// $Id$ //*************************************************************************** // File: // SchedGraph.cpp // // Purpose: // Scheduling graph based on SSA graph plus extra dependence edges // capturing dependences due to machine resources (machine registers, // CC registers, and any others). // // History: // 7/20/01 - Vikram Adve - Created //**************************************************************************/ #include "SchedGraph.h" #include "llvm/InstrTypes.h" #include "llvm/Instruction.h" #include "llvm/BasicBlock.h" #include "llvm/Method.h" #include "llvm/CodeGen/MachineInstr.h" #include "llvm/CodeGen/InstrSelection.h" #include "llvm/Target/MachineInstrInfo.h" #include "llvm/Target/MachineRegInfo.h" #include "llvm/Support/StringExtras.h" #include "llvm/iOther.h" #include //*********************** Internal Data Structures *************************/ typedef vector< pair > RefVec; // The following needs to be a class, not a typedef, so we can use // an opaque declaration in SchedGraph.h struct RegToRefVecMap: public hash_map { typedef hash_map:: iterator iterator; typedef hash_map::const_iterator const_iterator; }; // // class SchedGraphEdge // /*ctor*/ SchedGraphEdge::SchedGraphEdge(SchedGraphNode* _src, SchedGraphNode* _sink, SchedGraphEdgeDepType _depType, DataDepOrderType _depOrderType, int _minDelay) : src(_src), sink(_sink), depType(_depType), depOrderType(_depOrderType), minDelay((_minDelay >= 0)? _minDelay : _src->getLatency()), val(NULL) { src->addOutEdge(this); sink->addInEdge(this); } /*ctor*/ SchedGraphEdge::SchedGraphEdge(SchedGraphNode* _src, SchedGraphNode* _sink, const Value* _val, DataDepOrderType _depOrderType, int _minDelay) : src(_src), sink(_sink), depType(DefUseDep), depOrderType(_depOrderType), minDelay((_minDelay >= 0)? _minDelay : _src->getLatency()), val(_val) { src->addOutEdge(this); sink->addInEdge(this); } /*ctor*/ SchedGraphEdge::SchedGraphEdge(SchedGraphNode* _src, SchedGraphNode* _sink, unsigned int _regNum, DataDepOrderType _depOrderType, int _minDelay) : src(_src), sink(_sink), depType(MachineRegister), depOrderType(_depOrderType), minDelay((_minDelay >= 0)? _minDelay : _src->getLatency()), machineRegNum(_regNum) { src->addOutEdge(this); sink->addInEdge(this); } /*ctor*/ SchedGraphEdge::SchedGraphEdge(SchedGraphNode* _src, SchedGraphNode* _sink, ResourceId _resourceId, int _minDelay) : src(_src), sink(_sink), depType(MachineResource), depOrderType(NonDataDep), minDelay((_minDelay >= 0)? _minDelay : _src->getLatency()), resourceId(_resourceId) { src->addOutEdge(this); sink->addInEdge(this); } /*dtor*/ SchedGraphEdge::~SchedGraphEdge() { } void SchedGraphEdge::dump(int indent=0) const { printIndent(indent); cout << *this; } // // class SchedGraphNode // /*ctor*/ SchedGraphNode::SchedGraphNode(unsigned int _nodeId, const Instruction* _instr, const MachineInstr* _minstr, const TargetMachine& target) : nodeId(_nodeId), instr(_instr), minstr(_minstr), latency(0) { if (minstr) { MachineOpCode mopCode = minstr->getOpCode(); latency = target.getInstrInfo().hasResultInterlock(mopCode) ? target.getInstrInfo().minLatency(mopCode) : target.getInstrInfo().maxLatency(mopCode); } } /*dtor*/ SchedGraphNode::~SchedGraphNode() { } void SchedGraphNode::dump(int indent=0) const { printIndent(indent); cout << *this; } inline void SchedGraphNode::addInEdge(SchedGraphEdge* edge) { inEdges.push_back(edge); } inline void SchedGraphNode::addOutEdge(SchedGraphEdge* edge) { outEdges.push_back(edge); } inline void SchedGraphNode::removeInEdge(const SchedGraphEdge* edge) { assert(edge->getSink() == this); for (iterator I = beginInEdges(); I != endInEdges(); ++I) if ((*I) == edge) { inEdges.erase(I); break; } } inline void SchedGraphNode::removeOutEdge(const SchedGraphEdge* edge) { assert(edge->getSrc() == this); for (iterator I = beginOutEdges(); I != endOutEdges(); ++I) if ((*I) == edge) { outEdges.erase(I); break; } } // // class SchedGraph // /*ctor*/ SchedGraph::SchedGraph(const BasicBlock* bb, const TargetMachine& target) { bbVec.push_back(bb); this->buildGraph(target); } /*dtor*/ SchedGraph::~SchedGraph() { for (iterator I=begin(); I != end(); ++I) { SchedGraphNode* node = (*I).second; // for each node, delete its out-edges for (SchedGraphNode::iterator I = node->beginOutEdges(); I != node->endOutEdges(); ++I) delete *I; // then delete the node itself. delete node; } } void SchedGraph::dump() const { cout << " Sched Graph for Basic Blocks: "; for (unsigned i=0, N=bbVec.size(); i < N; i++) { cout << (bbVec[i]->hasName()? bbVec[i]->getName() : "block") << " (" << bbVec[i] << ")" << ((i == N-1)? "" : ", "); } cout << endl << endl << " Actual Root nodes : "; for (unsigned i=0, N=graphRoot->outEdges.size(); i < N; i++) cout << graphRoot->outEdges[i]->getSink()->getNodeId() << ((i == N-1)? "" : ", "); cout << endl << " Graph Nodes:" << endl; for (const_iterator I=begin(); I != end(); ++I) cout << endl << * (*I).second; cout << endl; } void SchedGraph::eraseIncomingEdges(SchedGraphNode* node, bool addDummyEdges) { // Delete and disconnect all in-edges for the node for (SchedGraphNode::iterator I = node->beginInEdges(); I != node->endInEdges(); ++I) { SchedGraphNode* srcNode = (*I)->getSrc(); srcNode->removeOutEdge(*I); delete *I; if (addDummyEdges && srcNode != getRoot() && srcNode->beginOutEdges() == srcNode->endOutEdges()) { // srcNode has no more out edges, so add an edge to dummy EXIT node assert(node != getLeaf() && "Adding edge that was just removed?"); (void) new SchedGraphEdge(srcNode, getLeaf(), SchedGraphEdge::CtrlDep, SchedGraphEdge::NonDataDep, 0); } } node->inEdges.clear(); } void SchedGraph::eraseOutgoingEdges(SchedGraphNode* node, bool addDummyEdges) { // Delete and disconnect all out-edges for the node for (SchedGraphNode::iterator I = node->beginOutEdges(); I != node->endOutEdges(); ++I) { SchedGraphNode* sinkNode = (*I)->getSink(); sinkNode->removeInEdge(*I); delete *I; if (addDummyEdges && sinkNode != getLeaf() && sinkNode->beginInEdges() == sinkNode->endInEdges()) { //sinkNode has no more in edges, so add an edge from dummy ENTRY node assert(node != getRoot() && "Adding edge that was just removed?"); (void) new SchedGraphEdge(getRoot(), sinkNode, SchedGraphEdge::CtrlDep, SchedGraphEdge::NonDataDep, 0); } } node->outEdges.clear(); } void SchedGraph::eraseIncidentEdges(SchedGraphNode* node, bool addDummyEdges) { this->eraseIncomingEdges(node, addDummyEdges); this->eraseOutgoingEdges(node, addDummyEdges); } void SchedGraph::addDummyEdges() { assert(graphRoot->outEdges.size() == 0); for (const_iterator I=begin(); I != end(); ++I) { SchedGraphNode* node = (*I).second; assert(node != graphRoot && node != graphLeaf); if (node->beginInEdges() == node->endInEdges()) (void) new SchedGraphEdge(graphRoot, node, SchedGraphEdge::CtrlDep, SchedGraphEdge::NonDataDep, 0); if (node->beginOutEdges() == node->endOutEdges()) (void) new SchedGraphEdge(node, graphLeaf, SchedGraphEdge::CtrlDep, SchedGraphEdge::NonDataDep, 0); } } void SchedGraph::addCDEdges(const TerminatorInst* term, const TargetMachine& target) { const MachineInstrInfo& mii = target.getInstrInfo(); MachineCodeForVMInstr& termMvec = term->getMachineInstrVec(); // Find the first branch instr in the sequence of machine instrs for term // unsigned first = 0; while (! mii.isBranch(termMvec[first]->getOpCode())) ++first; assert(first < termMvec.size() && "No branch instructions for BR? Ok, but weird! Delete assertion."); if (first == termMvec.size()) return; SchedGraphNode* firstBrNode = this->getGraphNodeForInstr(termMvec[first]); // Add CD edges from each instruction in the sequence to the // *last preceding* branch instr. in the sequence // for (int i = (int) termMvec.size()-1; i > (int) first; i--) { SchedGraphNode* toNode = this->getGraphNodeForInstr(termMvec[i]); assert(toNode && "No node for instr generated for branch?"); for (int j = i-1; j >= 0; j--) if (mii.isBranch(termMvec[j]->getOpCode())) { SchedGraphNode* brNode = this->getGraphNodeForInstr(termMvec[j]); assert(brNode && "No node for instr generated for branch?"); (void) new SchedGraphEdge(brNode, toNode, SchedGraphEdge::CtrlDep, SchedGraphEdge::NonDataDep, 0); break; // only one incoming edge is enough } } // Add CD edges from each instruction preceding the first branch // to the first branch // for (int i = first-1; i >= 0; i--) { SchedGraphNode* fromNode = this->getGraphNodeForInstr(termMvec[i]); assert(fromNode && "No node for instr generated for branch?"); (void) new SchedGraphEdge(fromNode, firstBrNode, SchedGraphEdge::CtrlDep, SchedGraphEdge::NonDataDep, 0); } // Now add CD edges to the first branch instruction in the sequence // from all preceding instructions in the basic block. // const BasicBlock* bb = term->getParent(); for (BasicBlock::const_iterator II = bb->begin(); II != bb->end(); ++II) { if ((*II) == (const Instruction*) term) // special case, handled above continue; assert(! (*II)->isTerminator() && "Two terminators in basic block?"); const MachineCodeForVMInstr& mvec = (*II)->getMachineInstrVec(); for (unsigned i=0, N=mvec.size(); i < N; i++) { SchedGraphNode* fromNode = this->getGraphNodeForInstr(mvec[i]); if (fromNode == NULL) continue; // dummy instruction, e.g., PHI (void) new SchedGraphEdge(fromNode, firstBrNode, SchedGraphEdge::CtrlDep, SchedGraphEdge::NonDataDep, 0); // If we find any other machine instructions (other than due to // the terminator) that also have delay slots, add an outgoing edge // from the instruction to the instructions in the delay slots. // unsigned d = mii.getNumDelaySlots(mvec[i]->getOpCode()); assert(i+d < N && "Insufficient delay slots for instruction?"); for (unsigned j=1; j <= d; j++) { SchedGraphNode* toNode = this->getGraphNodeForInstr(mvec[i+j]); assert(toNode && "No node for machine instr in delay slot?"); (void) new SchedGraphEdge(fromNode, toNode, SchedGraphEdge::CtrlDep, SchedGraphEdge::NonDataDep, 0); } } } } void SchedGraph::addMemEdges(const vector& memVec, const TargetMachine& target) { const MachineInstrInfo& mii = target.getInstrInfo(); for (unsigned im=0, NM=memVec.size(); im < NM; im++) { const Instruction* fromInstr = memVec[im]; bool fromIsLoad = fromInstr->getOpcode() == Instruction::Load; for (unsigned jm=im+1; jm < NM; jm++) { const Instruction* toInstr = memVec[jm]; bool toIsLoad = toInstr->getOpcode() == Instruction::Load; SchedGraphEdge::DataDepOrderType depOrderType; if (fromIsLoad) { if (toIsLoad) continue; // both instructions are loads depOrderType = SchedGraphEdge::AntiDep; } else { depOrderType = (toIsLoad)? SchedGraphEdge::TrueDep : SchedGraphEdge::OutputDep; } MachineCodeForVMInstr& fromInstrMvec=fromInstr->getMachineInstrVec(); MachineCodeForVMInstr& toInstrMvec = toInstr->getMachineInstrVec(); // We have two VM memory instructions, and at least one is a store. // Add edges between all machine load/store instructions. // for (unsigned i=0, N=fromInstrMvec.size(); i < N; i++) { MachineOpCode fromOpCode = fromInstrMvec[i]->getOpCode(); if (mii.isLoad(fromOpCode) || mii.isStore(fromOpCode)) { SchedGraphNode* fromNode = this->getGraphNodeForInstr(fromInstrMvec[i]); assert(fromNode && "No node for memory instr?"); for (unsigned j=0, M=toInstrMvec.size(); j < M; j++) { MachineOpCode toOpCode = toInstrMvec[j]->getOpCode(); if (mii.isLoad(toOpCode) || mii.isStore(toOpCode)) { SchedGraphNode* toNode = this->getGraphNodeForInstr(toInstrMvec[j]); assert(toNode && "No node for memory instr?"); (void) new SchedGraphEdge(fromNode, toNode, SchedGraphEdge::MemoryDep, depOrderType, 1); } } } } } } } void SchedGraph::addMachineRegEdges(RegToRefVecMap& regToRefVecMap, const TargetMachine& target) { assert(bbVec.size() == 1 && "Only handling a single basic block here"); // This assumes that such hardwired registers are never allocated // to any LLVM value (since register allocation happens later), i.e., // any uses or defs of this register have been made explicit! // Also assumes that two registers with different numbers are // not aliased! // for (RegToRefVecMap::iterator I = regToRefVecMap.begin(); I != regToRefVecMap.end(); ++I) { int regNum = (*I).first; RefVec& regRefVec = (*I).second; // regRefVec is ordered by control flow order in the basic block for (unsigned i=0; i < regRefVec.size(); ++i) { SchedGraphNode* node = regRefVec[i].first; unsigned int opNum = regRefVec[i].second; bool isDef = node->getMachineInstr()->operandIsDefined(opNum); for (unsigned p=0; p < i; ++p) { SchedGraphNode* prevNode = regRefVec[p].first; if (prevNode != node) { unsigned int prevOpNum = regRefVec[p].second; bool prevIsDef = prevNode->getMachineInstr()->operandIsDefined(prevOpNum); if (isDef) new SchedGraphEdge(prevNode, node, regNum, (prevIsDef)? SchedGraphEdge::OutputDep : SchedGraphEdge::AntiDep); else if (prevIsDef) new SchedGraphEdge(prevNode, node, regNum, SchedGraphEdge::TrueDep); } } } } } inline void CreateSSAEdge(SchedGraph* graph, MachineInstr* defInstr, SchedGraphNode* node, const Value* val) { // this instruction does define value `val'. // if there is a node for it in the same graph, add an edge. SchedGraphNode* defNode = graph->getGraphNodeForInstr(defInstr); if (defNode != NULL && defNode != node) (void) new SchedGraphEdge(defNode, node, val); } void SchedGraph::addSSAEdge(SchedGraphNode* destNode, const Instruction* defVMInstr, const Value* defValue, const TargetMachine& target) { // Phi instructions are the only ones that produce a value but don't get // any non-dummy machine instructions. Return here as an optimization. // if (isa(defVMInstr)) return; // Now add the graph edge for the appropriate machine instruction(s). // Note that multiple machine instructions generated for the // def VM instruction may modify the register for the def value. // MachineCodeForVMInstr& defMvec = defVMInstr->getMachineInstrVec(); const MachineInstrInfo& mii = target.getInstrInfo(); for (unsigned i=0, N=defMvec.size(); i < N; i++) { bool edgeAddedForInstr = false; // First check the explicit operands for (int o=0, N=mii.getNumOperands(defMvec[i]->getOpCode()); o < N; o++) { const MachineOperand& defOp = defMvec[i]->getOperand(o); if (defOp.opIsDef() && (defOp.getOperandType() == MachineOperand::MO_VirtualRegister || defOp.getOperandType() == MachineOperand::MO_CCRegister) && (defOp.getVRegValue() == defValue)) { CreateSSAEdge(this, defMvec[i], destNode, defValue); edgeAddedForInstr = true; break; } } // Then check the implicit operands if (! edgeAddedForInstr) { for (unsigned o=0, N=defMvec[i]->getNumImplicitRefs(); o < N; ++o) if (defMvec[i]->implicitRefIsDefined(o) && defMvec[i]->getImplicitRef(o) == defValue) { CreateSSAEdge(this, defMvec[i], destNode, defValue); edgeAddedForInstr = true; break; } } } } void SchedGraph::addEdgesForInstruction(const MachineInstr& minstr, RegToRefVecMap& regToRefVecMap, const TargetMachine& target) { SchedGraphNode* node = this->getGraphNodeForInstr(&minstr); if (node == NULL) return; assert(node->getInstr() && "Should be no dummy nodes here!"); const Instruction* instr = node->getInstr(); // Add edges for all operands of the machine instruction. // Also, record all machine register references to add reg. deps. later. // for (unsigned i=0, numOps=minstr.getNumOperands(); i < numOps; i++) { const MachineOperand& mop = minstr.getOperand(i); // if this writes to a machine register other than the hardwired // "zero" register, record the reference. if (mop.getOperandType() == MachineOperand::MO_MachineRegister && (mop.getMachineRegNum() != (unsigned) target.getRegInfo().getZeroRegNum())) { regToRefVecMap[mop.getMachineRegNum()].push_back(make_pair(node, i)); } // ignore all other def operands if (minstr.operandIsDefined(i)) continue; switch(mop.getOperandType()) { case MachineOperand::MO_VirtualRegister: case MachineOperand::MO_CCRegister: if (const Instruction* srcI = dyn_cast_or_null(mop.getVRegValue())) { if (srcI->getOpcode() == TMP_INSTRUCTION_OPCODE) srcI = instr; addSSAEdge(node, srcI, mop.getVRegValue(), target); } break; case MachineOperand::MO_MachineRegister: break; case MachineOperand::MO_SignExtendedImmed: case MachineOperand::MO_UnextendedImmed: case MachineOperand::MO_PCRelativeDisp: break; // nothing to do for immediate fields default: assert(0 && "Unknown machine operand type in SchedGraph builder"); break; } } // Add edges for values implicitly used by the machine instruction. // Examples include function arguments to a Call instructions or the return // value of a Ret instruction. // for (unsigned i=0, N=minstr.getNumImplicitRefs(); i < N; ++i) if (! minstr.implicitRefIsDefined(i)) if (const Instruction* srcI = dyn_cast_or_null(minstr.getImplicitRef(i))) { if (srcI->getOpcode() == TMP_INSTRUCTION_OPCODE) srcI = instr; addSSAEdge(node, srcI, minstr.getImplicitRef(i), target); } } void SchedGraph::addNonSSAEdgesForValue(const Instruction* instr, const TargetMachine& target) { if (isa(instr)) return; MachineCodeForVMInstr& mvec = instr->getMachineInstrVec(); const MachineInstrInfo& mii = target.getInstrInfo(); RefVec refVec; for (unsigned i=0, N=mvec.size(); i < N; i++) for (int o=0, N = mii.getNumOperands(mvec[i]->getOpCode()); o < N; o++) { const MachineOperand& op = mvec[i]->getOperand(o); if ((op.getOperandType() == MachineOperand::MO_VirtualRegister || op.getOperandType() == MachineOperand::MO_CCRegister) && op.getVRegValue() == (Value*) instr) { // this operand is a definition or use of value `instr' SchedGraphNode* node = this->getGraphNodeForInstr(mvec[i]); assert(node && "No node for machine instruction in this BB?"); refVec.push_back(make_pair(node, o)); } } // refVec is ordered by control flow order of the machine instructions for (unsigned i=0; i < refVec.size(); ++i) { SchedGraphNode* node = refVec[i].first; unsigned int opNum = refVec[i].second; bool isDef = node->getMachineInstr()->operandIsDefined(opNum); if (isDef) // add output and/or anti deps to this definition for (unsigned p=0; p < i; ++p) { SchedGraphNode* prevNode = refVec[p].first; if (prevNode != node) { bool prevIsDef = prevNode->getMachineInstr()-> operandIsDefined(refVec[p].second); new SchedGraphEdge(prevNode, node, SchedGraphEdge::DefUseDep, (prevIsDef)? SchedGraphEdge::OutputDep : SchedGraphEdge::AntiDep); } } } } void SchedGraph::buildNodesforVMInstr(const TargetMachine& target, const Instruction* instr) { const MachineInstrInfo& mii = target.getInstrInfo(); const MachineCodeForVMInstr& mvec = instr->getMachineInstrVec(); for (unsigned i=0; i < mvec.size(); i++) if (! mii.isDummyPhiInstr(mvec[i]->getOpCode())) { SchedGraphNode* node = new SchedGraphNode(getNumNodes(), instr, mvec[i], target); this->noteGraphNodeForInstr(mvec[i], node); } } void SchedGraph::buildGraph(const TargetMachine& target) { const MachineInstrInfo& mii = target.getInstrInfo(); const BasicBlock* bb = bbVec[0]; assert(bbVec.size() == 1 && "Only handling a single basic block here"); // Use this data structures to note all LLVM memory instructions. // We use this to add memory dependence edges without a second full walk. // vector memVec; // Use this data structures to note any uses or definitions of // machine registers so we can add edges for those later without // extra passes over the nodes. // The vector holds an ordered list of references to the machine reg, // ordered according to control-flow order. This only works for a // single basic block, hence the assertion. Each reference is identified // by the pair: . // RegToRefVecMap regToRefVecMap; // Make a dummy root node. We'll add edges to the real roots later. graphRoot = new SchedGraphNode(0, NULL, NULL, target); graphLeaf = new SchedGraphNode(1, NULL, NULL, target); //---------------------------------------------------------------- // First add nodes for all the machine instructions in the basic block // because this greatly simplifies identifying which edges to add. // Do this one VM instruction at a time since the SchedGraphNode needs that. // Also, remember the load/store instructions to add memory deps later. //---------------------------------------------------------------- for (BasicBlock::const_iterator II = bb->begin(); II != bb->end(); ++II) { const Instruction *instr = *II; // Build graph nodes for this VM instruction buildNodesforVMInstr(target, instr); // Remember the load/store instructions to add memory deps later. if (instr->getOpcode() == Instruction::Load || instr->getOpcode() == Instruction::Store) memVec.push_back(instr); } //---------------------------------------------------------------- // Now add edges for the following (all are incoming edges except (4)): // (1) operands of the machine instruction, including hidden operands // (2) machine register dependences // (3) memory load/store dependences // (3) other resource dependences for the machine instruction, if any // (4) output dependences when multiple machine instructions define the // same value; all must have been generated from a single VM instrn // (5) control dependences to branch instructions generated for the // terminator instruction of the BB. Because of delay slots and // 2-way conditional branches, multiple CD edges are needed // (see addCDEdges for details). // Also, note any uses or defs of machine registers. // //---------------------------------------------------------------- // First, add edges to the terminator instruction of the basic block. this->addCDEdges(bb->getTerminator(), target); // Then add memory dep edges: store->load, load->store, and store->store this->addMemEdges(memVec, target); // Then add other edges for all instructions in the block. // Do this in machine code order and find all references to machine regs. MachineCodeForBasicBlock& mvec = bb->getMachineInstrVec(); for (unsigned i=0, N=mvec.size(); i < N; i++) addEdgesForInstruction(*mvec[i], regToRefVecMap, target); // Since the code is no longer in SSA form, add output dep. edges // between machine instructions that define the same Value, and anti-dep. // edges from those to other machine instructions for the same VM instr. // We assume that all machine instructions that define a value are // generated from the VM instruction corresponding to that value. // for (BasicBlock::const_iterator II = bb->begin(); II != bb->end(); ++II) { const Instruction *instr = *II; this->addNonSSAEdgesForValue(instr, target); } // Then add edges for dependences on machine registers this->addMachineRegEdges(regToRefVecMap, target); // Finally, add edges from the dummy root and to dummy leaf this->addDummyEdges(); } // // class SchedGraphSet // /*ctor*/ SchedGraphSet::SchedGraphSet(const Method* _method, const TargetMachine& target) : method(_method) { buildGraphsForMethod(method, target); } /*dtor*/ SchedGraphSet::~SchedGraphSet() { // delete all the graphs for (iterator I=begin(); I != end(); ++I) delete (*I).second; } void SchedGraphSet::dump() const { cout << "======== Sched graphs for method `" << (method->hasName()? method->getName() : "???") << "' ========" << endl << endl; for (const_iterator I=begin(); I != end(); ++I) (*I).second->dump(); cout << endl << "====== End graphs for method `" << (method->hasName()? method->getName() : "") << "' ========" << endl << endl; } void SchedGraphSet::buildGraphsForMethod(const Method *method, const TargetMachine& target) { for (Method::const_iterator BI = method->begin(); BI != method->end(); ++BI) { SchedGraph* graph = new SchedGraph(*BI, target); this->noteGraphForBlock(*BI, graph); } } ostream& operator<<(ostream& os, const SchedGraphEdge& edge) { os << "edge [" << edge.src->getNodeId() << "] -> [" << edge.sink->getNodeId() << "] : "; switch(edge.depType) { case SchedGraphEdge::CtrlDep: os<< "Control Dep"; break; case SchedGraphEdge::DefUseDep: os<< "Reg Value " << edge.val; break; case SchedGraphEdge::MemoryDep: os<< "Mem Value " << edge.val; break; case SchedGraphEdge::MachineRegister: os<< "Reg " <