerr << " Height : " << Height << "\n"; if (Preds.size() != 0) { cerr << " Predecessors:\n"; for (SUnit::const_succ_iterator I = Preds.begin(), E = Preds.end(); I != E; ++I) { if (I->second) cerr << " ch #"; else cerr << " val #"; cerr << I->first << " - SU(" << I->first->NodeNum << ")\n"; } } if (Succs.size() != 0) { cerr << " Successors:\n"; for (SUnit::const_succ_iterator I = Succs.begin(), E = Succs.end(); I != E; ++I) { if (I->second) cerr << " ch #"; else cerr << " val #"; cerr << I->first << " - SU(" << I->first->NodeNum << ")\n"; } } cerr << "\n"; }