//===-- ReaderInternals.h - Definitions internal to the reader --*- C++ -*-===// // // The LLVM Compiler Infrastructure // // This file was developed by the LLVM research group and is distributed under // the University of Illinois Open Source License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// // // This header file defines various stuff that is used by the bytecode reader. // //===----------------------------------------------------------------------===// #ifndef READER_INTERNALS_H #define READER_INTERNALS_H #include "llvm/Constants.h" #include "llvm/DerivedTypes.h" #include "llvm/Function.h" #include "llvm/ModuleProvider.h" #include "llvm/Bytecode/Primitives.h" #include #include namespace llvm { // Enable to trace to figure out what the heck is going on when parsing fails //#define TRACE_LEVEL 10 //#define DEBUG_OUTPUT #if TRACE_LEVEL // ByteCodeReading_TRACEr #define BCR_TRACE(n, X) \ if (n < TRACE_LEVEL) std::cerr << std::string(n*2, ' ') << X #else #define BCR_TRACE(n, X) #endif struct LazyFunctionInfo { const unsigned char *Buf, *EndBuf; LazyFunctionInfo(const unsigned char *B = 0, const unsigned char *EB = 0) : Buf(B), EndBuf(EB) {} }; class BytecodeParser : public ModuleProvider { BytecodeParser(const BytecodeParser &); // DO NOT IMPLEMENT void operator=(const BytecodeParser &); // DO NOT IMPLEMENT public: BytecodeParser() { // Define this in case we don't see a ModuleGlobalInfo block. FirstDerivedTyID = Type::FirstDerivedTyID; } ~BytecodeParser() { freeState(); } void freeState() { freeTable(Values); freeTable(ModuleValues); } Module* releaseModule() { // Since we're losing control of this Module, we must hand it back complete Module *M = ModuleProvider::releaseModule(); freeState(); return M; } void ParseBytecode(const unsigned char *Buf, unsigned Length, const std::string &ModuleID); void dump() const { std::cerr << "BytecodeParser instance!\n"; } private: struct ValueList : public User { ValueList() : User(Type::TypeTy, Value::TypeVal) {} // vector compatibility methods unsigned size() const { return getNumOperands(); } void push_back(Value *V) { Operands.push_back(Use(V, this)); } Value *back() const { return Operands.back(); } void pop_back() { Operands.pop_back(); } bool empty() const { return Operands.empty(); } virtual void print(std::ostream& OS) const { OS << "Bytecode Reader UseHandle!"; } }; // Information about the module, extracted from the bytecode revision number. unsigned char RevisionNum; // The rev # itself unsigned char FirstDerivedTyID; // First variable index to use for type bool hasInternalMarkerOnly; // Only types of linkage are intern/external bool hasExtendedLinkageSpecs; // Supports more than 4 linkage types bool hasOldStyleVarargs; // Has old version of varargs intrinsics? bool hasVarArgCallPadding; // Bytecode has extra padding in vararg call bool usesOldStyleVarargs; // Does this module USE old style varargs? typedef std::vector ValueTable; ValueTable Values; ValueTable ModuleValues; std::map, Value*> ForwardReferences; std::vector ParsedBasicBlocks; // ConstantFwdRefs - This maintains a mapping between 's and // forward references to constants. Such values may be referenced before they // are defined, and if so, the temporary object that they represent is held // here. // typedef std::map, Constant*> ConstantRefsType; ConstantRefsType ConstantFwdRefs; // TypesLoaded - This vector mirrors the Values[TypeTyID] plane. It is used // to deal with forward references to types. // typedef std::vector TypeValuesListTy; TypeValuesListTy ModuleTypeValues; TypeValuesListTy FunctionTypeValues; // When the ModuleGlobalInfo section is read, we create a function object for // each function in the module. When the function is loaded, this function is // filled in. // std::vector FunctionSignatureList; // Constant values are read in after global variables. Because of this, we // must defer setting the initializers on global variables until after module // level constants have been read. In the mean time, this list keeps track of // what we must do. // std::vector > GlobalInits; // For lazy reading-in of functions, we need to save away several pieces of // information about each function: its begin and end pointer in the buffer // and its FunctionSlot. // std::map LazyFunctionLoadMap; private: void freeTable(ValueTable &Tab) { while (!Tab.empty()) { delete Tab.back(); Tab.pop_back(); } } public: void ParseModule(const unsigned char * Buf, const unsigned char *End); void materializeFunction(Function *F); private: void ParseVersionInfo (const unsigned char *&Buf, const unsigned char *End); void ParseModuleGlobalInfo(const unsigned char *&Buf, const unsigned char *E); void ParseSymbolTable(const unsigned char *&Buf, const unsigned char *End, SymbolTable *, Function *CurrentFunction); void ParseFunction(const unsigned char *&Buf, const unsigned char *End); void ParseGlobalTypes(const unsigned char *&Buf, const unsigned char *EndBuf); BasicBlock *ParseBasicBlock(const unsigned char *&Buf, const unsigned char *End, unsigned BlockNo); unsigned ParseInstructionList(Function *F, const unsigned char *&Buf, const unsigned char *EndBuf); void ParseInstruction(const unsigned char *&Buf, const unsigned char *End, std::vector &Args, BasicBlock *BB); void ParseConstantPool(const unsigned char *&Buf, const unsigned char *EndBuf, ValueTable &Tab, TypeValuesListTy &TypeTab); Constant *parseConstantValue(const unsigned char *&Buf, const unsigned char *End, unsigned TypeID); void parseTypeConstants(const unsigned char *&Buf, const unsigned char *EndBuf, TypeValuesListTy &Tab, unsigned NumEntries); const Type *parseTypeConstant(const unsigned char *&Buf, const unsigned char *EndBuf); Value *getValue(unsigned TypeID, unsigned num, bool Create = true); const Type *getType(unsigned ID); BasicBlock *getBasicBlock(unsigned ID); Constant *getConstantValue(unsigned TypeID, unsigned num); Constant *getConstantValue(const Type *Ty, unsigned num) { return getConstantValue(getTypeSlot(Ty), num); } unsigned insertValue(Value *V, unsigned Type, ValueTable &Table); unsigned getTypeSlot(const Type *Ty); // resolve all references to the placeholder (if any) for the given constant void ResolveReferencesToConstant(Constant *C, unsigned Slot); }; template class PlaceholderDef : public SuperType { unsigned ID; PlaceholderDef(); // DO NOT IMPLEMENT void operator=(const PlaceholderDef &); // DO NOT IMPLEMENT public: PlaceholderDef(const Type *Ty, unsigned id) : SuperType(Ty), ID(id) {} unsigned getID() { return ID; } }; struct ConstantPlaceHolderHelper : public ConstantExpr { ConstantPlaceHolderHelper(const Type *Ty) : ConstantExpr(Instruction::UserOp1, Constant::getNullValue(Ty), Ty) {} }; typedef PlaceholderDef ConstPHolder; // Some common errors we find static const std::string Error_readvbr = "read_vbr(): error reading."; static const std::string Error_read = "read(): error reading."; static const std::string Error_inputdata = "input_data(): error reading."; static const std::string Error_DestSlot = "No destination slot found."; static inline void readBlock(const unsigned char *&Buf, const unsigned char *EndBuf, unsigned &Type, unsigned &Size) { #ifdef DEBUG_OUTPUT bool Result = read(Buf, EndBuf, Type) || read(Buf, EndBuf, Size); std::cerr << "StartLoc = " << ((unsigned)Buf & 4095) << " Type = " << Type << " Size = " << Size << "\n"; if (Result) throw Error_read; #else if (read(Buf, EndBuf, Type) || read(Buf, EndBuf, Size)) throw Error_read; #endif } } // End llvm namespace #endif