//===- lib/MC/MCMachOStreamer.cpp - Mach-O Object Output ------------===// // // The LLVM Compiler Infrastructure // // This file is distributed under the University of Illinois Open Source // License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// #include "llvm/MC/MCStreamer.h" #include "llvm/MC/MCAssembler.h" #include "llvm/MC/MCContext.h" #include "llvm/MC/MCCodeEmitter.h" #include "llvm/MC/MCExpr.h" #include "llvm/MC/MCInst.h" #include "llvm/MC/MCObjectStreamer.h" #include "llvm/MC/MCSection.h" #include "llvm/MC/MCSymbol.h" #include "llvm/MC/MCMachOSymbolFlags.h" #include "llvm/Support/ErrorHandling.h" #include "llvm/Support/raw_ostream.h" #include "llvm/Target/TargetAsmBackend.h" using namespace llvm; namespace { class MCMachOStreamer : public MCObjectStreamer { private: /// Track the current atom for each section. DenseMap CurrentAtomMap; private: MCFragment *getCurrentFragment() const { assert(getCurrentSectionData() && "No current section!"); if (!getCurrentSectionData()->empty()) return &getCurrentSectionData()->getFragmentList().back(); return 0; } /// Get a data fragment to write into, creating a new one if the current /// fragment is not a data fragment. MCDataFragment *getOrCreateDataFragment() const { MCDataFragment *F = dyn_cast_or_null(getCurrentFragment()); if (!F) F = createDataFragment(); return F; } /// Create a new data fragment in the current section. MCDataFragment *createDataFragment() const { MCDataFragment *DF = new MCDataFragment(getCurrentSectionData()); DF->setAtom(CurrentAtomMap.lookup(getCurrentSectionData())); return DF; } void EmitInstToFragment(const MCInst &Inst); void EmitInstToData(const MCInst &Inst); public: MCMachOStreamer(MCContext &Context, TargetAsmBackend &TAB, raw_ostream &OS, MCCodeEmitter *Emitter) : MCObjectStreamer(Context, TAB, OS, Emitter) {} const MCExpr *AddValueSymbols(const MCExpr *Value) { switch (Value->getKind()) { case MCExpr::Target: assert(0 && "Can't handle target exprs yet!"); case MCExpr::Constant: break; case MCExpr::Binary: { const MCBinaryExpr *BE = cast(Value); AddValueSymbols(BE->getLHS()); AddValueSymbols(BE->getRHS()); break; } case MCExpr::SymbolRef: getAssembler().getOrCreateSymbolData( cast(Value)->getSymbol()); break; case MCExpr::Unary: AddValueSymbols(cast(Value)->getSubExpr()); break; } return Value; } /// @name MCStreamer Interface /// @{ virtual void EmitLabel(MCSymbol *Symbol); virtual void EmitAssemblerFlag(MCAssemblerFlag Flag); virtual void EmitAssignment(MCSymbol *Symbol, const MCExpr *Value); virtual void EmitSymbolAttribute(MCSymbol *Symbol, MCSymbolAttr Attribute); virtual void EmitSymbolDesc(MCSymbol *Symbol, unsigned DescValue); virtual void EmitCommonSymbol(MCSymbol *Symbol, uint64_t Size, unsigned ByteAlignment); virtual void BeginCOFFSymbolDef(const MCSymbol *Symbol) { assert(0 && "macho doesn't support this directive"); } virtual void EmitCOFFSymbolStorageClass(int StorageClass) { assert(0 && "macho doesn't support this directive"); } virtual void EmitCOFFSymbolType(int Type) { assert(0 && "macho doesn't support this directive"); } virtual void EndCOFFSymbolDef() { assert(0 && "macho doesn't support this directive"); } virtual void EmitELFSize(MCSymbol *Symbol, const MCExpr *Value) { assert(0 && "macho doesn't support this directive"); } virtual void EmitLocalCommonSymbol(MCSymbol *Symbol, uint64_t Size) { assert(0 && "macho doesn't support this directive"); } virtual void EmitZerofill(const MCSection *Section, MCSymbol *Symbol = 0, unsigned Size = 0, unsigned ByteAlignment = 0); virtual void EmitTBSSSymbol(const MCSection *Section, MCSymbol *Symbol, uint64_t Size, unsigned ByteAlignment = 0); virtual void EmitBytes(StringRef Data, unsigned AddrSpace); virtual void EmitValue(const MCExpr *Value, unsigned Size,unsigned AddrSpace); virtual void EmitGPRel32Value(const MCExpr *Value) { assert(0 && "macho doesn't support this directive"); } virtual void EmitValueToAlignment(unsigned ByteAlignment, int64_t Value = 0, unsigned ValueSize = 1, unsigned MaxBytesToEmit = 0); virtual void EmitCodeAlignment(unsigned ByteAlignment, unsigned MaxBytesToEmit = 0); virtual void EmitValueToOffset(const MCExpr *Offset, unsigned char Value = 0); virtual void EmitFileDirective(StringRef Filename) { report_fatal_error("unsupported directive: '.file'"); } virtual void EmitDwarfFileDirective(unsigned FileNo, StringRef Filename) { report_fatal_error("unsupported directive: '.file'"); } virtual void EmitInstruction(const MCInst &Inst); /// @} }; } // end anonymous namespace. void MCMachOStreamer::EmitLabel(MCSymbol *Symbol) { assert(Symbol->isUndefined() && "Cannot define a symbol twice!"); assert(!Symbol->isVariable() && "Cannot emit a variable symbol!"); assert(CurSection && "Cannot emit before setting section!"); MCSymbolData &SD = getAssembler().getOrCreateSymbolData(*Symbol); // Update the current atom map, if necessary. bool MustCreateFragment = false; if (getAssembler().isSymbolLinkerVisible(SD.getSymbol())) { CurrentAtomMap[getCurrentSectionData()] = &SD; // We have to create a new fragment, fragments cannot span atoms. MustCreateFragment = true; } // FIXME: This is wasteful, we don't necessarily need to create a data // fragment. Instead, we should mark the symbol as pointing into the data // fragment if it exists, otherwise we should just queue the label and set its // fragment pointer when we emit the next fragment. MCDataFragment *F = MustCreateFragment ? createDataFragment() : getOrCreateDataFragment(); assert(!SD.getFragment() && "Unexpected fragment on symbol data!"); SD.setFragment(F); SD.setOffset(F->getContents().size()); // This causes the reference type flag to be cleared. Darwin 'as' was "trying" // to clear the weak reference and weak definition bits too, but the // implementation was buggy. For now we just try to match 'as', for // diffability. // // FIXME: Cleanup this code, these bits should be emitted based on semantic // properties, not on the order of definition, etc. SD.setFlags(SD.getFlags() & ~SF_ReferenceTypeMask); Symbol->setSection(*CurSection); } void MCMachOStreamer::EmitAssemblerFlag(MCAssemblerFlag Flag) { switch (Flag) { case MCAF_SubsectionsViaSymbols: getAssembler().setSubsectionsViaSymbols(true); return; } assert(0 && "invalid assembler flag!"); } void MCMachOStreamer::EmitAssignment(MCSymbol *Symbol, const MCExpr *Value) { // FIXME: Lift context changes into super class. getAssembler().getOrCreateSymbolData(*Symbol); Symbol->setVariableValue(AddValueSymbols(Value)); } void MCMachOStreamer::EmitSymbolAttribute(MCSymbol *Symbol, MCSymbolAttr Attribute) { // Indirect symbols are handled differently, to match how 'as' handles // them. This makes writing matching .o files easier. if (Attribute == MCSA_IndirectSymbol) { // Note that we intentionally cannot use the symbol data here; this is // important for matching the string table that 'as' generates. IndirectSymbolData ISD; ISD.Symbol = Symbol; ISD.SectionData = getCurrentSectionData(); getAssembler().getIndirectSymbols().push_back(ISD); return; } // Adding a symbol attribute always introduces the symbol, note that an // important side effect of calling getOrCreateSymbolData here is to register // the symbol with the assembler. MCSymbolData &SD = getAssembler().getOrCreateSymbolData(*Symbol); // The implementation of symbol attributes is designed to match 'as', but it // leaves much to desired. It doesn't really make sense to arbitrarily add and // remove flags, but 'as' allows this (in particular, see .desc). // // In the future it might be worth trying to make these operations more well // defined. switch (Attribute) { case MCSA_Invalid: case MCSA_ELF_TypeFunction: case MCSA_ELF_TypeIndFunction: case MCSA_ELF_TypeObject: case MCSA_ELF_TypeTLS: case MCSA_ELF_TypeCommon: case MCSA_ELF_TypeNoType: case MCSA_IndirectSymbol: case MCSA_Hidden: case MCSA_Internal: case MCSA_Protected: case MCSA_Weak: case MCSA_Local: assert(0 && "Invalid symbol attribute for Mach-O!"); break; case MCSA_Global: SD.setExternal(true); // This effectively clears the undefined lazy bit, in Darwin 'as', although // it isn't very consistent because it implements this as part of symbol // lookup. // // FIXME: Cleanup this code, these bits should be emitted based on semantic // properties, not on the order of definition, etc. SD.setFlags(SD.getFlags() & ~SF_ReferenceTypeUndefinedLazy); break; case MCSA_LazyReference: // FIXME: This requires -dynamic. SD.setFlags(SD.getFlags() | SF_NoDeadStrip); if (Symbol->isUndefined()) SD.setFlags(SD.getFlags() | SF_ReferenceTypeUndefinedLazy); break; // Since .reference sets the no dead strip bit, it is equivalent to // .no_dead_strip in practice. case MCSA_Reference: case MCSA_NoDeadStrip: SD.setFlags(SD.getFlags() | SF_NoDeadStrip); break; case MCSA_PrivateExtern: SD.setExternal(true); SD.setPrivateExtern(true); break; case MCSA_WeakReference: // FIXME: This requires -dynamic. if (Symbol->isUndefined()) SD.setFlags(SD.getFlags() | SF_WeakReference); break; case MCSA_WeakDefinition: // FIXME: 'as' enforces that this is defined and global. The manual claims // it has to be in a coalesced section, but this isn't enforced. SD.setFlags(SD.getFlags() | SF_WeakDefinition); break; } } void MCMachOStreamer::EmitSymbolDesc(MCSymbol *Symbol, unsigned DescValue) { // Encode the 'desc' value into the lowest implementation defined bits. assert(DescValue == (DescValue & SF_DescFlagsMask) && "Invalid .desc value!"); getAssembler().getOrCreateSymbolData(*Symbol).setFlags( DescValue & SF_DescFlagsMask); } void MCMachOStreamer::EmitCommonSymbol(MCSymbol *Symbol, uint64_t Size, unsigned ByteAlignment) { // FIXME: Darwin 'as' does appear to allow redef of a .comm by itself. assert(Symbol->isUndefined() && "Cannot define a symbol twice!"); MCSymbolData &SD = getAssembler().getOrCreateSymbolData(*Symbol); SD.setExternal(true); SD.setCommon(Size, ByteAlignment); } void MCMachOStreamer::EmitZerofill(const MCSection *Section, MCSymbol *Symbol, unsigned Size, unsigned ByteAlignment) { MCSectionData &SectData = getAssembler().getOrCreateSectionData(*Section); // The symbol may not be present, which only creates the section. if (!Symbol) return; // FIXME: Assert that this section has the zerofill type. assert(Symbol->isUndefined() && "Cannot define a symbol twice!"); MCSymbolData &SD = getAssembler().getOrCreateSymbolData(*Symbol); // Emit an align fragment if necessary. if (ByteAlignment != 1) new MCAlignFragment(ByteAlignment, 0, 0, ByteAlignment, &SectData); MCFragment *F = new MCFillFragment(0, 0, Size, &SectData); SD.setFragment(F); if (getAssembler().isSymbolLinkerVisible(SD.getSymbol())) F->setAtom(&SD); Symbol->setSection(*Section); // Update the maximum alignment on the zero fill section if necessary. if (ByteAlignment > SectData.getAlignment()) SectData.setAlignment(ByteAlignment); } // This should always be called with the thread local bss section. Like the // .zerofill directive this doesn't actually switch sections on us. void MCMachOStreamer::EmitTBSSSymbol(const MCSection *Section, MCSymbol *Symbol, uint64_t Size, unsigned ByteAlignment) { EmitZerofill(Section, Symbol, Size, ByteAlignment); return; } void MCMachOStreamer::EmitBytes(StringRef Data, unsigned AddrSpace) { getOrCreateDataFragment()->getContents().append(Data.begin(), Data.end()); } void MCMachOStreamer::EmitValue(const MCExpr *Value, unsigned Size, unsigned AddrSpace) { MCDataFragment *DF = getOrCreateDataFragment(); // Avoid fixups when possible. int64_t AbsValue; if (AddValueSymbols(Value)->EvaluateAsAbsolute(AbsValue)) { // FIXME: Endianness assumption. for (unsigned i = 0; i != Size; ++i) DF->getContents().push_back(uint8_t(AbsValue >> (i * 8))); } else { DF->addFixup(MCFixup::Create(DF->getContents().size(), AddValueSymbols(Value), MCFixup::getKindForSize(Size))); DF->getContents().resize(DF->getContents().size() + Size, 0); } } void MCMachOStreamer::EmitValueToAlignment(unsigned ByteAlignment, int64_t Value, unsigned ValueSize, unsigned MaxBytesToEmit) { if (MaxBytesToEmit == 0) MaxBytesToEmit = ByteAlignment; MCFragment *F = new MCAlignFragment(ByteAlignment, Value, ValueSize, MaxBytesToEmit, getCurrentSectionData()); F->setAtom(CurrentAtomMap.lookup(getCurrentSectionData())); // Update the maximum alignment on the current section if necessary. if (ByteAlignment > getCurrentSectionData()->getAlignment()) getCurrentSectionData()->setAlignment(ByteAlignment); } void MCMachOStreamer::EmitCodeAlignment(unsigned ByteAlignment, unsigned MaxBytesToEmit) { if (MaxBytesToEmit == 0) MaxBytesToEmit = ByteAlignment; MCAlignFragment *F = new MCAlignFragment(ByteAlignment, 0, 1, MaxBytesToEmit, getCurrentSectionData()); F->setEmitNops(true); F->setAtom(CurrentAtomMap.lookup(getCurrentSectionData())); // Update the maximum alignment on the current section if necessary. if (ByteAlignment > getCurrentSectionData()->getAlignment()) getCurrentSectionData()->setAlignment(ByteAlignment); } void MCMachOStreamer::EmitValueToOffset(const MCExpr *Offset, unsigned char Value) { MCFragment *F = new MCOrgFragment(*Offset, Value, getCurrentSectionData()); F->setAtom(CurrentAtomMap.lookup(getCurrentSectionData())); } void MCMachOStreamer::EmitInstToFragment(const MCInst &Inst) { MCInstFragment *IF = new MCInstFragment(Inst, getCurrentSectionData()); IF->setAtom(CurrentAtomMap.lookup(getCurrentSectionData())); // Add the fixups and data. // // FIXME: Revisit this design decision when relaxation is done, we may be // able to get away with not storing any extra data in the MCInst. SmallVector Fixups; SmallString<256> Code; raw_svector_ostream VecOS(Code); getAssembler().getEmitter().EncodeInstruction(Inst, VecOS, Fixups); VecOS.flush(); IF->getCode() = Code; IF->getFixups() = Fixups; } void MCMachOStreamer::EmitInstToData(const MCInst &Inst) { MCDataFragment *DF = getOrCreateDataFragment(); SmallVector Fixups; SmallString<256> Code; raw_svector_ostream VecOS(Code); getAssembler().getEmitter().EncodeInstruction(Inst, VecOS, Fixups); VecOS.flush(); // Add the fixups and data. for (unsigned i = 0, e = Fixups.size(); i != e; ++i) { Fixups[i].setOffset(Fixups[i].getOffset() + DF->getContents().size()); DF->addFixup(Fixups[i]); } DF->getContents().append(Code.begin(), Code.end()); } void MCMachOStreamer::EmitInstruction(const MCInst &Inst) { // Scan for values. for (unsigned i = Inst.getNumOperands(); i--; ) if (Inst.getOperand(i).isExpr()) AddValueSymbols(Inst.getOperand(i).getExpr()); getCurrentSectionData()->setHasInstructions(true); // If this instruction doesn't need relaxation, just emit it as data. if (!getAssembler().getBackend().MayNeedRelaxation(Inst)) { EmitInstToData(Inst); return; } // Otherwise, if we are relaxing everything, relax the instruction as much as // possible and emit it as data. if (getAssembler().getRelaxAll()) { MCInst Relaxed; getAssembler().getBackend().RelaxInstruction(Inst, Relaxed); while (getAssembler().getBackend().MayNeedRelaxation(Relaxed)) getAssembler().getBackend().RelaxInstruction(Relaxed, Relaxed); EmitInstToData(Relaxed); return; } // Otherwise emit to a separate fragment. EmitInstToFragment(Inst); } MCStreamer *llvm::createMachOStreamer(MCContext &Context, TargetAsmBackend &TAB, raw_ostream &OS, MCCodeEmitter *CE, bool RelaxAll) { MCMachOStreamer *S = new MCMachOStreamer(Context, TAB, OS, CE); if (RelaxAll) S->getAssembler().setRelaxAll(true); return S; }