//===- BreakCriticalEdges.cpp - Critical Edge Elimination Pass ------------===// // // The LLVM Compiler Infrastructure // // This file was developed by the LLVM research group and is distributed under // the University of Illinois Open Source License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// // // BreakCriticalEdges pass - Break all of the critical edges in the CFG by // inserting a dummy basic block. This pass may be "required" by passes that // cannot deal with critical edges. For this usage, the structure type is // forward declared. This pass obviously invalidates the CFG, but can update // forward dominator (set, immediate dominators, and tree) information. // //===----------------------------------------------------------------------===// #include "llvm/Transforms/Scalar.h" #include "llvm/Analysis/Dominators.h" #include "llvm/Function.h" #include "llvm/iTerminators.h" #include "llvm/iPHINode.h" #include "llvm/Support/CFG.h" #include "Support/Statistic.h" namespace { Statistic<> NumBroken("break-crit-edges", "Number of blocks inserted"); struct BreakCriticalEdges : public FunctionPass { virtual bool runOnFunction(Function &F); virtual void getAnalysisUsage(AnalysisUsage &AU) const { AU.addPreserved(); AU.addPreserved(); AU.addPreserved(); AU.addPreserved(); // No loop canonicalization guarantees are broken by this pass. AU.addPreservedID(LoopSimplifyID); } }; RegisterOpt X("break-crit-edges", "Break critical edges in CFG"); } // Publically exposed interface to pass... const PassInfo *BreakCriticalEdgesID = X.getPassInfo(); Pass *createBreakCriticalEdgesPass() { return new BreakCriticalEdges(); } // isCriticalEdge - Return true if the specified edge is a critical edge. // Critical edges are edges from a block with multiple successors to a block // with multiple predecessors. // bool isCriticalEdge(const TerminatorInst *TI, unsigned SuccNum) { assert(SuccNum < TI->getNumSuccessors() && "Illegal edge specification!"); if (TI->getNumSuccessors() == 1) return false; const BasicBlock *Dest = TI->getSuccessor(SuccNum); pred_const_iterator I = pred_begin(Dest), E = pred_end(Dest); // If there is more than one predecessor, this is a critical edge... assert(I != E && "No preds, but we have an edge to the block?"); ++I; // Skip one edge due to the incoming arc from TI. return I != E; } // SplitCriticalEdge - Insert a new node node to split the critical edge. This // will update DominatorSet, ImmediateDominator and DominatorTree information if // it is available, thus calling this pass will not invalidate either of them. // void SplitCriticalEdge(TerminatorInst *TI, unsigned SuccNum, Pass *P) { assert(isCriticalEdge(TI, SuccNum) && "Cannot break a critical edge, if it isn't a critical edge"); BasicBlock *TIBB = TI->getParent(); BasicBlock *DestBB = TI->getSuccessor(SuccNum); // Create a new basic block, linking it into the CFG. BasicBlock *NewBB = new BasicBlock(TIBB->getName() + "." + DestBB->getName() + "_crit_edge"); // Create our unconditional branch... BranchInst *BI = new BranchInst(DestBB); NewBB->getInstList().push_back(BI); // Branch to the new block, breaking the edge... TI->setSuccessor(SuccNum, NewBB); // Insert the block into the function... right after the block TI lives in. Function &F = *TIBB->getParent(); F.getBasicBlockList().insert(TIBB->getNext(), NewBB); // If there are any PHI nodes in DestBB, we need to update them so that they // merge incoming values from NewBB instead of from TIBB. // for (BasicBlock::iterator I = DestBB->begin(); PHINode *PN = dyn_cast(I); ++I) { // We no longer enter through TIBB, now we come in through NewBB. PN->replaceUsesOfWith(TIBB, NewBB); } // If we don't have a pass object, we can't update anything... if (P == 0) return; // Now update analysis information. These are the analyses that we are // currently capable of updating... // // Should we update DominatorSet information? if (DominatorSet *DS = P->getAnalysisToUpdate()) { // The blocks that dominate the new one are the blocks that dominate TIBB // plus the new block itself. DominatorSet::DomSetType DomSet = DS->getDominators(TIBB); DomSet.insert(NewBB); // A block always dominates itself. DS->addBasicBlock(NewBB, DomSet); } // Should we update ImmediateDominator information? if (ImmediateDominators *ID = P->getAnalysisToUpdate()) { // TIBB is the new immediate dominator for NewBB. NewBB doesn't dominate // anything. ID->addNewBlock(NewBB, TIBB); } // Should we update DominatorTree information? if (DominatorTree *DT = P->getAnalysisToUpdate()) { DominatorTree::Node *TINode = DT->getNode(TIBB); // The new block is not the immediate dominator for any other nodes, but // TINode is the immediate dominator for the new node. // if (TINode) // Don't break unreachable code! DT->createNewNode(NewBB, TINode); } // Should we update DominanceFrontier information? if (DominanceFrontier *DF = P->getAnalysisToUpdate()) { // Since the new block is dominated by its only predecessor TIBB, // it cannot be in any block's dominance frontier. Its dominance // frontier is {DestBB}. DominanceFrontier::DomSetType NewDFSet; NewDFSet.insert(DestBB); DF->addBasicBlock(NewBB, NewDFSet); } } // runOnFunction - Loop over all of the edges in the CFG, breaking critical // edges as they are found. // bool BreakCriticalEdges::runOnFunction(Function &F) { bool Changed = false; for (Function::iterator I = F.begin(), E = F.end(); I != E; ++I) { TerminatorInst *TI = I->getTerminator(); if (TI->getNumSuccessors() > 1) for (unsigned i = 0, e = TI->getNumSuccessors(); i != e; ++i) if (isCriticalEdge(TI, i)) { SplitCriticalEdge(TI, i, this); ++NumBroken; Changed = true; } } return Changed; }